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Minimized Training of Machine Learning-Based
Calibration Methods for Low-Cost O3 Sensors

Stefano Tondini*, Member, IEEE, Riccardo Scilla*, and Paolo Casari*, Senior Member, IEEE

Abstract—Low-cost sensors (LCSs) show a huge potential
toward enabling the pervasive and continuous monitoring of
crucial environmental parameters, supporting environment
preservation, and informing citizens’ well-being through
ubiquitous air quality data. The main drawback of LCSs is
that their data is usually biased, even if LCSs are calibrated
by their manufacturer at production time. More accurate
in-field calibration methods based on machine learning (ML)
and neural networks (NNs) are being considered in some
recent studies. They typically imply LCSs colocation with
reference measurement stations certified by environmental
agencies. Due to seasonality effects, however, the correlation
between LCSs and their reference may rapidly degrade once
the LCSs are moved from the calibration site, making even really accurate calibrations useless. In this work, we specifi-
cally target this problem by optimizing the training settings of the most popular ML and NN calibration models for LCSs
when a sequential split schema is adopted to separate training and test sets. Then, we assess the degradation of the
calibration over time based on the R? score, when the splitting of the dataset between training and test sets is different
from the classical 80%—20% ratio. This method is applied to real data gathered from an O3 sensor deployed in co-location
with a certified reference station for a period of six months. Eventually, we show that, in the case of long-short term
memory NNs, using 20% of the dataset for the training is a trade-off condition that minimizes the calibration effort and
still yields a robust and long-lasting calibration.
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. INTRODUCTION

IR quality is crucial to citizens” well-being as well as to

environment preservation. According to the most recent
WHO reports, the emission of harmful pollutants is one of
the main causes of health-related diseases [1]. The impact
of air quality, both at a local and global scale, demands
distributed and continuous monitoring [2]. Current attempts
rely on networks of air quality monitoring stations managed
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by regional environmental agencies, which make it possible to
track the most common pollutant gases with certified accuracy
[3]. However, these stations typically host high-resolution
equipment [4] and are thus expensive both to establish and to
maintain. As a result, installing a dense network of certified air
quality monitoring stations is an ineffective approach for dense
or ubiquitous monitoring, especially in urban areas. Rather,
it is common to deploy only one or a few acquisition points per
city, which are not sufficient to discriminate, e.g., the different
pollution levels expected from different districts, worse air
quality in the surroundings of industrial clusters, relatively
higher air quality at residential areas located far from crowded
streets, and so on [5]).

The problem could be overcome by means of networks of
autonomous sensor nodes, namely, wireless sensors networks
(WSNs) [6], [7]. This approach is getting more and more
relevant not only among the scientific community but also at
the level of citizen science [8]. In some cases, WSNs can be
also made of mobile monitoring devices deployed in public
areas to expand the survey domain and limit the hardware
needs at the same time [9].

In accordance with Internet of Things (IoT) principles [10],
[11], [12] and high-efficiency information/power management
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schemes [13], [14], [15], [16], [17], [18], WSNs happen to
be way more affordable than traditional monitoring stations,
especially when they are made of low-cost sensors (LCSs)
[19], [20]. Being typically smaller, they are also easier to
install in urban areas. LCSs can be acquired by private citizens
and associations thereof and networked together to cover
areas that would be otherwise sparsely sampled, as is done
already for RF spectrum utilization sensing [21]. By doing so,
accurate and geographically dense environmental sensing can
be expanded also to peri-urban areas.

The main drawback of LCSs is that collected data are not
as accurate and unbiased as those of calibrated environmental
stations. In fact, most LCSs for pollution monitoring are
based on metal-oxide—semiconductor (MOS) or electrochem-
ical (EC) working principles [22], [23], [24], which often lack
accuracy and reliability [25]. This is because manufacturers
calibrate their LCSs within a gas testbench just against the
target pollutant, and only rarely they do provide corrections,
e.g., for temperature variations [24]. However, calibration
setups are very different from real operational conditions,
where the influence of external (environmental) parameters
strongly affects the measurements. As an example, LCSs for
harmful pollutants monitoring are sensitive to relative humidity
(RH), as well as temperature, and often suffer from cross-
sensitivity [25], [26], [27], i.e., they react also to the presence
of other nontarget gases leading to measurement alterations.
Specifically, it has been reported that O3 sensors undergo
an oxidation process in the presence of NO, [28], and CO
measurements are correlated with H, in urban environments
[27]. Another issue is the stability of LCSs over time. Recent
studies have demonstrated that the consumption of the reagents
in some specific EC sensors leads to read-out drifting (aging)
[28], [29]. Still, EC sensors age faster when exposed to
high-temperature and low RH [30]. Additionally, some gas
sensors have cross-sensitivity to other gases that are not
included in their datasheet. For example, CO sensors can be
triggered by alcoholic isopropyl base solvents.

Many strategies can be adopted to cope with the above
issues. For instance, recursive calibrations can be put in place
by periodically comparing LCS outputs against some reference
(REF) instruments in a supervised environment. By surveying
different environmental conditions, it would then be possible to
extract a (linear or nonlinear) correction function for the LCSs
[31]. However, the full mapping of the sensors’ response to a
large variety of environmental conditions is highly time- and
resource-consuming, making this a nonviable approach. For
this reason, the most recent approaches to LCS calibration are
based on machine learning (ML) techniques. The main idea
is to place the LCSs near a certified monitoring station so
that they share the same environmental conditions and, ideally,
sample the same pollutant concentrations. Then, it is possible
to train a supervised ML model to correct the LCSs’ output.
In this context, ML makes it possible to factor in any set
of environmental parameters, including additional pollutants
besides the target one, in order to make the calibration model
sensitive to such interferences [32]. Moreover, based on a data-
driven approach, such a system can be implemented without
the need for a complex experimental setup. It also eases the

mitigation of unwanted effects such as drifting over time,
if proper periodic recalibration policies are adopted. ML-based
calibrations can be operated directly on the deployed sensors
(edge scenario) [33], [34] or on the time series stored in a
database (cloud scenario) [35], [36], [37].

It is worth mentioning that the application of remote cali-
bration to low-cost IoT sensors is taking momentum. Among
others, paradigms like distant calibration [38], hierarchical
networks and mobile buddies serving as calibration devices
[39], and calibration model transfer over space [40], and
over different pollution regimes [41] are emerging and being
benchmarked.

A. Motivation of the Work

Considering the above context, in this article we aim at
improving LCS accuracy by means of ML-based methods.
Urban monitoring is a particularly suitable use case, as certi-
fied air quality stations are available at least at a regional level,
and offer an excellent reference to compare sensing capability
in an operational environment. However, installing LCSs close
to reference stations is not always possible, either for formal
reasons (limited hosting permissions from the environmental
agencies that manage the sites) or for practical reasons. (There
would be no point in a permanent deployment of LCSs near
the monitoring station, besides the validation of the process
itself.)

Given the last points, our investigation focuses on how to
minimize the calibration time (i.e., training) for ML-assisted
LCSs. In this work, we consider the specific case of O3 sens-
ing, but the same methodology can easily be extended to other
pollution sensors, as well. For this purpose, we first benchmark
the most popular Al-based calibration models, in order to
select the most convenient approach for our problem. This
task allows us to fine-tune the AI model selection based on
the characteristics of O3 sensors. Then we analyze the splitting
ratio of training and test sets over a period of three months
in order to estimate if a trade-off condition can be found for
which the LCS calibration holds (i.e., the correlation between
the LCS and the reference lies above a threshold value) even if
the time the LCS is colocated with the reference instrument is
limited. We can compare the performance of different splitting
ratios on the same LCS as it was colocated with the reference
station for the whole duration of the study. We can mimic the
sensor being moved far apart from the calibration site when
we consider only a subset of the reference time series (ground
truth) to train the ML models. Due to the duration of our field
campaign, we are also able to address the onset of calibration
issues when seasonal effects appear. Our overarching goal is
to enhance the efficiency of LCS-based sensing, as well as
limit the need for human intervention on low-cost WSNs.

Specifically, the contributions of this article are as follows:

1) setting up a preprocessing pipeline for time series,
which encompasses data harmonization, outlies and gaps
removal, as well as features selection;

2) benchmarking different ML- and neural network-based
calibration models, namely, multiple linear regression
(MLR), random forest regression (RFR), support vector
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TABLE |
STATE-OF-THE ART AI-BASED O3 SENSOR CALIBRATION
APPROACHES
Feature Feature  Train Test
Auth  Model — Targ (0 (atmos) (day) (day) X
[43] MLR 03 03 T, RH 6 2 0.81
[43] RF 03 CO, COz T, RH 6 2 0.99
NO, O3
[44] MLP 03 CO, NO RH 7 7 0.92
03
[54] MLP 03 CO, CO» T,RH 12 0.86
NO, NO:
SO», O3
PM10
[54] RF 03 CO, CO; T,RH 12 0.97
NO, NO2
SOz, O3
PM10
[62] LR 03 O3 0.92
[63] MLR 03 0s, VOC T 2 14 0.16
[63] MLP 03 03, VOC T 2 14 0.91

regression (SVR), multilayer perceptron (MLP), long-
short-term memory (LSTM), and convolutional neural
network (CNN);

3) studying the effect of temporal pivoting and of random
splitting and sequential splitting between the training
and test sets;

4) assessing a trade-off condition for the time interval
spanned by the training set that yields a long-lasting
calibration.

The latter two points characterize our study, since, in contrast
with previous works (see Table I), we report the experimental
outcomes corresponding to varying the ratio between training
and test, investigating other conditions besides the classical
80%—-20%, by also applying a sequential splitting schema to
sort training and test sets. It is also worth mentioning that,
unlike the majority of the studies in this field, the LCSs have
been deployed in such a way that their sensing condition is
identical to that of the REF instruments, i.e., in supervised
constant air-flow (see Section II-A for further details), that
guarantees the reliability of outcomes. After an extensive
benchmarking, we show that the resilient calibrations for an
O3 sensor can be achieved with LSTM even if the part of the
dataset devoted to the model training is reduced down to 20%.
The metric we use to assess the calibration degradation over
time is the weekly averaged R? score.

In this article, we do not address the analysis of the
calibration performance when the LCSs are moved to different
locations with respect to the calibration site with different
distributions of pollutants. We refer to the relevant work of
deSouza et al. [41] on the topic for such a discussion.

B. Structure of the Paper

In the following, we survey related work in Section II,
before reporting on the materials and methods used to collect
and preprocess the experimental data in Sections III and IV,
respectively. The operations related to the implementation,
optimization and training of the ML models and NNs are also
detailed in Section IV. Section V analyzes the results obtained

from the comparison of the different approaches, and discusses
the minimum the training to achieve a reasonable/reliable cal-
ibration. Finally, Section VI outlines some future perspectives
on the topic of Al applied to sensor time series.

[l. RELATED WORK

In the recent literature, several ML-based strategies have
been proposed with the aim of calibrating LCSs. The ML
methods used in these works are mainly linear models such
as linear regression (LR) and MLR, but also nonlinear models
such as RFR, SVR, and neural networks (NNs) [42]. These
models have to be trained against a reference data source
during the calibration time period.

The majority of the works exploit MOS [43] or EC [44] sen-
sors that are located nearby certified REF instruments/stations,
which share the same environmental conditions and serve as
ground truth for multiple pollutant concentrations at a time
[45]. Environmental parameters such as RH, temperature (T)
[46], [47], or wind speed (WS) [22] are often included in the
training process. Some studies carry out such calibration in
indoor environments as well [48], [49]. Commonly, the target
pollutants are CO, CO,, NO, NO,, O3, and SO, and particulate
matter PM1, PM2.5, and PM10.

There is still no agreement on the sensor sampling fre-
quency, which mostly varies between 15 s [44] and 30 s [19],
up to 1 min [11]. However, such values are oversampling
the reference measurements, which are made available (after
averaging) on a 10-min or 1-h basis. To cope with this aspect,
resampling or averaging is also applied to the LCS time series.
A usual choice is a 1-min average [22], [45], while other
studies increase the duration of the averaging window to 1 h
[50]. In this study, De Vito et al. [50] addressed adaptive
ML strategies to extend the validity of calibration models
for air quality multisensor systems. In such a scheme, the
authors implemented continuous learning through periodical
calibration updates on two algorithms, namely the standard
shallow, feed-forward, neural network and the extreme learn-
ing machine. In any case, it is crucial to achieve temporal
coherence between the LCS and the reference time series [51].
Because LCS measurements often include saturated values or
outliers, such operations as smoothing, filtering and outlier
detection are typically applied during a preprocessing phase
[17], [32], [50] in order not to limit the performance of
ML-based calibration models.

The debate about whether or not the performance depends
on the training length remains open. The point has been
tackled since the introduction of ML approaches for in-field
sensor calibration [52], [53], [54]. Many works on multisensor
calibration reported comprehensive tables on the outcomes of
ML and NN models applied to datasets from different field
campaigns [32], [55], [56]. However, the training verus test
splitting ratio is not always reported as a parameter. In turn,
it is not straightforward to compare the results of different
studies, as the percentage of each dataset used for training
and test sets may be noticeably different from case to case.

The 80/20 and 75/25 splitting ratios are still a widespread
standard for testing ML approaches applied to LCSs cali-
bration, e.g., [46], [51], [57], [58], [59], [60]. Moving apart
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from classical splitting ratios, Spinelle et al. [45] used a
cross-validation approach for ANNSs, dividing the dataset into
subsets of two weeks, the first used for training (50%) and
the second for test (50%) to avoid artifacts from the training
process. 50/50 splitting ratio was also used by Aula et al. [59]
and De Vito et al. [61] for CO and NO, sensor calibration, and
by Han et al. [62] to validate NN performances on CO, Os,
NO,, and SO, sensors. Still Lin et al. [63] explored 1/2, 1/3
and 2/3 as splitting between test and training for calibration
of NO, + O3 sensors.

Maag et al. [64] tested different recalibration frequencies
over a period of 12 months, using a training dataset of
four weeks. They obtained an increasing error by decreasing
the recalibration frequency, suggesting a trade-off value for
the calibration duration from 12 weeks (67%) to 16 weeks
(75%). 20/80 and even lower ratios were also searched from
several recent studies, for instance to emulate the condition
where the LCSs are collocated with a reference station for a
certain period and then deployed in the field for standalone
pollution monitoring [65], [66] and to perform pervasive air
quality monitoring through high-resolution hybrid networks
leveraging ML and IoT principles [61].

Stratified split is also gaining momentum to ensure that the
distribution of classes is preserved in both the training and test
sets [67], [68].

For short-term operations, most authors converged on four
weeks of training for three—four months of maximum deploy-
ment, as the onset of seasonal influences (especially in periods
with low concentration of pollutants) calls for periodic recal-
ibration routines.

The LR model, together with its extension to MLR, is typi-
cally used as a comparison baseline for more complex models
[23], [44], [51]. For instance, Lin et al. [63] exploited LR
for the calibration of NO, and O3. As LR models have a
single explanatory variable, the NO, and O3 measurements
were input separately, without the possibility to address cross-
sensitivity issues. Zimmerman et al. [44] compared an RFR
model with an MLR model, choosing CO, CO,, NO,, and
O3 as targets. For the RFR all the pollutants (CO, CO,, NO,,
and O3) and T and RH were considered as input features to
train the algorithm, while for the MLR the single pollutants
(and T and RH) were processed one at a time. Bigi et al.
[23] showed in their considered conditions and scenario that
nonlinear models SVR and RFR outperform MLR in the case
of NO and NO,.

It must be mentioned that this holds for short-term cali-
brations, but for-long term ones (i.e., spanning over multiple
seasons) MLR may outperform nonlinear approaches. For
instance, Zimmerman et al. [44] proposed a hybrid calibration
model combining RF and MLR to possibly cope with higher
concentrations than those encountered in the training window
by RF. The issue of long-term performance assessment for
EC sensors calibrated in-field through ML approaches has
been extensively addressed by De Vito et al. [61], concluding
that yearly recalibration is necessary to prevent unacceptable
worsening of accuracy.

NN models have also been extensively searched for the
calibration of LCSs, showing promising results. In particular,

Yamamoto et al. [69] used an MLP to calibrate a temperature
LCS using environmental factors such as solar radiation (SR),
RH, WS, and rainfall. However, the study reports that the
calibration reliability drops when the LCSs have moved far
apart from the calibration site. To solve this issue, Park et al.
[70] developed a hybrid model, combining an MLP with an
LSTM recurrent neural network (RNN). The resulting model,
named HybridLSTM, embeds a component that enables the
extraction of time dependencies from the analyzed data. This
novel model was compared to MLR and MLP, showing an
increase in the correction (i.e., calibration) quality. A similar
result was achieved by Yu et al. [46], who incorporated a
CNN and a gated recurrent unit (GRU) for CO and O;
calibration. The authors report that the CNN makes it possible
to capture short-term patterns in the input features, while
the GRU allows extracting long-term periodic patterns. This
approach outperformed LR, MLR, SVR, and LSTM, showing
improvements in all metrics. Lee et al. [51] developed a model
called segmented model and residual treatment (SMART) for
PM2.5 (particulate matter of 2.5 um diameter), using ambient
light (AL) together with T and RH as additional input features.
SMART aims to lower the weaknesses of the MLR and
MLP models (linear and nonlinear). At first, the MLR and
MLP are trained against a set of AL, T, and RH conditions.
A residual map is then calculated to point out the models’
performance against the different environmental conditions.
Eventually, the best model is selected for each AL, T, and RH
combination.

Antonini et al. [49] followed a different approach based on
a classification problem. Their goal was to benchmark eight
CO sensors by comparing them against a discrete range of
concentrations (0, 2, 5, 10, 15, 20, and 25 ppm) as a function of
RH. They used an MLP NN to associate the measurement from
the raw sensor with a discrete concentration within the range.
Interestingly, the authors exploited some genetic algorithms
(PSO and NSGA-II) for the optimization of the MLP.

A summary of the state-of-the-art approaches applied to O3
LCSs is shown in Table L.

[1l. MATERIALS
A. Data Collection

The LCSs benchmarked in this work have been hosted
within a certified air quality monitoring station located in the
city center of Bolzano, Italy (lat. 46.495633, long. 11.340195,
elev. 262 m). The station is managed by the local environ-
mental agency (APPA Bolzano, whose help we acknowledge)
and is equipped with several high-resolution instruments that
comply with the protocol for standardized acquisition released
by the European Environment Agency [71].

Fig. 1 shows the installation of the LCSs, which mimics
the sampling conditions of the REF instruments. The air
monitoring station includes two suction ducts, which let in
a constant airflow from the roof and release it to the ground
[Fig. 1(a)]. This brings similar air samples to the LCSs and
the REF, respectively, so as to yield the same measuring
conditions.

From now on, we will use the following shorthands.
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Env. sensors:
- Tout

s RHout

- SR

-P

Reference
Low cost instruments:
sensors: - 03 (REF)
- 03 (LCS)
-NO2
-PM1,2.5,10
Fig. 1. Installation of the LCSs within the monitoring station of

Piazza Adriano, Bolzano, ltaly. The two duction pipes feed the REF
instruments and the set of LCSs with the same controlled airflow, which
is then released toward the ground. An indoor picture is shown as an
inset, together with a magnification of the LCSs hosting. The different
parameters available for the current study are also listed.

1) O3REF: The reference high-resolution Oz analyzer Ther-
moSCIENTIFIC 49i hosted by the monitoring station.

2) O;LCS: the EC LCSs Alphasense OX-A431, deployed
inside the monitoring station.

The core unit of the O3;LCS acquisition system is a
Raspberry Pi 4, connected to the sensors via the I'C bus.
It also encompasses additional pollution sensors, namely, NO,
(Alphasense NO2-A431) and PMI, 2.5, 10 (Alphasense OPC-
N3), and some sensors of microclimatic parameters, i.e.,
Tin/Rhin (Sensirion SHT31), Tout/Rhout (Galtech PM15PS),
atmospheric pressure (Bosch Sensortech BMP388), and SR
(Apogee SP 420 Smart). The latter sensors are placed on the
roof of the monitoring station within a radiation shield, beside
the pyranometer that is directly exposed to the sunlight. The
time series originating from the extra sensors will be also
exploited as additional input features for the ML models tested
in our work.

Concerning the sampling rate, the O3;LCS sensors are
acquired every 10 s, while the O;REF measurements are
made available already with a 10-min average. The time series
analyzed in this study range from August 1, 2021 to December
30, 2021 [72], which represent the period during with the LCSs
have been hosted by the air quality monitoring station.

B. Data Workflow

The collected data from the O;LCS setup, together with
the ones from the O3;REF system, are sent in real time
(via an HTTPS POST request through a wireless connection)

Thttps://jupyter.org/

to an InfluxDB? instance, within two separate measurement
tables. This is one of the best options to date to collect
and handle large volumes of time-stamped data gathered by
multiple sensor sources. This way, the Os;LCS’s and O;REF’s
time series can be made available to a common processing
environment by another HTTPS call to InfluxDB’s APIL.

The processing environment chosen for this study is
JupyterLab', a standard for data scientists, which provides
an interactive notebook layout to embed text, graphics, and
executable source code in the same resource. The JupyterLab
is mounted on the Docker container orchestrator Kubernetes,
which supports automated resource management and scaling
when a multiuser approach is implemented.

For a quick check on the time series integrity, as well as for
a basic visualization of the raw data, a Grafana® visualization
dashboard is coupled to InfluxDB. This web application makes
it possible to compare the different data sources on the
same or different panels created by interactive query builders.
Moreover, this tool has an early warning feature that notifies
the users about time series flow interruption via e-mail or
instant messaging applications such as Telegram. For this
specific implementation, the warning threshold has been set
to send a notification when the sensor posts no new data
for more than 10 min. This, in turn, speeds up possible
restoration intervention and reduces the chance to lose time
series continuity.

Finally, a GitLab* repository is used to collect and share
the pipelines configured for our analysis.

IV. METHODS

As previously introduced, calibration is implemented as
a supervised regression task, where O;LCS measurements
are input features, whereas O3;REF measurements provide
ground-truth values for the target harmful pollutant. The ML
models’ output is then an engine that calibrates the O;LCS’
measurements.

In such a framework, we have set up different ML pipelines,
to select the model that yields the best performance, even when
training data spans a limited period of time. Each pipeline
is composed of different operational steps that sequentially
preprocess the raw data, implement, optimize and train the ML
models, generate predictions based on the real data, and finally
assign different performance scores for easier comparison.
A simplified pipeline schematic is shown in Fig. 2. Here, the
“EXTRA” data source corresponds to the time series available
from sensors for additional pollutants other than Oj. In the
following, we detail all the above steps.

A. Data Preprocessing

1) Harmonization: This operation prepares the raw input
data for the predictive ML models. As O;LCS data may
contain irregularities or corrupted data points (e.g., noisy or
inconsistent values), it is fundamental to carry out a data
integrity analysis to identify issues, make decisions on the

Zhttps://www.influxdata.com/
3https://grafana.com/
“https://gitlab.inf.unibz.it/
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EXTRA
data

e

O;LCS O3REF
data data

pW v

Data pre-processing

v
ML models Model setup
v
Iterations to Mode] training
find the best v
model
parameters Model evaluation

v

TRAINED MODEL

Fig. 2. Schematics of the pipeline implementation from the preprocess-
ing of the input data for the ML models’ optimization (in the light blue
highlight).

processing steps, and accordingly clean up the raw data.
Conversely, O;REF data are already preprocessed by the Local
Environmental Agency of Bolzano, before their release.

Moreover, the O3;LCS and O;REF sensors have to be
aligned in terms of sampling rate and units. To do so, O;LCS
sensor data are time-averaged over a window of 1 h, and the
pollutant concentrations are converted to parts-per-billion, for
compliance with O3;REF values.

Finally, it is possible to aggregate all data (O;LCS and
O;REF) by joining all the data frames into a unique structure,
so as to facilitate further processing.

2) Outliers and Gaps Removal: At this stage, we remove
outliers and gaps from the time series, as they could otherwise
distort and mislead the ML training process, resulting in longer
training time and lower accuracy [73], [74], [75]. In this
work, such problems have been addressed through Facebook’s
Prophet tool [76]. This tool decomposes the time series
into three main components: trend, seasonality, and holidays
(anomalies that must be considered unique events as they
deviate from normal behavior). Based on the specifications
described in [76], Prophet is more flexible and faster than
the more common ARIMA model, as it easily allows to set
multiple seasonal frequencies by defining an additional input
parameter. Unlike ARIMA, Prophet is robust against missing
values. After analyzing the nonlinear trends in the time series
through yearly, weekly, and daily seasonality effects, it can
reconstruct the full time series by adding the different time
series components with an uncertainty interval that factors
in reconstruction errors. This confidence interval makes it
possible to discriminate outliers in the measurements, by con-
sidering those data points which do not lie in the uncertainty
range. Fig. 3 shows how Prophet performs on the O;LCS time
series.

This procedure is not applied to the REF time series,
as data from the monitoring station are already preprocessed

1400

(a) —— LCS_IN 03 raw
1200
2 1000
8
5 800
£ 600
=
1
£ 400
o
(")
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Fig. 3. LCS time series: (a) before and (b) after applying Prophet’s
outlier removal process.

by the local environmental agency. Conversely, we observe
that the red dots in Fig. 3(b) represent sensor anomalies,
as the O3 peak lues seen in Fig. 3(a) correspond to unrealistic
concentrations compared to the O3REF time series. A possible
cause of anomalies is that the sensors get a small negative
value, which can happen for many reasons, and in case of an
unsighted integer it just becomes a huge value. A more detailed
overview on different outliers/anomalies detection methods is
given in [77], [78], [79], and [80].

The second issue that needs to be addressed is the removal
of gaps in the time series. This can be solved by filling in the
missing data points or removing the gaps by cutting/merging
the time series. Both solutions present additional issues: filling
the missing data usually requires introducing synthetic data
from imputation techniques that account for the time series
values before and after the gap. This solution is not suitable
for our purpose, because we focus on real data coming from
in-field LCSs, and introducing synthetic data in a time series
of real measurement may lead to artifacts in the ML model
outcomes.

A more suitable solution is then to remove the gaps. How-
ever, this approach has to be performed carefully because the
pollutant measurements are affected by heavy seasonal trends,
with both daily and weekly cycles. Therefore, we perform
the cut and merge procedure by aligning the last data point
before the gap with the one sharing the same time-of-day
(but on a different date) after the gap. Such a choice possibly
leads to losing multiple data points. Therefore, if the gap only
involves a few measurements, we prefer linear interpolation.
Otherwise, if the gap is bigger than a preset threshold value
(e.g., 1 h), we resort to cut-and-merge as described above.
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TABLE Il
FEATURE SELECTION

Selected features
O3, RHin, Tin, SR
O3, RHin, Tin, SR, NO2
O3, RHout, RHin, Tin, SR, NO2
03, Tin, SR, NO2
Best features (which emerge from at least two strategies)
O3, RHin, Tin, SR, NO2

Feature selection strategy

Correlation matrix
Univariate selection
Sequential forward selection
Subsequential backward elimination

In our extensive tests, we observed that a threshold of 1 h
represents the best trade-off between preserving time series
data and reducing the impact of interpolation on the ML
training process.

3) Feature Selection and Extraction: Feature selection [81]
is the process of extracting the most relevant features among
those available in the training dataset. From the point of
view of training, reducing the number of features to process
improves the accuracy of the resulting model, limits its com-
plexity, and mitigates the chance of overfitting [82]. More
broadly, fewer input features also lead to a lower training time.
Different techniques can be exploited for feature selection on
the LCS time series, considering each measurement as an input
feature (O3, NO,, PM, T;,, RH;,, Tou, RHouw, SR, and P) and
the REF measurement as a target [83], [84]. In this study,
multiple approaches have been considered, namely, Pearson
correlation, univariate selection, and the wrapper methods of
sequential forward selection and sequential backward elimi-
nation. The outcomes are then combined through voting and
the best features are selected/extracted to be included in the
pipelines. Table II summarizes the feature selection outcome.

B. Calibration Models’ Setup

Among the ML models used in similar studies, we often find
the classical LR and MLR [85], or other nonlinear models like
SVR [86] and RFR [87], which commonly perform better than
linear ones. Instead, among the NN-based approaches [88], the
most common are MLP, CNN, and RNN, which enable the
exploitation of temporal correlations by means of convolution
operations and memory cells, respectively.

The classical ML models’ pipeline is implemented using
Scikit-learn®, which provides built-in functions for the above
models. These can be optimized to the need of a specific prob-
lem by means of tunable hyperparameters. The NN models are
built via TensorFlow® by creating a suitable NN topology, e.g.,
dense layers (DLs) plus 2-D Convolution layers (for CNN)
and LSTM layers (for RNN). The methods implemented in
our work are fully analogous to those used in the prior art
(e.g., MLR, RFR, and SRV [23], [44], MLP [45], [55], [56],
and LSTM [70]).

Since our aim is to solve a regression task, all NN models
require a single output neuron, while the number of input
neurons depends on the number of training features. For the

Shttps:/scikit-learn.org/stable/
Ohttps://www.tensorflow.org/

MLP, only DLs are used, while for the CNN and RNN models,
their own specific layer is used first, ending up in a sequence of
DLs [89]. The number of layers in the NN topology is limited,
as the LCS calibration problem involves modest amounts of
data, and having larger networks would increase the likelihood
of overfitting [82]. The overfitting problem is handled also by
implementing early stopping during the network training if the
error [mean average error (MAE)] on the validation set starts
increasing with the number of epochs. In the specific case
of our implementation, if the MAE does not improve over
50 epochs, we trigger an early termination.

C. Training Approaches

1) Random Versus Sequential Sampling: Once the ML mod-
els are implemented, a common step to take is splitting the
time series into training and test sets. A typical approach is
to consider 80% of the dataset as the training set, and the
remaining 20% as the test set. In the scope of this work,
we examined different splitting ratios in order to evaluate
a utility relationship between the amount of data used for
training, and the goodness of the results obtained from the
ML-based O3LCS calibration. Further details on this aspect
follow in Section V.

We remark that selecting training and test data sequentially
or at random significantly affects the predictive performance of
the resulting ML model. Typically, random sampling (RS) is
chosen, so that the training and test sets have the same statistics
[85]. In the case of a real application, where ML pipelines are
supposed to be embedded into IoT systems (either in the edge
or in the cloud), sequential sampling (SS), i.e., considering the
first part of the dataset for the training and the remaining part
for the test, is typically preferred. In fact, the typical operating
conditions of time series sensors imply that a model should
learn for an initial time period, and then calibrate the low-cost
sensor for a predefined number of subsequent measurements.
This may come at the cost of having statistically unbalanced
training and test sets, as is especially true for harmful pollutant
sensors, which are affected by strong seasonality trends.

The RS and SS outcomes in the case of an 80% splitting
ratio are shown in Fig. 4.

From the boxplots in the insets, we observe that RS leads
to balanced training and test sets, whereas in the SS case,
the test set features a more concentrated range of data points
around the median than the training set, which includes higher
concentrations as well. This, in turn, affects the ML model’s
performance, because the learning phase occurs during a
period of higher O3 concentration, whereas the correction
phase (calibration) is performed on a test set mainly char-
acterized by lower O3 concentrations.

2) Temporal Pivoting: Temporal pivoting is generally a bet-
ter choice than providing the input value at the current time
step as input to a prediction model. Temporal pivoting requires
to arrange the input features of the ML model so that not
only the data at the current time step ¢, but also the tuple
of the surrounding time steps (t — N,...,t — 2,t — 1, t,
t+1,t+2,...,t 4+ N) are taken into consideration in order
to output calibrated measurements at time step ¢ [90].
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sampling conditions, i.e., (a) random and (b) sequential, are applied.
The insets convey the dataset split distribution for each case.
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Fig. 5.  Temporal pivoting representation, on the right, where three

adjacent timestamp measurements are used to predict the current
calibrated output.

An implementation scheme is shown in Fig. 5, where a
sliding window on the O3 input feature includes the adjacent
time steps of the current measurement. All three values are
passed to the ML model, which outputs the calibrated O3
reading at the time step ¢. This is the way that we can account
for the dependency that ties adjacent time steps. However,
in doing so, we delay the models’ output, as we have to wait
for all the following N/2 measurements to be collected before
predicting the calibrated output at time . A way to overcome
this issue is to consider only previous adjacent time steps
(t — 1, ¢t — 2, and so on), as is done in time series forecasting
problems [71].

Since the analysis reported in this work is based on already
acquired time series, we considered three different configura-
tions for the purpose of evaluating the best temporal pivoting
setting, namely, current time only (from now on [0,0]), one
data point before and after the current time ([1,1]), two data
points before and after the current time ([2,2]). In our extensive

80% splitting between training and test set when different

TABLE IlI
MODELS TESTED IN THIS WORK AND CORRESPONDING
HYPERPARAMETERS
Model Hyperparameter Value Param
MLR no hyperparameters
SVR Kernel radial basis function
C le2
Gamma le-4
RFR n_estimators 40; 10 (RS or SS*)
max_features 0.5;0.4%*
min_sampling_split 2;16*
MLP** # of dense layers (DS) 2 185;
# of units in DS 1 16 ; 4* T7*
# of units in DS 2 16 ;4%
activation function ReLU ; tanh*
learning rate le-2
optimizer Adam
RNN** # of LSTM layers 1;2* 10270 ;
# of units in LSTM 1 32; 8% 501*
# of units in LSTM 2 0;2%
bidirectional layer 1 true ; false*
bidirectional layer 2 false; true*®
# of dense layers (DS) 2
# of units in DS 1 4;16*
# of units in DS 2 4;2%
activation function ReLU
learning rate le-2 ; le-3*
optimizer Adam
CNN** # of 2D Conv layers 1 2325
# of filters Conv layer 1 10 ; 30%* 1235%*
filter size 3, 4%
# of dense layers (DS) 2;1*
# of units in DS 1 16 ;2%
# of units in DS 2 16 ; 0%
activation function ReLU ; tanh*
learning rate le-1; le-3*
optimizer Adam ; SGD*

*Different values come from the different training approaches used,
namely random sampling (RS) or sequential sampling (SS). Please,
see Section IIl.C.1 for more details.

**To evaluate the performance during the training, a validation set of
10% out of the data provided in the training set is considered. Each
model is trained for 500 epochs, implementing early stopping if no
improvement in the validation set occurs for more than 50 epochs. The
data is arranged in batches of 128 samples.

tests, we tried also combinations encompassing only past
values, but such trials did not work properly.

D. D Models’ Optimizaiton

The optimization of the hyperparameters’ setting is one of
the most critical steps to take in ML [88]. Depending on the
method used, different ways to optimize the hyperparameters
can be followed [91], [92]. A summary of the models bench-
marked in this study together with their final hyperparameters
is given in Table III. In the Appendix, we also list the search
ranges used to optimize the hyperparameter values.

To optimize the hyperparameters of each model, we resort to
a fivefold cross-validation procedure [93]. Moreover, to fine-
tune the hyperparameters based on their starting values, the
halving grid search and genetic algorithms (Gas) are broadly
exploited in literature specifically to identify the best-suited
NN architecture for a specific task [94].

It is worth mentioning that NNs are often harder to train
than simpler ML algorithms like MLR and SVR. However,
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TABLE IV TABLE V
NSGA-Il SETTINGS PERFORMANCE OF THE IMPLEMENTED ML MODELS
Parameter Value ML MAE  RMSE R? MAE RMSE R?
Population size o model (init.) (init.) (init.) : (calib) (calib) (calib)
Offspring population size 32 Random Sampling
Number of generations 500 MLR 3.66 ppb  5.08 ppb 0.86
Crossover operation Single point SVR 25.21 28.82 -3.46 2.88 ppb  4.35 ppb 0.9
Crossover probability 1.0 RFR ppb ppb 2.81 ppb  4.26 ppb 0.9
MutaFion operat'io'n Integer polynomial Sequential Sampling
Mutation probability 1/# parameters
MLR 322ppb 4.24ppb  0.68
SVR 1746 1826  -498 229ppb 3.52ppb  0.78
RFR ppb ppb 2.97 ppb 3.7 ppb 0.75
they outperform the other approaches in the case of long time
series. To relieve the training effort, NN architectures have TABLE VI
to be as small as possible in terms of parameters, but should PERFORMANCE OF THE IMPLEMENTED NN
still yield good regression scores (R?) for the calibration task. = =
. . NN MAE RMSE R MAE RMSE R
S.n?aller arch}tectu'res are also advanta}geous in terms of pqrta- (init) (init)  (init) (calib) (calib)  (calib)
bility. Esp.eC{ally.ln an edge computing scheme, IoT devices Random Sampling
are often limited in terms of RAM and computing power, thus MLP 336ppb  50lppb 087
preventing the training of large NN architectures. The problem LSTM 2521 28.82  -346  3.16ppb  4.67ppb  0.88
then becomes a multiobjective optimization problem that has CNN___ ppb ppb 3.24ppb 4.75ppb  0.88
to minimize the architecture size (in terms of parameters) and Sequential Sampling
maximize the regression metric (R? score). MLP 253ppb  3.32ppb 0.8
: ) . LSTM  17.46 1826  -498 211ppb 3.19ppb  0.82
Regarding Gas, we choose the nondominated sorting CNN ppb ppb 262ppb  3.43ppb  0.79

algorithm (NSGA-II), which is widely used in recent works.
The NGSA-II is implemented in the jMetalPy’ framework,
which enables the users to design their own individual genome
and fitness functions [95]. Being a heuristic optimization
technique with stochastic components, Gas such as NSGA-II
may generate the same individuals over and over by crossover
and mutation operations. Evaluating the same NN architecture
multiple times can then slow down the convergence of such an
algorithm. Hence, we keep track of individuals who have been
already evaluated, along with their fitness. If a newly generated
individual is present in the set, then the same fitness function
is assigned to it, without retraining the model [50].

The NSGA-II setup conditions used to optimize the NN
models considered in this work are reported in Table IV.

E. Models’ Performance Evaluation

The ML models are evaluated over the test set through
different loss metrics. In regression tasks, the coefficient of
determination R2, the MAE, the mean squared error (MSE),
the root mean squared error (RMSE), and the mean absolute
percentage error (MAPE) are the most common figures to
compare the model output (LCS calibrated measurements)
against the model input (REF measurements from the air
quality monitoring station) [32].

V. RESULTS AND DISCUSSION
A. Calibration Models Benchmark
This section details the calibration performance of the
different methods. We remark that the measurement time series
have been preprocessed as described in Section I'V-A, resulting
in a 1-h averaging window and in using Oz, RHj,, Tin, SR,
and NO, as input features. For training, both RS and SS

7https://github.com/jMetal/jMetalPy

are included in the comparison, with a splitting ratio of 80%
for the training and 20% for the test set. We chose temporal
pivoting [1,1] because it basically yields the same results as
[2,2] or deeper pivoting, but is computationally lighter.

The obtained results are reported in Table V for the ML
models (MLR, SVR, and,RFR) and in Table VI for the NN
(MLP, LSTM, and CNN). All methods are evaluated through
the MAE, RMSE, and R? scores. The initial MAE, RMSE,
and R? obtained on the raw data (i.e., noncalibrated test set
versus reference test set) are also reported in the tables®.

1) ML Model Performance: As a first consideration,
we observe that the calibrations obtained with the RS-based
training are overall better than those obtained with the SS.
Besides the starting correlation R? between O;LCS and
O;REF being higher in the RS case, RS performs better
because, in the SS case, the models are trained mainly during
a period of high O3 concentrations, and then tested when
a notable O3 drop occurs (winter season in the Northern
Hemisphere). SVR and RFR achieve the same calibration
accuracy with the RS splitting, while SVR shows the best
performance with the SS splitting.

Figs. 6 and 7 show the calibration outcome in the case of
SVR with the RS splitting and the SS splitting, respectively.

The initial dataset (noncalibrated data) is reported in
Figs. 6(a) and 7(a), where we recall that RS takes test data
from the whole dataset, whereas SS uses only the last 20%
of the dataset (see Fig. 4). Figs. 6(b) and 7(b) report the

8Tt is worth mentioning that, with longer time series than those analyzed
in this work, it would be possible to evaluate how the ML and NN models’
performance degrades in the long-term (more than two years), which may
lead to different outcomes with respect to the short-term ones.
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calibrated O3;LCS time series, in blue solid line, and the
O;REF time series, in orange solid line, as reference.

Figs. 6(c) and 7(c) show the LR between O;REF and
calibrated O;LCS. While in Fig. 6(c) the alignment of the
data along the bisector line indicates an overall successful
calibration, in Fig. 7(c) only the data representing higher O;
concentrations lie on the line, whereas the LR degrades for
low/intermediate concentrations. Again, the main reason is that
the model is trained during a period of high O3 concentration
and then tested after O3 drops (as is typical for the winter
season of the Northern hemisphere). This point will be further
discussed in Section V-B.

2) NNs Performance: The overall observation about the
worsening of the calibration by passing from the RS to the SS
splitting holds also for the NNs. In this case, the performances
of the three networks are always aligned, with the LSTM
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Fig. 8. LSTM calibration implemented with: (a) and (b) RS splitting

approach and (c) and (d) SS splitting approach. The plots carry the
calibrated O3LCS time series in blue and the O3REF time series as
reference in orange. The LR between O3REF and calibrated O3LCS are
shown for the (b) RS splitting and (d) SS splitting, respectively.

architecture in the lead. However, with an SS splitting, all
three MLP, LSTM, and CNN output a better calibration than
the SVR (best among ML models).

Fig. 8 reports the calibrated O3;LCS time series in the blue
solid line and the O3REF time series in the orange solid line
for the LSTM NN model in both the cases of RS (a) and
SS (b) splitting. The plots on the rightmost part of the figure
represent the LR between O3;REF and calibrated O;LCS.

In this case, the scatter points are aligned to the bisector
line for the RS splitting as well as for the SS splitting. Even if
Fig. 8(c) shows a smaller dispersion then Fig. 8(d), no offsets
are present also in the SS case and the calibration is overall
better than the one reported in Fig. 7(b) and (c).

It is interesting to notice that some sharp overshoot starts to
appear in the final part of the time series, for instance looking
at Figs. 7(b) and 8(b). This might have not physical but rather
an electronic cause. In any event, such localized effect does
not have a remarkable contribution to R?> worsening. For a
matter of comparing the different reactions of the methods
to the small features along the REF time series, in Fig. 9,
we show four plots focusing on the period October 29, 2021 to
November 20, 2021 for the performance of SVR-RS, SVR—
SS, LSTM-RS, and LSTM-SS, respectively.

B. Training Minimization and Convergence Analysis

The focus of this section is to assess the effect of different
SS splitting ratios between training and test sets on the
calibration model’s performance. To do this, the percentage
of the dataset employed for training is varied (simulating a
variation of the length of the calibration period), in order
to mimic a real calibration procedure. In fact, for practical
purposes, the LCSs should realistically be installed close to
a reference station just for a few days/weeks and, once the
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Fig. 10 reports the results of decreasing the training-set Fig. 10. (a) Noncalibrated O3LCS and OsREF time series extended to

duration from the 80% of the overall dataset to the 40%, 20%,
and 10%. The upper panel shows the noncalibrated O;LCS
and the O3;REF time series, where the two additional field
campaign periods have been appended following the merging
procedure described in Section IV-A. The yellow, green, red,
and blue vertical lines represent the SS splitting ratios of
80/20, 60/40, 20/80, and 10/90 between training and test sets,
respectively. The lower panels show the weekly R? trend for
all the above combinations.

As a general comment, we observe that the LSTM per-
formance clearly degrades only in the 10/90 case, whereas
the trends observed in the other cases are practically similar.
Also, all the trials suffer from a dramatic correlation drop
in the first half of October 2021. By focusing on the gray
vertical bar, we observe that concurrently with the first serious
drop of O3 concentration in the time series, only the 80/60
and the 60/40 maintain a reasonably high R? score, as the
models are still being trained at this time. However, this is not
sufficient to counteract what happens within the pink vertical
bar, where R? goes almost to O for all the splitting ratios.
The reason for this behavior is that the Oz concentration
also basically drops to 0, and thus the sensor’s and reference

January 25-February 4, 2022 and February 25-March 25, 2022. (b)—(e)
Weekly averaged R? score trends associated with different SS splitting
ratios, namely, 80/20, 60/40, 20/80, and 10/90.

instrument’s noise floor become predominant. In this particular
time period, the calibration model analyzes two signals with
a completely different physical origin, which are most likely
not correlated at all. In fact, the ThermoSCIENTIFIC 49i
O3 analyzer exploited as a reference instrument is based
on dual cell photometer mainly affected by shot noise and
afterpulsing [96], [97] at full-scale, while the Alphasense OX-
A431 is mainly affected by the electronic noise brought by the
host-board Analogue Front End—A4 [98]. For completeness,
we report that the temperature ranged between 11.26 °C and
32.6 °C whereas the RH ranged between 10.8% and 79.8%
during the field campaign.

From this analysis, we can conclude that, in the case of the
LSTM NN with an SS splitting approach, the splitting ratio
between training and test can be lowered down to 20/80 with
no serious consequences on the calibration expiration over
time.
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On the other hand, it must be noticed that also the classical
splitting ratio 80/20 is not immune to a dramatic R* degra-
dation when strong seasonal effects set in. A more in-depth
analysis on the dependence on the performance on the actual
month in which the calibration is carried out will be explored
in a future work, when a dataset spanning over multiple years
will be available.

The training minimization analysis has been carried out with
the LSTM method, as it yielded the best performance among
all the methods surveyed. Such an outcome is supported by
the fact that nonlinear methods can better capture complex
patterns and relationships from time series. Indeed, time series
often exhibit nonlinear temporal dependencies, which can
be modeled effectively by NNs, for instance. In particular,
deep learning techniques, such as RNNs and LSTM networks,
are specifically designed for sequential data. Indeed, they
can capture intricate dependencies over time, like seasonality,
trends, time-varying drifts, and irregular patterns, which make
them effective for forecasting and anomaly detection tasks.
They can also work with time series of varying lengths, which
is common in practice when irregularly sampled or missing
data points are coming from deployed sensors. Lastly, LSTMs
can be regularized effectively to prevent overfitting, which
is important in time series analysis to ensure that the model
generalizes well to unseen data.

VI. CONCLUSION AND DISCUSSION

This work contributes to pervasive environmental monitor-
ing by means of autonomous LCSs. Nowadays, the scarce
density of certified monitoring stations affects the validity and
pervasiveness of air quality measurements. The time series
obtained from the few stations may only be sufficient to get
to a general overview of the pollution level, but not to sustain
counteracting strategies and policies aimed at improving air
quality. This leads to a need for more affordable solutions for
distributed and continuous monitoring.

One of the main issues limiting the takeover of LCSs is,
however, the low reliability of the sensors themselves and the
fast expiration of their calibration. Many works have already
demonstrated the potential of ML and NNs to cope with such
issues. In our study, we focused on a particular calibration
method that is carried out directly in the field. This aspect
brings the twofold benefit of: 1) speeding up the calibration
procedure and 2) taking into account many environmental
features that are usually neglected during the common prac-
tices. This last feature becomes crucial when we consider
moving the LCSs far apart from the reference site, once the
calibration is accomplished. It is crucial to clarify that any
calibration method needs a sufficient amount of data collected
from co-located certified stations in order to be valid, and no
less than needed to observe/address seasonal variations. In our
study, we aimed to respect this condition while contributing
to the mainstream of making LCSs more accurate, but at the
same time more sustainable for a pervasive adoption, that is
actually hindered by too long-lasting calibration procedures.
In Section V-B, we performed a full analysis of how to
minimize the training time of an LSTM network in order to
achieve a long-lasting calibration with the minimum training

TABLE VII
HYPERPARAMETERS SEARCH RANGES FOR MODELS’ OPTIMIZATION

Model Hyperparameter Range

MLR no hyperparameters

SVR Kernel [radial basis function]
C [lel, 1e2, 1e3, led]
Gamma [le-1, le-2, le-3, 1e-4]

RFR n_estimators [10, 20, 30, ..., 100]
max_features [0.1,0.2,0.3, ..., 1]
min_sampling_split [2,4,6, ..., 20]

MLP # of dense layers (DS) [1,2]
# of units per DS [2,4,8, 16, 32]
activation function [ReLU, tanh, Linear]
learning rate [le-1, le-2, 1e-3]
optimizer [Adam, SGD]

RNN # of LSTM layers [1,2]
# of units per LSTM layer [2,4,8,16,32]
bidirectional layer flag [1,2]
# of dense layers (DS) [1,2]
# of units per DS [2,4,8,16,32]
activation function [ReLU, tanh, Linear]
learning rate [le-1, le-2, 1e-3]
optimizer [Adam, SGD]

CNN # of 2D Conv layers [1,2]
# of filters per Conv layer [10, 20, 30]
filter size [2,3, 4]
# of dense layers (DS) [1,2]
# of units per DS [2,4,8,16,32]
activation function [ReLU, tanh, Linear]
learning rate [le-1, le-2, 1e-3]
optimizer [Adam, SGD]

effort. We showed that when strong seasonal effects set in,
no splitting ratio is immune to calibration degradation, not
even the classical 80/20. On the other hand, our analysis
suggested that almost all splitting ratios surveyed (except
10/90) recover reasonable correlation values after the low O3
concentration period occurred at the beginning of October.
We have quantified the calibration degradation through the
weekly average of R?. Such a metric is more explanatory than
reporting a single R? value, independently of the length and
the splitting of the dataset. Indeed, by looking at the weekly
evolution of the correlation between the corrected LCS and
REF time series, we can assess whether the calibration has
gone below a threshold value, thus becoming unacceptable.
Otherwise, by looking only at the cumulative R? value, it could
likely be that such patterns are averaged out. We concluded
that a 20% training—80% test in an SS splitting scheme can
give satisfactory results in terms of calibration durability.
Practically, we showed that also small training/test splitting
ratios can recover acceptable R? performances, while even the
biggest splitting ratios are not immune to R? disruption when
dramatic seasonal effects onset.

Our analysis has been carried out in line with the best prac-
tices described in many foundational works (see Section II).
This allowed us to identify the LSTM as the best model for
calibrating our sensors together with its optimal hyperparame-
ters. The parametrization approach followed for evaluating the
performance of different training versus test splitting ratios is
also compatible with other relevant studies in the field.

Even if we considered only the case of an O3;LCS, the
results obtained here can be extended to many other sensing
devices and lay the foundation for an effective and on-the-fly
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implementation of ML-based calibration methods for LCSs.
This opens to further developments and applications, such as
LCSs’ aging prediction, drift compensation, and calibration
model transfer among similar sensors.

APPENDIX

In Table VII, we report the search ranges wherein the
hyperparameters of the models tested in this work have been
swept.
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