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Abstract—Wearable devices enable remote, long-term, and
unobtrusive monitoring of patients in their everyday living
and working environments. Remote health monitoring often
involves monitoring physical and cardiac activities (exer-
tions) to establish correlations between the two. With recent
advances in sensor technologies and machine learning, the
efficiency with which these activities can be recognized has
been steadily improving. In this article, we apply convolu-
tional neural networks (CNNs) to measurements taken with
wireless electrocardiograms (ECGs) and inertial sensors for
human activity recognition (HAR). Experimental results con-
firm that our approach can recognize a wide range of everyday activities with a high degree of accuracy. Specifically,
activities such as jumping, running, and sitting could be recognized with an accuracy exceeding 99%, while activities
such as bending over, walking, standing up, and climbing stairs could be recognized with an accuracy exceeding 90%.
Overall, the results suggest that the combined use of inertial sensors and ECG leads to better recognition accuracy.
Likewise, this article closely examines the contributions of individual sensors and if and to what extent their placement
affects recognition accuracy.

Index Terms— Activity recognition, inertial sensors, patient monitoring, wearable computing, wearable sensors,
wireless electrocardiogram (ECG).

I. INTRODUCTION

EARLY diagnosis and treatment of diseases are vital in
health care. Nevertheless, factors such as work, famil-

ial obligations, habitual activities, and financial limitations
impede many from seeing doctors regularly [1]. For some
patients, getting timely appointments in referral hospitals and
advanced clinics is a challenge. Additional factors, such as
the COVID-19 pandemic, further complicate matters. The
pandemic, on the one hand, overwhelmed hospitals and health
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personnel, so unexpectedly that many patients were prevented
from seeking medical assistance [2], but, on the other hand,
caused panic, so that many avoided hospitals and health
centers for fear of being infected by the virus [3]. Thus,
in 2020, the number of patients visiting cardiac centers for
heart-related conditions in the USA dropped by 38% [4].

Wearable computing can alleviate some of these challenges.
First, it can enable patients to closely monitor their health
at home or in their work environments. As an example, the
Wireless Motility Capsule, which has been certified by the
U.S. Food and Drug Administration to diagnose gastroparesis
[5], enables the simultaneous assessment of regional and whole
gut transit [6]. The device concurrently measures intraluminal
pH, temperature, and pressure as it traverses the gastrointesti-
nal tract. Besides enabling remote and unobtrusive monitoring,
it has the potential to replace painful and expensive clinical
diagnostic procedures (such as the use of endoscopy and
nuclear medicine) [6]. Second, wearable computing can reduce
the cognitive burden of health personnel, so that they can
prioritize tasks. Third, it enables long-term diagnosis and
monitoring. Besides enabling the early detection of emerging
conditions, the latter also enables the collection of reliable
statistics, on the basis of which the onset of diseases and
their relationship with lifestyle, activity, and habit can be
established.
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Furthermore, for some health conditions, patients are
advised to keep medical journals to establish correlations
between symptoms (such as range of motion, episodic events,
fatigue, headache, irritability, chest discomfort, breathing diffi-
culty, lightheadedness, dizziness, exhaustion, or anything else
the patients may consider relevant) and potential external
causes (room temperature, relative humidity, overexertion,
etc.). Medical journals, however, are subjective and may be
inconsistent and/or incomplete. Wearable sensors can be used
to verify and complement journal entries [7].

One of the most important wearable devices is the wireless
electrocardiogram (ECG). It is useful for monitoring several
cardiovascular conditions (such as atrial fibrillation, atrial
tachycardia, and atrial flutter [8]) from remote. Under normal
circumstances, there is a correspondence between physical
and cardiac activities. During the diagnosis of cardiovascular
diseases, patients are often asked to perform certain physical
activities (cycle test and cardiopulmonary exercise test) while
ECG measurements are taken. The aim is to examine how
cardiac responses follow physical exertions. When patients are
monitored remotely and cardiologists do not have information
about the level of physical exertions, their interpretations of
ECG measurements may be inaccurate even though all the
vital ECG waves appear to be in their proper places. This
article aims to address (quantitatively) the following research
concerns.

1) Whether it is possible to estimate physical exertions
from ECG measurements.

2) Whether and to what extent ECG measurements comple-
ment human activity recognition (HAR) based on inertial
measurements.

3) How much the placement of sensors affects the accuracy
with which human activity can be recognized.

4) Whether ECG features extracted from arbitrary subjects
can be used to develop generalized models.

For this purpose, we: 1) employ a five-lead wireless ECG,
a 3-D accelerometer (ACC), and a 3-D gyroscope (Gyro)
and 2) identify seven everyday activities that are likely to be
performed in home environments—these are bending over (B),
standing up (SD), walking (W), climbing (C) up or down a
staircase, jumping (J), sitting (SI), and running (R).

The remaining part of this article is organized as follows.
In Section II, we review related work. In Section III, we dis-
cuss the measurement and experimental settings, as well as
the preprocessing of the measurement sets. In Section IV,
we closely investigate the correlation between the different
measurement sets for different activities and discuss activity
recognition. In Section V, we describe the convolutional neural
network (CNN) we propose for HAR. In Sections VI and VII,
we closely examine experimental results and discuss the
advantages and limitations of different configurations. Finally,
in Section VIII, we give concluding remarks and outline future
work.

II. RELATED WORK

HAR is an active research area that promises the support of
a diversity of applications. The proposed approaches can be
differentiated in terms of the platforms they target; the types

of sensors they employ; the sources of raw data; the features
they identify; the feature selection process; and the recognition
techniques. The primary data sources for HAR are accelerome-
ters and gyroscopes. Similarly, the recognition techniques that
are widely employed are support vector machines (SVMs),
CNNs, LSTMs, and decision trees (DTs).

Liu et al. [9] employed a wireless ECG and an accelerom-
eter for HAR. Discrimination between the activities is made
using a DT. The authors claim to have achieved an overall
accuracy of 96.92% based on experiments conducted on
13 volunteers aged between 5 and 68 years. Moreover, the
study suggests that the combined use of the accelerometer
and ECG improved activity recognition compared to using
the ECG alone. Afzali Arani et al. [10] relied on a dataset
containing physiological and motion data of 15 subjects [11].
The data were obtained with wrist and chest devices—the
accelerometer, ECG, and photoplethysmogram (PPG)—during
various activities in real-life conditions. The results show
that accelerometer measurements were the most expressive,
though ECG measurements improved recognition in some
activities, such as walking and ascending/descending stairs.
The authors suggest that ECG was better at discriminating
between activities that have similar motion patterns but differ
in cardiac exertions. Accordingly, combining features from
accelerometer and ECG measurements enhanced the classi-
fier’s F1-scores by 2.72% and 3.00% for intraperson and
interperson classifications, respectively.

Recent advances in rehabilitation robotics have paved the
way for personalized gait monitoring. Semwal et al. [12]
employed deep learning and individualized gait trajectory
graphs to configure rehabilitation systems according to the
needs and walking characteristics of individuals with specific
walking disabilities. In the study, four models were evaluated
using joint angle data of hip, knee, and ankle joints. The
models are LSTMs, CNNs, GRU (gated recurrent unit) [13],
and a hybrid sequential model combining LSTMs and CNNs.
Trained on the dataset of 42 healthy individuals across varied
walking speeds, the performance of the LSTM–CNN model
stood out. In terms of correlation and R2 Score, this model
produced stable gait trajectories within a speed range of 0.49–
1.76 m/s and exhibited a significant correlation (0.98) between
predicted and actual trajectories.

Jia and Liu [14] presented a technique for identifying
human daily activities by fusing an accelerometer and the
measurements of a seven-lead ECG. The authors utilize a
dataset consisting of four individuals. The proposed approach
uses relevance vector machines (RVMs) to classify reduced
feature vectors. Experimental results reveal that the fusion of
heterogeneous data provided complementary evidence, leading
to improved performance (with accuracy as high as 99.57%).
Similarly, Mekruksavanich and Jitpattanakul [15] and Celik
et al. [16] employed surface electromyography, since phys-
ical activities entail strong muscle activities. According to
Celik et al. [16], the inclusion of features extracted from
the measurements of surface electromyography improved the
recognition accuracy by 3.5% when SVM was employed, and
by 6.3% when K -nearest neighbors (KNN) was employed.
Overall, the authors reported a recognition accuracy exceeding
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TABLE I
VARIETY OF NONINVASIVE WEARABLE SENSORS TO MONITOR

PHYSICAL ACTIVITIES DURING REHABILITATION

90%. The classifiers discriminated between four everyday
activities, namely climbing up a staircase (ascent), climbing
down a staircase (descent), walking, and standing.

In summary, the articles we reviewed in this section support
our claim that combining features from multiple sensors
improves HAR accuracy. Table I summarizes some of the
sensors (devices) employed in HAR. This article complements
previous approaches in three ways: First, we investigate the
contributions of a wireless ECG, a 3-D accelerometer, and
a 3-D gyroscope in HAR, both individually and combined.
Second, we compare the difference in recognition accuracy of
different sensor placements. Our comprehensive investigation
provides valuable insights into the optimal selection of sensors
and their placements. Third, we examine the correlations
between different high-level features to account for the addi-
tional gain that can be achieved at higher-level configurations.

III. DATA ACQUISITION AND PREPROCESSING

We employed the Shimmer (version 3) platform1 to measure
the movements and cardiac responses of ten healthy subjects
between the ages of 25 and 30. The activities took place
in the corridors and one of the staircases of the Faculty of
Computer Science at TU Dresden (Germany). Each activity
lasted 120 s and the sensors were sampled at 512 samples
per second. The sensor platform integrates a five-lead wireless
ECG, a 3-D accelerometer, and a 3-D gyroscope. The ECG
delivers three channels labeled as left leg–left arm (LL–LA),
left leg–right arm (LL–RA), and left arm–right arm (LA-RA).
We chose one of the channels (LL–LA) for the task. The six
inertial channels measure rectilinear and curvilinear (angular
velocity) motions. We considered the total acceleration and the
total angular velocity produced by a movement.

A. Preprocessing
The data were subjected to several preprocessing steps to

prepare them for further analysis. Initially, interquartile outlier
detection was carried out to detect and remove values that lay
outside the range specified by the interquartile range (IQR).
These values, known as outliers, were identified as those laying
beyond the 75th and 25th percentiles of the data

IQR = Q3 − Q1 (1)

1https://shimmersensing.com/product/consensys-ecg-development-kits/
(last visited on December 10, 2023: 11:00 AM CET).

TABLE II
TIME- AND FREQUENCY-DOMAIN FEATURES FOR CLASSIFYING

PHYSICAL ACTIVITIES

where IQR is the interquartile range, Q3 is the 75th percentile,
and Q1 is the 25th percentile. The next step involved reducing
noise from the measurements while retaining their essential
characteristics, including edges and other important features.
This was done through a process known as total-variation
denoising [17], which involves minimizing total variation. This
is achieved by calculating the absolute differences between
adjacent data points and summing them up. The goal of
this step was to mitigate the impact of noise on the mea-
surements, preventing at the same time the loss of valuable
information [18]

min

{n−1∑
i=1

|xi+1 − xi |

}
(2)

where n is the number of data points in the signal. The data
was then segmented using a window size of 5120 data points.
This corresponds to 10 s of activity (cardiologists often inspect
10-s ECG measurements to establish various cardiac-related
conditions, such as sleep apnea and atrial fibrillation [19], [20],
[21]; we take this as a reference in our analysis). Furthermore,
we differentiated the segments to focus only on the changes in
the values introduced by the activities. Following these steps,
the data were normalized to eliminate any potential biases
that might have been introduced during data collection and
preprocessing.

B. Features
We explored several features commonly used in digital

signal processing and speech recognition dealing with similar
concerns (summarized in Table II). We explored both time-
and frequency-domain features. For a detailed description of
the features, we refer the reader to [22] and [23].

IV. ANALYSIS

In this section, we present our experimental results feature-
by-feature, focusing on the most important features and
activities. In the figures that follow, the values on the y-axes
need appropriate mapping and scaling to correspond to real
physical values, due to the differentiation and normalization
steps. They can be regarded as “scores” by which the differ-
ent activities can be discriminated. In general, a high score
does not necessarily correspond to a high physical exertion,
since the differentiation step extracts only the difference in



FARROKHI et al.: HAR BASED ON WIRELESS ELECTROCARDIOGRAM AND INERTIAL SENSORS 6493

TABLE III
CORRELATION COEFFICIENTS OF THE FEATURES ASSOCIATED WITH

THE 3-D ACCELEROMETER, 3-D GYROSCOPE, AND THE ECG

magnitude between adjacent raw samples. If the difference is
consistently small, the corresponding score will be small as
well, even though the activity involves high physical exertion.
Hence, instead of emphasizing the magnitude of a score, it is
important to examine the variations in the scores and the
correlation coefficients of the scores.

A. Correlation
An essential step toward determining the expressiveness of

the features we discussed in Section III-B is to investigate
their variance and their correlation with the other features.
To visualize these aspects, we plotted the overall average
values and the personal average values. The latter refers to the
average values of the features based on data collected from a
single subject, whereas the former refers to the average values
computed based on all the available statistics. The average
scores are depicted in blue in Figs. 2–7. To highlight how
these scores change from person to person, we plotted the
average scores of three of our subjects—in the plots orange,
yellow, and purple refer to Subjects 1, 2, and 3, respectively.
We sometimes refer to climbing, jumping, and running as
robust activities, and to the other activities as slow activities.

In summary, the features associated with the
3-D accelerometer and the ECG exhibit strong correlations,
as can be seen from the correlation coefficients in Table III.
This suggests that forward acceleration produced by a physical
exertion resulted in a corresponding cardiac exertion and
both the time- and frequency-domain features captured this
aspect. In contrast, the features associated with the gyroscope
are moderately correlated with the features associated with
the accelerometer and weekly correlated with the features
associated with the ECG. The gyroscope consistently ranked
bending over and standing high, because these activities
involved significant turning even when the body did not exert
much. As far as the gyroscope was concerned, the placement
of the sensor platform played a crucial role in perceiving
body turns. For all the experiments, the sensor platform was
placed at the center of the upper torso (Fig. 1). As a result,
even though the angular velocities produced by the arms and
legs during such activities as jumping and running were high,
the gyroscope did not “perceive” them as such due to their
placement.

The feature which is the least expressive in terms of the
variability of the scores is spectral roll-off (SRO). This feature
identifies the frequency up to which a certain portion of the
total spectral energy resides. The frequency components of all

Fig. 1. Placement of the sensor platform and the ECG electrodes.

Fig. 2. Variation in the total energy.

the less-robust activities show no significant variations (and
consistently scored high), whereas the robust activities exhibit
slight variations (and scored less). However, discrimination
between the activities based on this feature would not be
possible. Likewise, the correlation between the features of the
inertial and the ECG measurements is comparatively small
(particularly, the correlation between the features of the gyro-
scope, on the one hand, and the features of the accelerometer
and the ECG, on the other), as can be seen in Table III.
The second least expressive feature is spectral centroid (SC).
Nevertheless, in both cases, all the measurement sets exhibit
strong correlations, as can be judged from the correlation
coefficients in Table III.

The next least expressive feature is energy (Fig. 2). This
is because of the differentiation applied to the raw data; if
there is some consistency of physical exertion in an activity,
the variation in the energy will be perceived as insignifi-
cant. The movement that scores the highest is walking (for
the measurements of the 3-D accelerometer and the ECG).
Understandably, this activity causes frequent transitions in the
body exertion which are captured by the accelerometer and
the ECG, as their strong correlation suggests in Table III. As
far as the gyroscope is concerned, no conclusion can be made
by examining the difference between the scores, both across
subjects and across activities.

Zero crossing rate (ZCR) distinguishes bending over and
standing unambiguously, based on all the measurement
sets (Fig. 3). By contrast, jumping scores the least. ZCR
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Fig. 3. ZCR of different activities.

Fig. 4. CoV of different activities.

ranks climbing third based on the measurements of the
3-D gyroscope and the ECG, but based on the measurements
of the 3-D accelerometer, it ranks walking third. Interestingly,
next to SRO and SC, the ZCR of the inertial and ECG
measurements exhibit strong correlations as can be judged by
the correlation coefficients in Table III. Similarly, coefficient
of variation (CoV) consistently ranks bending over, standing,
and climbing high based on all the measurement sets. The
movement that scores the least is walking. Where the other
activities are concerned, the CoV of the accelerometer and
the ECG exhibit a strong correlation (corr. coefficient = 0.85),
ranking walking the least. However, the CoV associated with
the 3-D gyroscope is the most reliable. Accordingly, the more
robust a movement is, the smaller is its CoV score. The spec-
tral equivalent of CoV is spectral CoV (SCoV) and expresses
the normalized variance between the spectral components.
This feature can be taken as the second most reliable feature.
Here, however, the more robust an activity is, the higher its
value, as can be seen in Fig. 5.

Perhaps, center frequency (FC) is the most reliable feature,
based on all the statistics we collected, consistently ranking
high the robust activities, as can be seen in Fig. 6. The
variance between the different activities for the measurements
of the accelerometer and the ECG is appreciably high. If one

Fig. 5. SCoV.

Fig. 6. FC of different activities.

were merely interested in discriminating between robust and
less robust activities, the FC can do the job single-handedly.
The correlation coefficient between the measurements of the
accelerometer and the ECG for this feature is 0.85.

Finally, spectral energy density (SED) ranks high for those
activities that involve sudden changes in body direction. As a
result, bending over and standing score comparatively higher
than all the other activities based on all the measurement
sets. Moreover, the correlation coefficients between the mea-
surement sets are comparatively high. The most reliable SED
features in terms of consistency across the different experi-
ments and subjects are those associated with the gyroscope,
as can be seen in Fig. 7.

B. Feature Selection
Since all the features are computed based on the same

sets of data, it is important to investigate whether they reveal
overlapping aspects. Since the features computed for all the
activities can be represented by a matrix, dimensionality
reduction techniques can be applied to identify the most
expressive (independent) features. We chose SVD, as it makes
no assumptions regarding the underlying features. The decom-
position yielded six singular values, but the first two had values
that were far greater than the others suggesting that the matrix
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Fig. 7. SED.

hid two important underlying features. Evaluating the absolute
scores (contributions) of the 24 features with respect to the two
singular values revealed that some of our features had almost
no contributions in describing the singular values, suggesting
that they were redundant features. These features were: CoV,
SED, and SCoV. As can be seen in Table III, these features
were also the ones that yielded weak correlation coefficients.
We tested the maximum recognition accuracy that could be
achieved with and without these features and the results
we obtained suggested that slight improvements could be
achieved if they were considered in the subsequent recognition
assignments. Hence, despite their poor SVD performance,
we decided to retain them.

V. MODEL

In our CNN model, inputs are structured as a 1-D vector,
where the length of the vector corresponds to the number of
features supplied to the model. The model comprises seven
layers, each carefully designed to process input data efficiently
and effectively. Specifically, the architecture includes four
layers of convolutional and max-pooling (MP) layers that work
together to capture and analyze key patterns in the data. The
first convolutional layer includes 32 filters with a kernel size
of 4, and the second convolutional layer includes 64 filters with
a kernel size of 3. These convolutional layers are followed by
max-pooling layers with a pool size of 2, respectively, that
downsample the output of their corresponding convolutional
layers. This architecture captures and extracts relevant patterns
and features from the input data while minimizing the number
of parameters. Fig. 8 offers a visual representation of our
model’s architecture.

After passing through the pooling layers, the output is sent
to a flattened layer that rearranges the output of the previous
layers into a 1-D tensor. This tensor is then supplied to two
fully connected layers, where the first layer comprises 64 units
with a hyperbolic tangent activation function, and the second
layer comprises seven units with a Softmax activation function.
By employing the Softmax activation function, the model
generates probabilities for each class, ensuring that the sum

Fig. 8. Proposed CNN model for accurate classification of physical
activities based on sensor data.

TABLE IV
NUMBER OF PARAMETERS FOR EACH LAYER OF

OUR PROPOSED CNN MODEL

of probabilities for all classes equals 1. This makes the model
fit for multiclass classification.

To evaluate the size of the model, we calculated the number
of trainable parameters, which is an indicator of the model’s
complexity. Table IV shows the number of parameters for each
layer of our proposed CNN model.

To enhance the effectiveness of our model, we implement
various techniques. Specifically, we utilize the RMSprop opti-
mizer with a learning rate of 0.01 and a decay rate of 0.001 to
optimize the model’s performance. Additionally, we integrate
early stopping to prevent overfitting by discontinuing training
if the validation loss did not improve after a certain number
of epochs. To evaluate the model’s performance, we allocate
a 25% holdout set for testing, and we also employ a fivefold
cross-validation to ensure the reliability of our results.

VI. RESULTS

We conducted both intraperson and interperson experiments
to investigate the impact of individual differences on the
accuracy of the model. We used the same dataset for both
experiments, but there was a difference in the data usage. For
the interperson experiments, data from six participants were
used for training, and data from two other participants were
used for testing. We performed 27 tests for each sensor combi-
nation, considering all possible participant combinations. For
the intraperson experiments, data belonging to the same sub-
ject were used for both training and testing. The results of all
the subjects were then averaged. We split the data into training
and test sets in a 75:25 ratio and used fivefold cross-validation
to ensure reliable results. We conducted 20 experiments for
each sensor placement, considering different sensor combina-
tions to assess their impact on accuracy.

Table V shows the classification accuracy of our model
for the intraperson experiments, for different combinations
of sensor data. The highest accuracy of 95% and the lowest
accuracy of 56.7% were achieved when sensors were placed on
the chest. The table also shows the average accuracy and the
accuracy range for each sensor placement and combination.
We found that the combination of accelerometer (A), gyro-
scope (G), and ECG (E) sensors placed on the chest yielded
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TABLE V
INTRAPERSON CLASSIFICATION ACCURACY OF THE PROPOSED CNN

MODEL, FOR VARIOUS SENSOR PLACEMENTS

AND SENSOR COMBINATIONS

the highest average accuracy of 94%. Our model consistently
delivered accuracy rates ranging between 91.9% and 95%
across all 20 experiments, indicating that this combination
of sensors is well-suited for predicting the different classes.
Conversely, the lowest accuracy was observed when sensors
were placed on the chest with only ECG data, with an accuracy
of 59%. This indicates that the ECG alone is not sufficient for
accurate HAR using CNNs (as discussed below, the problem
was not as such with the inadequacy of the ECG in capturing
physical exertions but with motion artifacts being included in
the ECG measurements when the body was exerting.

Table VI lists the results of interperson experiments.
Accordingly, the combination of the ECG and gyroscope
placed on the right arm yielded the highest average accuracy
of 77% with an accuracy range of 71%–86.9%. On the other
hand, the lowest average accuracy of 35% with an accuracy
range of 23.2%–44% was observed when the ECG was used
together with inertia sensors placed on the chest. These
results highlight the importance of sensor placement and the
combination of sensor data for accurate HAR across different
individuals. Furthermore, the results presented in Tables VII
and VIII suggest that the optimal sensor placement depends
on the ultimate aim of the model. For instance, the chest was
the most suitable place for jumping and bending over in the

TABLE VI
INTERPERSON CLASSIFICATION ACCURACY OF THE PROPOSED CNN

MODEL FOR VARIOUS SENSOR PLACEMENTS

AND SENSOR COMBINATIONS

TABLE VII
AVERAGE HIGHEST ACCURACY ACHIEVED FOR EACH ACTIVITY

DURING THE INTRAPERSON TEST

intraperson experiments, whereas the left arm was optimal for
jumping and the right arm, for bending over, in the interperson
experiments. This could be because the latter activities resulted
in similar arm movement patterns across subjects, enabling
features that were amenable to generalization.

VII. DISCUSSION

A considerable variability of performance can be observed
between the intraperson and the interperson experiments.
Understandably, this, in part, is due to physical differences.
Human movement is not uniform across individuals, and
even subtle differences in walking strides and running paces
can change measurement statistics appreciably, even though
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TABLE VIII
AVERAGE HIGHEST ACCURACY ACHIEVED FOR EACH ACTIVITY

DURING THE INTERPERSON TEST

the higher-level features were so selected to undermine the
effect of such variations. Unlike the interperson experiments,
which relied on data coming from different individuals, the
intraperson experiments utilized data from the same individual
for both training and testing. Consequently, a more consistent
performance could be achieved even when a change in the
configuration of the sensing system changed. Table V reveals
that the ECG excelled in identifying sitting (as also shown in
Tables VII and VIII). Indeed, from this observation, we can
suspect that it was mainly due to the inclusion of motion arti-
facts in the ECG measurements that ECG performed poorly.
Had the ECG measurements been clean, it could have been
possible to map cardiac activities to physical activities. Hence,
when the ECG was used together with inertial sensors, the
latter implicitly normalized the effects of motion artifacts
in addition to providing complementary insights into the
underlying physical activities.

As shown in Table V, using an accelerometer alone for chest
sensor placement, our model achieved an accuracy of 83%
but when used with the ECG and gyroscope, the accuracy
increased by 11%, reaching 94%. Overall, the combined use
of ECG and IMU features improved accuracy on average by
2%–6%. This indicates that using all three modalities did not
always result in a higher accuracy. In the interperson experi-
ments, the combination of the ECG and gyroscope (placement:
right arm) yielded the highest accuracy. When, however, all
three sensors were used, we observed a 3% decrease in
accuracy. This agrees with the study conducted by Afzali
Arani et al. [10] which combined features extracted from
the measurements of the PPG, ECG, and accelerometer. The
authors observed that the combined use of PPG, accelerometer,
and ECG features led to a decrease in accuracy.

Our results align well with the results reported in
the literature (a summary is given in Table IX). Afzali
Arani et al. [10] noted that using the ECG along with
a 3-D accelerometer improved the recognition of some
activities in ten out of 14 subjects. Mekruksavanich and
Jitpattanakul [15] reported a 1% improvement of accuracy
when the accelerometer, gyroscope, and electromyography
were used in combination. Similarly, Celik et al. [16] reported
that the combined use of surface electromyography and
inertial sensors resulted in an improvement of accuracy
by 3.5%–6.3%. Similar observations were made in
[9], [14], and [24].

Our study goes beyond state-of-the-art by exploring the
impact of various sensor placements and combinations in

TABLE IX
COMPARISON OF ACTIVITY RECOGNITION STUDIES

TABLE X
CONFUSION MATRIX FOR CHEST ECG DATA OVER

THE INTRAPERSON TEST

greater detail. Table VI presents a summary of prior studies
and their corresponding outcomes. To the best of our
knowledge, our study is the first to thoroughly investigate the
impact of various sensor placements. The confusion matrix
for the chest ECG (Table X) shows that the model achieved
an accuracy of 96.4% in identifying sitting activity. Similarly,
in the confusion matrix for the back ECG (Table XI), the
model achieved an even higher accuracy of 98.2% in identify-
ing sitting activity. These results suggest that in the absence of
motion artifacts, the ECG effectively mapped cardiac response
to physical response.

Similarly, the results in Tables XII and XIII suggest that the
chest sensors were more reliable in classifying certain physical
activities. The case in point is standing up, bending over,
and walking. On the other hand, back placement performed
better in identifying climbing stairs and running (achieving
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TABLE XI
CONFUSION MATRIX FOR BACK ECG DATA THE INTRAPERSON TEST

TABLE XII
CONFUSION MATRIX FOR CHEST DATA ALL SENSORS

THE INTRAPERSON TEST

TABLE XIII
CONFUSION MATRIX FOR BACK DATA ALL SENSORS

THE INTRAPERSON TEST

100% accuracy in classifying running). This suggests that
back placement is more reliable at detecting and classifying
movements that involve the lower body, such as those related
to gait and posture.

The results presented in Tables VII and VIII provide further
insights into the optimal sensor placements for a reliable HAR.
While the chest placement appears to be the best for recogniz-
ing jumping and bending over in the intraperson experiments,
the left and right arm sensor placements were the best for
the interperson experiments. This suggests that the arm place-
ment is better suited for capturing intervariability in activity
recognition, while chest and back placements are more reliable
for capturing intraperson variability. Our experiments reveal
that the left leg placement produced noisy and inaccurate
measurements compared to all the other placements, regardless
of the participant’s age, gender, or physical attributes.

VIII. CONCLUSION

In this article, we employed a CNN for HAR and inves-
tigated the contribution of a wireless ECG to recognition
accuracy. We considered different configurations to produce
the input features, including different sensor placements and
sensor combinations. The experimental results indicate that
the contribution of the features extracted from the wireless

ECG was appreciable; nevertheless, without the inclusion of
the features extracted from the inertial sensors, its impact
was modest. Additionally, our investigation highlights the
significance of sensor placement on recognition accuracy. In
general, the features extracted from the sensors placed at the
torso were more expressive when the training and test data
originated from the same subjects. When the test and training
sets originated from different subjects, however, the features
extracted from sensors placed at the right and left arms were
more expressive.

While our study delivered promising outcomes, it has
also left some concerns unaddressed. First, the limited num-
ber of subjects involved in the experiments may limit its
expressive power. Second, even though our model scored
impressive accuracy rates, we did not extensively evaluate
its computational complexity and energy cost. Consider-
ing the significance of these factors in real-world wearable
devices, optimizing the model’s efficiency for deployment on
resource-constrained devices is an important consideration.
Broadening the demographic scope of the model in future
studies to ensure the representation of a more diverse set of
features and addressing the computational aspects of the model
will be the focus of our future research.
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