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TSSTDet: Transformation-Based 3-D Object
Detection via a Spatial Shape Transformer

Hiep Anh Hoang , Duy Cuong Bui , and Myungsik Yoo

Abstract—Accurately detecting and understanding the
shapes of objects in 3-D scenes are essential for autonomous
driving. In a 3-D scene, objects are distributed with various
incomplete shapes and rotations. Determining the shape
allows for a comprehensive understanding of an object’s
dimensions, rotations, and spatial relationships with its sur-
roundings. Traditional detection methods do not explicitly
consider the rotations and complete shapes that objects
can assume. Consequently, these methods require large
networks and extensive data augmentation to detect accu-
rately. Taking advantage of the vision-transformer (ViT),
we introduce an efficient transformer-based 3-D detector
called transformation-based 3-D object detection via a spatial
shape transformer (TSSTDet) to address these challenges. We constructed TSSTDet as a multistage detector based on a
light detection and ranging (LiDAR) point cloud. Specifically, TSSTDet utilizes a sparse convolution (SpConv) backbone
to extract multichannel and transformation-equivariant voxel features. Furthermore, we designed an efficient module
that employs the transformer approach to estimate the completed shape of an object. These features are then aligned
and aggregated to create lightweight and compact representations that enable high-performance 3-D object detection.
We assessed the effectiveness of the proposed framework by evaluating its performance on both the KITTI and Waymo
open datasets (WODs). These evaluations demonstrated that our framework achieves top-tier performance in 3-D object
detection.

Index Terms— 3-D object detection, autonomous driving, light detection and ranging (LiDAR) point cloud, vision
transformer.

I. INTRODUCTION

RESEARCH on 3-D object detection in autonomous vehi-
cles from light detection and ranging (LiDAR) data is

highly important, as it enables safe and efficient navigation.
Unlike 2-D object detection, 3-D object detection expands the
search space from a 2-D image plane to a 3-D space. A key
aspect of 3-D object detection in self-driving is identifying
the category of interest (such as car, pedestrian, and cyclist)
by a classification task and localizing objects in a scene by
regressing their 3-D spatial bounding box. Precisely detecting
and recognizing objects in this 3-D space is necessary for a
self-driving car to be aware of the environment and to make
correct judgments in smart cities and urban areas.
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LiDAR point clouds are largely used for ambient perception
in current 3-D object detection approaches. A precise 3-D map
of the environment is produced using this point cloud, which
provides precise knowledge about objects and their locations
from the sensor. Utilizing this 3-D point cloud map as input,
cutting-edge 3-D detection methods can effectively identify
objects of interest, thereby enhancing perception within the
3-D environment.

Current approaches in this field can be categorized
into single-stage or multistage 3-D detection methodolo-
gies. Single-stage methods employ encoded features obtained
directly from point clouds for object detection [1], [2], [3],
[4]. In contrast, multistage approaches construct their models
using a region-based convolutional neural network (RNN)
framework, as in [5]. This method involves generating a set
of potential bounding boxes, followed by the classification
and refinement of each candidate box. Several recent studies
have favored the multistage framework, owing to its superior
accuracy [6], [7], [8], [9], [10]. For instance, Voxel-RCNN [7]
and Point RCNN [10] produce and enhance region proposals
by utilizing voxel and point features, respectively.

Nonetheless, the widespread adoption of multistage 3-D
detectors utilizing LiDAR technology has encountered signifi-
cant challenges. The first challenge arises from missing object
shapes resulting from occlusions or sensor-signal disruptions.
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The second challenge pertains to the diversity of object
orientations. These factors collectively contribute to the loss
of essential geometric and semantic details, thereby impeding
precise object recognition.

To address the first challenge, point cloud prediction and
shape-estimation methods, such as SIENet [11], estimate the
complete shapes of the foreground within proposed scenes to
obtain structural information. This enables the acquisition of
representative features for subsequent box refinement. To some
extent, BtcDet [12] addresses the challenges of incomplete
point cloud structures. These studies demonstrate that enhanc-
ing the completeness of a point cloud structure can enhance
the precision of 3-D object detection. Nonetheless, existing
methods for reconstructing spatial structures inevitably lead
to higher computational demands and reasoning times for
the detector, especially when employing the conventional
convolutional neural network (CNN) paradigm with deeper
network architectures. The advantages offered by transformers
with multihead attention in the field of computer vision [13]
have ushered in numerous promising advancements and have
paved the way for addressing this challenge in a novel
manner.

The second challenge relates to the numerous possible
rotations that objects can take within a 3-D space. In 3-D
scenes, objects display a vast spectrum of orientations. That is,
if an object alters its orientation within the input data points, its
detected bounding box should retain its shape while aligning
the angle to match. A 3-D detector’s predictions should be
equivariant concerning rotations and transformation reflec-
tions. Unfortunately, traditional detectors do not explicitly
address the variety of rotation and reflection transformations,
which can potentially result in unreliable prediction outcomes
when addressing changed point clouds.

Recently, some detectors have achieved approximate trans-
formation equivariance through data augmentation [8], [10].
However, the production of huge training samples and the
use of more sophisticated networks with larger capacities
substantially influence their effectiveness. Recently, equiv-
ariant neural networks [14], [15] that explicitly model the
transformation equivariance have been developed. The equiv-
ariant design has produced optimistic results in autonomous
driving. To accomplish this, they converted the input data
using various rotation bins and represented equivariance using
shared convolutional networks. TED [6], a recent multiple-
based method, has demonstrated encouraging outcomes when
handling transformation equivariance and invariance in 3-D
object detection. However, TED cannot fully address the
challenges associated with occlusion.

In this study, we introduce a novel 3-D detection net-
work known as transformation-based 3-D object detection
via a spatial shape transformer (TSSTDet) to enhance the
performance of 3-D object detection models. Our research
primarily focuses on two major issues that previous 3-D object
detectors have faced. Specifically, TSSTDet is a multistage
framework that can handle the orientation and missing points
of the shape problems of an object. TSSTDet consists of a
3-D rotational-transformation backbone tasked with extracting
diverse rotation-equivariant features to address object-rotation

challenges. In addition, we designed a transformer-based
deep network, called a voxel-point shape transformer (VPST),
to reconstruct object shapes, primarily to address the
occlusion problems in autonomous driving scenarios. Fur-
thermore, TSSTDet integrates an aided network called the
attention-fusion and refinement (AFR) module to aggregate
features from the preceding steps, thereby enhancing the
object-proposal confidence.

Our contributions can be summarized as follows.
1) We present the TSSTDet framework, a robust multistage

approach for an efficient rotational-transformation 3-D
object detector for object-geometry modeling.

2) We propose an efficient transformer-based module called
the VPST, which is capable of dealing with occlusion
challenges by reconstructing the complete shape of an
object.

3) Our model surpasses the performance of current
cutting-edge models across varying levels of complexity
within the car, pedestrian, and cyclist categories. Our
achievements on the KITTI leaderboard for 3-D object
detection are also notably impressive.

II. RELATED WORK

A. Mainstream 3-D Object Detection
The 3-D object detection methods can be categorized,

based on their data-processing approaches, into LiDAR-based
methods and multimodal-based methods.

1) LiDAR-Based 3-D Object Detection: Significant research
has been conducted on 3-D object detection using LiDAR
technology over the past few years. Recently, two primary
approaches, voxel-based [1], [2], [7], [16] and point-based set
abstraction [10], [17], [18], have emerged as key methods for
crafting efficient detection frameworks.

Voxel-based approaches represent a scene using voxels.
Voxels divide the 3-D space into regular grid cells and encode
information about occupancy or object attributes within each
cell. The pioneering VoxelNet [2] utilized a voxel-based rep-
resentation and a 3-D CNN to detect objects in point clouds.
It operated on a fixed-size voxel grid and performed 3-D
convolutions to extract features and predict object attributes.
SECOND [1] employs sparse convolutional (SpConv) layers
to handle sparse and irregular point cloud representations.
To overcome the limitations of 3-D CNN layers, PointPil-
lars [19] transforms voxels into pillars that are arranged from
a bird’s-eye view (BEV) perspective, utilizing pseudoimages
as the representation.

Point-based approaches operate directly on individual points
in a point cloud without voxelization. Point-based methods
have been applied to both multistage [8], [10], [20] and single-
stage [3], [21] methods. PointNet [17] is a ground-breaking
deep-learning architecture capable of detecting objects in
unordered point clouds. By employing symmetric functions
and a shared multilayer perceptron (MLP) network, Point-
Net effectively extracts features from individual points. This
method achieved a notable performance in 3-D segmentation
and object-classification tasks. PointRCNN [10] incorporates
a region proposal network (RPN) and a second-stage network
that performs region-of-interest (RoI) pooling and point-wise
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feature learning. By exploiting both local and global contextual
information, PointRCNN improves the accuracy of object
detection tasks.

2) Multimodal-Based 3-D Object Detection: Multimodal-
based 3-D object detection involves integrating both 2-D
and 3-D data. These multimodal methods harness the syn-
ergies between 2-D image-based and 3-D point cloud-based
detectors. In the initial stages of this approach, techniques
emerged that extended features derived from LiDAR points
with image-based features to enhance 3-D object detection.
For instance, MV3D [22] integrates 2-D and 3-D object
detection by fusing information from images and LiDAR data.
F-PointNet [23] extends PointNet to incorporate 2-D image
features, thereby improving the detection accuracy.

Certain studies [24], [25] independently encoded features
from two modalities and then merged these features within
a local RoI or BEV plane. Typically, aggregated-view object
detection (AVOD) [26] utilizes feature extractors to obtain
features from both BEV feature maps and 2-D RGB images
before aggregating multimodal features to produce 3-D object
proposals. Recently, some studies [27], [28] fused camera
images and LiDAR point clouds via virtual points to exploit
the advantages of a depth-estimation task. However, virtual
points are highly concentrated and frequently contain noise,
degrading the performance of the 3-D detector.

B. 3-D-Object Shape Reconstruction
Point cloud reconstruction and completion are essential

tasks in computer vision and 3-D scene understanding with the
aim of recovering missing or incomplete parts of a point cloud
representation. Owing to occlusions, light reflections, and
restrictions on viewing angles and resolution, raw point clouds
produced by LiDAR are sparse and lacking in geometric and
semantic information. Hence, the missing pieces of 3-D shapes
should be generated from a partially observed point cloud or
with variable levels of noise for the 3-D object detector.

Recent research has focused on deep-learning-based
methodologies that aim to determine the entire point cloud
using the extracted features and the network’s capacity for
representational modeling. A two-stage generation procedure
with a folding architecture was introduced by FoldingNet [29],
with the presumption that 3-D objects can be recovered
from 2-D manifolds. Subsequently, SA-Net [30] introduced a
hierarchical folding approach in a multistage point-generation
decoder. Nevertheless, this presents challenges in terms of
interpreting and constraining the implicit representation of
the complete shape across intermediate layers, which hinders
shape refinement within the local region.

In addition, to randomly group points in point cloud
completion tasks, TopNet [31] uses a decoder in a hierarchi-
cal rooted-tree form. The implicit intermediary in decoding
SA-Net and TopNet, similar to FoldingNet, is a point feature
that denotes the form structure, which is challenging to con-
strain explicitly. To overcome this issue, SnowflakeNet [32]
utilizes snowflake point deconvolution (SPD) to extract parent
patterns and feed them across to child points via a pointwise-
splitting procedure. This enables the network to produce a
precise geometry of the objects.

With the rapid emergence of transformer-based methods,
ShapeFormer [33] introduces a vector-quantized deep implicit
function (VQDIF) to acquire a sparse representation of partial
point clouds and employs transformer-based techniques to
generate complete shapes. Moreover, AutoSDF [34] presents
an autoregressive generation method over a discrete distribu-
tion to complete the object shape from a partial point cloud.
Thanks to recent advancements in 3-D object reconstruction,
3-D detectors can incorporate the capability to infer missing
points within obscured shapes.

C. Transformer-Based Object Detection
Inspired by the remarkable success of transformer archi-

tectures in natural language processing (NLP), researchers
have recently extended their applications to computer-vision
(CV) tasks. Although CNNs have long been regarded as
foundational components in vision applications [35], [36],
transformers are now emerging as a promising alterna-
tive. Image-generative pretrained transformer (Image GPT)
[37] pioneered the introduction of transformers to 2-D
image-classification tasks through unsupervised learning. Fur-
thermore, the vision-transformer (ViT) [13] represents a pure
transformer approach that is directly applied to sequences of
image patches for image-classification tasks. For high-level
vision tasks, certain object detection methods have delved into
the potential of self-attention mechanisms and have proceeded
to improve the pertinent modules for modern detectors, such
as the feature-fusion module [38] and the prediction head [39].

In 3-D vision, a point-attention transformer (PAT) [40] intro-
duced Gumbel subset sampling and group-shuffle attention for
permutation-invariant tasks within point clouds. CT3D [41]
utilizes a high-quality region-proposal network (RPN) and
channel-wise transformer architecture for improved accuracy
and minimal handcrafted design. Voxel transformer (VoTr)
[16] introduces a voxel-based transformer backbone to address
the issue of limited receptive fields, allowing self-attention
to establish long-range relationships between voxels. A cas-
cade attention network (CasA) [39] introduced a method that
gradually improved and supplemented predictions by utiliz-
ing multiple subnetworks to achieve high-quality predictions.
CasA improves the accuracy of proposal refinement by con-
sidering the quality of proposals from all preceding stages,
while consolidating object features across several phases.
These studies served as inspiration for the approach used
in this study, which merges features gathered from different
subnetworks to produce better 3-D object detection.

III. METHODOLOGY

This section provides a comprehensive description of the
proposed model. In Section III-A, we provide an overview of
the proposed architecture. Section III-B outlines the elements
of Stage 1, encompassing the rotational-transformation back-
bone, rotation-transformation pooling, and RPN. Section III-C
describes the core structure of Stage 2, which enhances
the geometric attributes of objects. Section III-D describes
the AFR network responsible for synthesizing features and
refining the final prediction of a 3-D object detection task.
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Fig. 1. Our TSSTDet multistage-framework architecture. (a) 3-D RTConv backbone, RT BEV pooling, and RT voxel pooling are applied on multiple
rotated point clouds to capture the multi-channel rotational-transformation features. (b) VPST reconstructs the completed shape from a partial
observation. (c) Attention fusion and refinement network aggregates multiple features for proposal refinement.

Section III-E describes the loss functions employed in the
proposed model.

A. Overall Architecture
The overall architecture of the proposed method is illus-

trated in Fig. 1. Our aim is to develop a robust 3-D detector
for outdoor scenarios in which objects of interest may be
obscured and exhibit varying orientations. To address this
challenge, we introduced a 3-D sparse rotation-transformation
convolution backbone to effectively capture orientation fea-
tures. Furthermore, we propose a VPST module to address
the issue of missing object shapes.

Our approach involves adopting a resilient transformation-
equivariant method, empowering the model to gain insights
into the object’s orientation, while also gaining insight into the
object’s shape through shape reconstruction. This understand-
ing enables the model to accurately determine the necessary
location for synthesizing the object’s pattern.

To achieve this, we adopted a multistage approach. In the
first stage, a 3-D rotation-transformation convolution backbone
encodes a LiDAR point cloud that yields transformation-
equivariant features. These features are then pooled by the
transformation BEV pooling to generate BEV feature maps.
Subsequently, an RPN is employed to generate proposal
bounding boxes for the objects. We then utilize transformation
voxel pooling to incorporate transformation-invariant features
into the proposals for the next stage. In the next stage,
we present a VPST (shown in Fig. 2) to address the challenge
of missing shape information for foreground objects. Specifi-
cally, we transform the voxel coordinates of foreground objects
from a 3-D space into an n × n × n grid space. Subsequently,
a transformer network is used to estimate the complete shape
of the object. Finally, we designed an attention-fusion module
(AFM) to consolidate the feature map, and a multi-attention
refinement module to fine-tune the final precise prediction.

B. Stage 1: Rotational-Transformation Feature Extraction
1) Rotational-Transformation Backbone: Most 3-D detec-

tors employ point- or voxel-based methods; however, these
conventional approaches lack rotation and translation equiv-
ariance. We introduce a rotational-transformation convolution
(RTconv) backbone to efficiently encode raw points while
ensuring transformation equivariance. RTconv was constructed
based on the widely adopted SpConv [42]. Although SpConv
exhibits translation equivariance similar to that of CNNs,
it lacks equivariance to rotation. To overcome this issue,
we incorporated additional rotational channels that enabled
the adaptation of rotation-equivariant features. Our RTConv
facilitates the learning of object-level equivariant features in
outdoor scenes.

With the input point cloud denoted as P , the rotational-
transformation backbone assists the detector Dφ using the
rotational-transformation action T in detecting the bounding
box B as follows:

Dφ
[T (P)] = T [Dφ(P)], T ∈ G

G ∼= ⊕ ⋊ ω (1)

where G represents a rotational-transformation group com-
prising the 2-D BEV translation set (⊕ ∈ R2) and 2-D
BEV rotation-reflection set ω. In particular, ω encompasses
a reflection action set {(±1, ∗)} and a discrete rotation set
{φi , i ∈ (0, 2π)}. Considering N discrete rotation cases, each
multiplied by the reflection case, ω forms a discrete subgroup
of order 2N .

According to [15], we applied the transformation actions
{Tk}

2N
k=1 to transform P , resulting in the generation of 2N

sets, denoted as {PTk }
2N
k=1. A mean voxel feature-extraction

process is then applied to all points, producing mean voxel
sets {P̂Tk

}
2N
k=1. Subsequently, we utilized SpConv 9(·) with

a filter configuration of (16, 32, 64, 64) to encode the mean
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Fig. 2. Overview of our VPST. Given a partial voxel shape V, our VPST encoder first uses a patch-wise on the object shape to convert it to a grid
feature sequence. Subsequently, a downsampler reduces the grid’s dimension. These features are then substituted with the indices of their nearest
neighbors in a learned dictionary D, forming a compact-sequence discrete tuple pair comprising the coordinate and quantized-feature index value.
An autoregressive transformer yields a complete sequence for the object shape. Finally, the upsampler and decoder transform the sequence into
point cloud features.

voxels into rotational-transformation voxel (RT voxel) features

VTk = 9
(

P̂
Tk

)
, k = 1, 2, . . . , 2N . (2)

In contrast to the voxel features extracted by normal
SpConv, the features {VTk }

2N
k=1 contain a variety of properties

related to rotation and symmetric translation.
2) Rotational-Transformation Pooling: Pooling operations

play a vital role in the multistage approach by reducing
the spatial resolution and expediting computation. How-
ever, regular pooling methods may not effectively adapt to
features derived from RTConv. To address this issue, we pro-
pose rotational-transformation BEV (RT BEV) and RT voxel
pooling.

First, RT BEV pooling was designed to align and con-
solidate scene-level voxel features into a concise BEV map,
through a combination of bilinear interpolation and max-
pooling. In essence, it involves compressing the voxel features
denoted as {VTk }

2N
k=1 into BEV features {BTk }

2N
k=1 along the

height dimension. The BEV features must be aligned to the
same coordinate system because they have been acquired
through various transformations. To achieve this, we convert
the grid points into a BEV coordinate system, resulting in the
creation of a new set of grid points, denoted as {XTk }

2N
k=1. This

transformation process is performed in accordance with the set
of transformation actions {Tk}

2N
k=1.

To ensure a precise spatial alignment and maintain con-
sistency in the transformation process, we apply a series of
bilinear interpolations 0 to the BEV coordinates to obtain a
set of aligned features {FTk

a }
2N
k=1. The interpolated feature is

padded by zeroes if the border pixel in BT1 has no matching
pixel in BT2 , . . . ,BTN . The aligned features were calculated

as follows:

FTk
a = 0

(
XTk ,BTk

)
, k = 1, 2, . . . , 2N . (3)

Subsequently, max-pooling M(.) is employed along the
2N -aligned feature maps. The concise BEV feature F∗

a is
aggregated as follows:

F∗

a = M
(
FT1

a ,FT2
a , . . . ,FT2N

a

)
. (4)

After the RT BEV pooling process, we employed the RPN
to efficiently produce a proposal list B∗ from the lightweight
BEV feature F∗

a . These proposals were leveraged to determine
the object features for the subsequent stage.

Next, we introduced the RT voxel-pooling method, draw-
ing inspiration from [15], to aggregate the rotational-
transformation features. Because the RT backbone produces
diverse rotational-transformation features, whereas proposal
B∗ is formulated in the original coordinate system T 1, our
model requires the proposal to be aligned before pooling.

In our case, it was impossible to directly use a conventional
RoI pooling process [8], [10], [12] to extract features from our
backbone. Therefore, from the proposal layer B∗ correspond-
ing to the original coordinate, we apply multigrid pooling
with size (6 × 6 × 6) to obtain a set of RoI grid points.
Subsequently, these multiple RoI grid points are transformed
into the coordinate systems of each channel within {ATk }

2N
k=1

by employing transformation actions {T 2, . . . , T 2N
}.

For a proposal within B∗, we initially create 2N sets of
instance-level grid points {XTk }

2N
k=1, with each set represented

as XTk = {XTk
m }

M
m=1, where M indicates the number of grid

points contained in each set. These grid points were gener-
ated based on the rotational-transformation actions {Tk}

2N
k=1.
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We then apply voxel-set abstraction ϑ(·) [8] for voxel neighbor
aggregation

FTk
P = ϑ

(
XTk ,VTk

)
, k = 1, 2, . . . , 2N . (5)

This process yields multiple pooled instance-level features
{FTk

P }
2N
k=1 ⊂ R1×C , where C denotes the number of grid-wise

feature channels.
3) Region-Proposal Network: We employed a similar

approach [7], [8] for the RPN design to generate high-quality
3-D proposals. The proposed bounding boxes effectively offer
information regarding the positions and orientations of the
objects in the subsequent stage. First, the RPN condenses
the 3-D feature volume by stacking it along the z-axis and
subsequently applies a series of 2-D convolutions to the BEV
feature maps. The proposals contain anchor classification and
regression of the object size, location, and orientation angles
with respect to the ground-truth bounding boxes.

Specifically, we adopted intersection over union (IoU)-
based matching to assign ground-truth bounding boxes
to anchors, following [8]. The anchor configuration
is defined as (l × w × h), where l, w, and h
are the length, width, and height of the bounding
boxes, respectively. We used the common setting,
which is (3.9 × 1.6 × 1.56), (0.8 × 0.6 × 1.73), and
(1.76 × 0.6 × 1.73) for car, pedestrian, and cyclist objects,
respectively.

The RPN loss function is formulated as follows:

LRPN =
1

Np

[∑
i

Lscore(αi , α̂i )

+ γ (IoUi > u)
∑

i

Lreg(δi , δ̂i )

]
(6)

where Lscore, Lreg, αi , α̂i , δi , and δ̂i denote the smooth
L1 loss, binary cross-entropy loss, score prediction, score
target, residual prediction, and residual target, respectively.
Note that the regression loss is computed only for object
proposals with (IoUi > u).

C. Stage 2: 3-D Object-Shape Enhancement
To enhance the 3-D detector’s performance, we intro-

duced a deep-learning network called a VPST. VPST is
transformer-based and can reconstruct a complete shape from
partial observations, effectively addressing issues related to
occlusion. Our autoregressive approach aims to learn the
distribution p(X) from the partial observation of 3-D shapes
X to infer the complete shape Y, as illustrated in Fig. 2.

First, from the object features of the previous stage,
we split the partial object shape into patches using a patch-
wise encoder [34]. This enables the independent encoding of
the local context with partial observations. Our goal is to
downscale the high-dimensional persistent 3-D form into a
discrete latent space to train an efficient autoregressive model.
Therefore, we convert the patches of the object shape into a
volumetric grid space G with a resolution R using a sequence
grid function. Such a grid space and dictionary allow for the
efficient modeling of global dependencies by transformers that

Fig. 3. Architecture of the SCT includes two transformer blocks:
the coordinate transformer and value transformer. The discrete tuple
pair contains a partial sequence (represented by dashed boxes) and
the complete sequence (represented by solid boxes). Both sequences
include an appended end token. These sequences are concatenated,
and their locations (ci, enclosed in a blue border) and values (vi,
enclosed in a red border) are fed to a coordinate transformer to predict
the subsequent location (ci+1). The value transformer utilizes both ci+1
and the previous transformer’s output features to predict the next value
(vi+1).

allow forms to be represented as compact sequences of entry
indices, describing the local shapes inside all nonempty grid
elements.

We used R = 64 resolution for the first grid space
(64 × 64 × 64), and these cube features were then downsam-
pled to a lower-dimensional discrete space (32 × 32 × 32)

using a downsampler. Subsequently, the nonempty features
were reshaped into a sequence of length K in row-major
order. These features are sparse; thus, we use a flattened index
{ci }

K−1
i=0 to capture their coordinates.

We reduced the bit size of the feature sequence {zi }
K−1
i=0

through vector quantization followed by mapping onto the
nearest element in the dictionary D of V embeddings {e j }

V
j=0.

The index values of these entries were calculated as follows:

vi = argminj||zi − ej||2, j ∈ [0, V). (7)

Subsequently, a discrete tuple pair of a compact sequence
for the object shape S = {(ci , vi )}

K−1
i=0 was produced. To pre-

dict the distribution of the next element conditioned on
previous elements using the autoregressive model, we designed
a shape-completion transformer (SCT) module, as shown in
Fig. 3. Specifically, we stacked two transformer blocks to
predict pci and pvi , following [33]. The distribution of each
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entry in the tuple is calculated as follows:

p(SC|SP;φ) =

K−1∏
i=0

pci × pvi

pci = p(ci |c<i , v<i ,SP; φ)

pvi = p(vi |c≤i , v<i ,SP; φ) (8)

where SC, SP, φ, pci , and pvi are the complete sequence, par-
tial sequence, model parameters, distribution of coordinates,
and index value, respectively. In our case, the index value pvi

depends on the current coordinate ci . To facilitate the learning
strategy, an extra end token was attached to both sequences.
The loss function of the SCT was calculated as follows:

LSCT = − log p(SC|SP; φ). (9)

After obtaining SC , an upsampler and decoder were used.
Initially, the quantized sparse sequence is mapped onto a 3-D
feature grid. The decoder uses this feature to infer a large
map. To help the model better grasp the global knowledge
of the object shapes from partial observations, our decoder
is composed of multiple ResNet blocks, following [33]. This
allows the model to comprehend the distributions that could
exist both within and without the object shape.

D. Stage 3: Attention Fusion and Refinement Network
To aggregate all the features from the different domains,

we employed a collection of different layers for proposal
refinement. The features of the different phases were regularly
concatenated in a simple operation. Nonetheless, determining
the relationship of features among multiple stages is challeng-
ing because concatenating them without additional processing
can lead to interference.

Motivated by recent attention methods [39], [43], we present
an attention-based mechanism to facilitate the combination
of proposal features from various stages. Given a region
proposal B∗, we apply the RT voxel-pooling module to
extract the instance-level features of partial shape FTk

P =

{FTk
m }

M
m=1 ⊂ R1×C , as mentioned in Section III-B. Simultane-

ously, we acquire a feature representing the complete shape,
which is denoted as FTk

C .
As depicted in Fig. 4, we first concatenate the instance-level

features of partial and complete shapes corresponding to
rotational ordering FTk = [FTk

P , FTk
C ]. This combined feature

is then input into the AFM, which helps determine the signif-
icance of both the pooled and shape-information features. For
each rotational-transformation feature (blue, pink, or orange),
the AFM employs channel-wise and point-wise max-pooling
layers, allowing features to be extracted from various dimen-
sions to capture different perspectives. These features are
subsequently processed using two fully connected layers fol-
lowed by the rectified linear unit (ReLU) activation function.
Following this, matrix multiplication is used to consolidate
the channel-wise and point-wise attention maps. The atten-
tion values are normalized using a sigmoid function. Finally,
an attention map is employed to enhance the concatenated
features through element-wise multiplication. These combined
features F̂Tk serve as inputs to the attention-refinement module
(ARM), which generates the final precise result.

Fig. 4. Illustration of the AFR network. The AFM aggregates all
features from the preceding stage, which are then refined by the ARM
to produce the final precise predictions. The C, A, ×, σ , and · denote
the concatenation operation, attention operation, matrix multiplication,
sigmoid function, and element-wise multiplication, respectively.

In the ARM, we gather the encoded features from all previ-
ous layers and the current layer as F̂ j

= [F̂T0 , F̂T1 , . . . , F̂T j ],
j ∈ (0, k). Subsequently, we project these features linearly to
obtain Q j

= F̂ j W j
q , K j

= F̂ j W j
k , and V j

= F̂ j W j
v , which

represent the query, key, and value embeddings, respectively.
To effectively capture the relationship between the various
rotational layers, we employed multihead attention. The atten-
tion value of each attention head i is

F̂ j
i = softmax

Qj
i

(
Kj

i

)T

√
C′

Vj
i (10)

where C ′ is the channel size in the multihead attention.
Subsequently, the box-voting method [39] was adopted to
directly standardize the confidence prediction and fuse the
bounding boxes

C =
1
Nr

∑
j

C j (11)

B =
1∑
j C j

∑
j

C j
· B j . (12)

Here, C and B represent the merged confidence prediction
and bounding boxes, respectively. Following the box-voting
process, we obtain a collection of refined, high-quality boxes.
To eliminate redundancies, we conduct nonmaximum suppres-
sion (NMS) on the voted results to generate the final detection
outputs. This voting mechanism enables the integration of
diverse predictions from different refiners, leading to more
accurate and reliable final predictions.

E. Overall Loss Function
The proposed TSSTDet is trained in an end-to-end manner.

Our overall loss function includes LRPN of the RPN, LSCT of
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the SCT, and LAFR of the AFR network. LAFR is the sum of
multiple refinement losses in multiple layers, as mentioned in
Section III-B3.

Within each refinement-attention layer, we incorporate the
box regression loss Lreg and score loss Lscore following [1]
and [8]. The loss function for the AFR module is formulated
as follows:

LAFR =
1

Nb

∑
i

∑
j

Lscore

(
α

j
i , α̂

j
i

)

+ γ
(

IoU j
i > ui

) ∑
i

∑
j

Lreg

(
δ

j
i , δ̂

j
i

) (13)

where Lscore, Lreg, α
j
i , α̂

j
i , δ

j
i , and δ̂

j
i denote the smooth

L1 loss, binary cross-entropy loss, score prediction, score
target, residual prediction, and residual target for the i th
proposal at the j th refinement layer, respectively. Note that
the regression loss is computed only for object proposals with
(IoUi > u).

Overall, the total loss Ltotal is calculated as follows:

Ltotal = LRPN + µLSCT + LAFR (14)

where µ is a hyperparameter. We set µ = 0.9 for the best
performance.

IV. EXPERIMENTS

A. Datasets and Metrics
1) KITTI Dataset: The KITTI dataset [61] is a widely

used dataset that consists of 7481 LiDAR training frames
and 7518 LiDAR testing frames. For our experiment, we split
the training data into two sets, one with 3712 frames for
training and another with 3769 frames for validation, following
a state-of-the-art method [6], [8]. The primary evaluation
metric was the 3-D average precision (AP) calculated under
40 different recall thresholds (R40) at the easy, moderate, and
hard levels. In addition, we report the results on the validation
set using a 3-D AP metric under 11 recall thresholds for the
moderate car class, following the conventions set by previous
studies [2], [8]. The specified IoU thresholds for this metric
are 0.7 for cars, 0.5 for pedestrians, and 0.5 for cyclists.

2) Waymo Open Dataset: The Waymo open dataset (WOD)
[62] includes 798, 202, and 150 sequences for training, val-
idation, and testing, respectively. Our model’s performance
was assessed using the following official metrics: 3-D mean
AP (mAP) and 3-D mAP weighted by heading (mAPH) for
all categories. The LEVEL 1 mAP computes the mAP for
classes with more than five points, whereas the LEVEL 2 mAP
computes the mAP for classes with at least one point. It is
worth noting that the primary ranking metric for the Waymo
3-D detection challenge is mAPH (L2), with IoU thresholds
of 0.7, 0.5, and 0.5 for vehicles, pedestrians, and cyclists,
respectively.

B. Setup Details
For the KITTI dataset, our detection range, number of

proposals, and NMS threshold were consistent with those used

in the baseline detectors, Voxel-RCNN [7], and TED [6]. The
voxel size configuration was (0.05, 0.05, and 0.1 m), and we
set the range of the point cloud to be [0, 70.4], [−40, 40],
and [−3, 1] m for the X -, Y -, and Z -axes, respectively.
We configured the number of rotations as N = 3, and the
number of multi-head attentions as j = 3.

Our TSSTDet model was trained for 40 epochs using
the ADAM optimizer. The learning rate, weight decay, and
momentum were 0.01, 0.01, and 0.9, respectively. In detail,
we configure the momentum schedule to decrease from
0.95 to 0.85 and decay the learning rate from epoch 35 to
epoch 40 during training. The learning rate decay, per-
centage of total epochs for rising learning rate, and the
gradient clipping threshold are 0.1, 0.4, and 10, respectively.
We utilized an NMS threshold of 0.8 to produce 160 RoI
proposals with an equal ratio of positive and negative
samples. For the testing phase, after proposal refinement,
we adjusted the threshold to 0.1 to eliminate redundant boxes.
With regard to data augmentation, our approach performed
excellently, even without incorporating rotation and reflec-
tion data-augmentation techniques. Similarly, for the Waymo
dataset [62], we adopted the same configuration as that of
PV-RCNN [8]. Throughout the experiments, TSSTDet was
trained on two NVIDIA GeForce RTX 3090 GPUs with a
batch size of 4.

V. RESULTS

This section presents a comparative analysis of our proposed
model against state-of-the-art methods, utilizing the KITTI
and WOD datasets. For the KITTI offline evaluation, our
model was exclusively trained on the 3712-sample training
set, and the results were subsequently reported on the val-
idation set. Our model outperformed all the other models
on the KITTI validation set across all classes. To assess
our model’s performance on the KITTI test set, we submit-
ted the results to the KITTI online benchmark server. Our
TSSTDet model holds the top rank on the KITTI online bench-
mark, particularly for the car category at https://www.cvlibs.
net/datasets/kitti/eval_object.php?obj_benchmark=3d. For the
WOD dataset, we evaluated the TSSTDet using a validation
set to demonstrate our results.

A. Evaluation
1) KITTI Test Set: We uploaded our test set results to the

KITTI online server in compliance with KITTI regulations
(only the best results were submitted to the online test server).
The comparison between our proposed framework and state-
of-the-art models on the KITTI test set is shown in Table I.
We reported the evaluation on the most important car cate-
gory. Note that “Mod.” indicates the moderate difficulty level.
On the KITTI leaderboard, a moderate AP of under 40 recalls
is the official ranking metric.

We surpassed all state-of-the-art methods that used only
LiDAR point clouds on both single-stage and multistage.
Our results outperformed other LiDAR-only methods on 3-D
detection, with scores of 91.84%, 85.47%, and 80.65% for
the easy, moderate, and hard difficulty levels, respectively.
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TABLE I
COMPARISON OF ALL 3-D DETECTOR RESULTS ON THE KITTI TEST SET. WE EVALUATE OUR MODEL FOR THE CAR CLASS USING THE 3-D AP

UNDER 40 RECALL THRESHOLDS. OUR TSSTDET SURPASSED ALL OF THE STATE-OF-THE-ART METHODS ON THE 3-D OBJECT

DETECTION BENCHMARK. THE BEST PERFORMANCES ARE HIGHLIGHTED IN BOLD

Specifically, for the most important evaluation metric of car
moderate, we achieved the top position in the rankings for
both LiDAR + RGB and LiDAR-only methods. Furthermore,
we achieved the top rank for car BEVR40 levels, with scores
of 95.80%, 92.11%, and 89.23% for the easy, moderate, and
hard difficulty levels, respectively.

2) KITTI Validation Set: We also reported an evaluation
using the KITTI validation dataset, as listed in Table II.
In the table, “Mod.” represents the moderate level, while
“∗” indicates that the results are reproduced from the

open-source code [65]. Our model consistently outperformed
all existing LiDAR-based methods across all classes, including
cars, pedestrians, and cyclists.

Notably, in the crucial category of Car 3-D APR40, TSSTDet
demonstrated substantial improvements over the state-of-the-
art TED-S method [6], with margins of 2.24%, 1.09%, and
1.11% for the easy, moderate, and hard difficulty levels,
respectively. We also excelled in the moderate Car 3-D
APR11 category, confirming our strong performance on the
leaderboard.
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Fig. 5. Visual assessment of TSSTDet using the KITTI validation dataset. Columns (a)–(c) represent the various scenarios. In each scenario, the
initial row exhibits the RGB image along with green ground-truth annotations for all classes. The second and third rows depict the LiDAR frame with
predicted results of the Voxel-RCNN baseline and our model, respectively. Predicted 3-D bounding boxes in LiDAR frames of cars, pedestrians,
and cyclists are represented in orange, pink, and blue, respectively. R⃝ and O⃝ denote cases where our model surpasses the baseline in terms of
orientation and occlusion accuracy, respectively. Best viewing experience through color and zoom functionality.

TABLE II
COMPARISON OF ALL 3-D DETECTOR RESULTS ON THE KITTI VALIDATION SET. WE EVALUATED OUR MODEL FOR ALL THREE CLASSES, USING

THE 3-D AP UNDER 40 RECALL THRESHOLDS. WE ALSO REPORT THE AP UNDER 11 RECALL THRESHOLDS FOR THE MODERATE CAR CLASS.
OUR TSSTDET SURPASSED ALL STATE-OF-THE-ART METHODS ON THE 3-D OBJECT DETECTION BENCHMARK. THE BEST

PERFORMANCES ARE HIGHLIGHTED IN BOLD, AND ∗ INDICATES RESULTS REPRODUCED FROM OPEN-SOURCE CODE

It is worth mentioning that our model exhibited excellent
results for the pedestrian and cyclist classes. Specifically,

TSSTDet outperformed the most recent TED model [6] on
the moderate level by 1.57% and 0.47% for pedestrians and
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TABLE III
COMPARISON OF THE BEV OBJECT DETECTION ON THE VALIDATION

SET FOR THE CAR CLASS. THE BEST PERFORMANCES ARE

HIGHLIGHTED IN BOLD. OUR TSSTDET SURPASSED

ALL EXISTING STATE-OF-THE-ART METHODS

cyclists, respectively. We also conducted experiments on BEV
object detection for the car class. The results are shown in
Table III, with “Mod.” indicating a moderate level. Our TSST-
Det surpassed all previous methods with different modalities
and obtained the highest scores for the car class of 97.02%,
94.36%, and 92.69% for the easy, moderate, and hard difficulty
levels, respectively.

Additionally, Fig. 5 provides the visual assessment of
our model on the KITTI validation set. The substantial
performance improvements are primarily attributed to the
rotational-transformation and shape-completion design, which
enhance the model’s ability to capture object-shape features,
resulting in superior detection performance.

3) Waymo Validation Set: We conducted a comparative anal-
ysis of TSSTDet and other models using the WOD. Our
approach is consistent with the usage of a single frame,
as observed in Voxel-RCNN [7] and PV-RCNN [8]. The
results are summarized in Table IV, where “N/A” indicates
that certain information was not available.

To evaluate vehicle detection, we used both the 3-D mAP
and 3-D mAP weighted by heading (mAPH). In all cate-
gories, our model consistently outperformed all state-of-the-art
detectors. Specifically, we outperformed all state-of-the-art
methods in the most important vehicle (L2) categories, achiev-
ing scores of 71.75% and 70.12% for mAP and mAPH,
respectively.

Overall, TSSTDet showed substantial improvements for
Level 2 objects across all categories. This can be attributed
to the fact that objects with fewer data points are more
likely to lack shape and object-orientation information. These
results for the WOD, which is one of the largest publicly
available LiDAR datasets, underscore the effectiveness of our
model.

B. Ablation Study
We conducted a series of experiments using various con-

figurations to analyze the effectiveness of each TSSTDet
module. The number of hyperparameters in the model was

carefully examined using various metrics. We used the KITTI
dataset and open-source code [65] to reproduce the baseline
results.

1) Effectiveness of RT Backbone and Pooling: The number
of rotational transformations N of TSSTDet is a hyperparam-
eter. It affects the performance of the backbone and is also
related to the number of attention layers in the AFR. To eval-
uate the impact of parameter N and determine the optimal
hyperparameter, we conducted a set of ablation experiments
on the car, pedestrian, and cyclist classes using the KITTI
validation dataset, as shown in Table V.

When N = 3, the performance showed a substantial
enhancement in comparison to using a single rotation number,
with notable improvements of 2.72%, 2.82%, and 1.61% for
the car, pedestrian, and cyclist classes, respectively. When
comparing N = 4 with N = 3, it is evident that employing
N = 3 maintains an excellent performance while main-
taining an optimal processing speed (running on a single
RTX 3090 GPU). Therefore, we chose N = 3 as the preferred
setting for our primary model to achieve efficient performance.

The effectiveness of the RT backbone and pooling is
reported in Table VI. We used Voxel-RCNN [7] as the base-
line. As depicted in the third row, there is a notable 0.66%
enhancement in the performance of the car class at a moderate
level, compared to the baseline.

2) Effectiveness of VPST: Next, we comprehensively ver-
ified the contribution of the VPST module to the model
performance under APR40 of the car category. We utilized
open-source code [65] to examine the results of various config-
urations. The VPST module aims to reconstruct the complete
shape of an object, which contributes to the performance
enhancement.

As illustrated in the second and fourth rows of Table VI,
our VPST boosts the AP 3-D detection by 0.58% and 0.57%
compared to the baseline, respectively. The metric used is the
moderate level of the KITTI car category in 3-D detection.
When VPST was combined with all the other modules, the
best performance was achieved at 89.06%.

Additionally, we explored the effectiveness of VPST with
respect to the orientation aspect, as shown in Table VII.
In Table VII, we present a different setting by extending
our module to a TED-S-based detector [6]. The second row
demonstrates that our VPST leads to a better performance at all
three levels of average orientation similarity (AOS), compared
to the baseline.

3) Effectiveness of AFR: To assess the impact of AFR,
we first built a baseline Voxel-RCNN [7]. The comparative
results are presented in Table VI. Employing a simple head
detector did not improve the performance. However, upon
incorporating our AFR, the performance was further enhanced
to 89.06%, as shown in the last row. Our AFR effectively
aggregated object-shape features from various angles, resulting
in more robust detections from sparse points.

To further validate the effectiveness of our AFR, we con-
ducted additional experiments on the KITTI dataset using the
orientation metric. As indicated in the third row of Table VII,
our AFR delivers impressive performance improvements in
terms of easy (0.33%), moderate (0.67%), and hard (0.4%)
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TABLE IV
COMPARISON OF ALL STATE-OF-THE-ART 3-D DETECTION PERFORMANCES ON THE WAYMO VALIDATION SET. L1 AND L2 REFER

TO LEVELS 1 AND 2, RESPECTIVELY. THE BEST PERFORMANCES ARE HIGHLIGHTED IN BOLD

TABLE V
EFFECT OF RTCONV USING DIFFERENT ROTATION NUMBERS

TABLE VI
PERFORMANCE ANALYSIS ON THE KITTI VALIDATION SET USING

DIFFERENT DESIGNED COMPONENTS. BASELINE, RTCONV,
RT POOLING, VPST, AND AFR DENOTE THE VOXEL-RCNN

BASELINE, ROTATIONAL-TRANSFORMATION CONV,
ROTATIONAL-TRANSFORMATION POOLING,

VPST, AND AFR, RESPECTIVELY

TABLE VII
ORIENTATION ACCURACY FOR THE KITTI VALIDATION SET

AOS, compared with the second row. Note that the baseline
in Table VII was based on the TED model.

4) Memory Usage and Runtime Analysis: We also assess the
model’s performance in terms of memory usage and runtime,
as shown in Table VIII. For simplicity, we conducted the
experiments on a single RTX 3090 with a batch size of 1.

TABLE VIII
MEMORY USAGE AND RUNTIME ANALYSIS FOR EACH MODULE.

S AND GB DENOTE SECOND AND GIGABYTE, RESPECTIVELY

We utilize the default configuration with a rotation number
set to 3.

VI. CONCLUSION

Research focused on 3-D object detection in situations
involving obstructions is scarce. In this article, we presented
a multistage 3-D object detector based on a transformer
architecture called TSSTDet. To fully leverage the rotational-
transformation features, an RT backbone was devised to
extract the general pattern. Furthermore, TSSTDet addressed
instances with missing object shapes through an autoregression
module, VPST, which helped the model comprehensively
identify object shapes, even in occluded scenarios. Finally,
an effective aggregation and refinement strategy, AFR, was
applied to fine-tune the precise prediction. Our model is not
simply a high-performance 3-D object detector relying solely
on LiDAR point clouds; it also demonstrates remarkable adapt-
ability in scenarios with occluded objects and diverse rotation
situations. The experimental results obtained from both the
KITTI and Waymo datasets demonstrated the effectiveness
and adaptability of the proposed approach. In our opinion,
this approach has great potential for a variety of downstream
3-D applications, such as object tracking and motion planning.
Future research will concentrate on developing methods that
can more effectively aggregate proposals for small objects,
such as cyclists and pedestrians.
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