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Abstract—The article describes design principles of sen-
sorless observing and control system of electrical sub-
mersible pump (ESP)’s induction motor based on dynamic
state estimation using an unscented Kalman filter (UKF). The
artificial lift method with electrical submersible pumps in
the oil industry is associated with measurements of tech-
nological parameters from which oil fluid flow rate is one
of the most important. To develop sensorless control and
parameters observing system, the design principles of flow
rate observers were proposed. The main possible scenarios
for flow rate observation are considered, including those
using surface-mounted sensors. This article also considers
issues relating to the limitations in flow rate observation by
usage pump catalog characteristics, involving control elec-
tric drive test signals changing the pump rotational speed.
Overcoming these problems is proposed for the electrical submersible pump’s flow rate observing system based on
a machine-learning model. The simulation results using a complex electrical submersible pump model confirming the
efficiency of the proposed methods are provided.

Index Terms— Electrical submersible pump (ESP), induction motor, sensorless control and parameters observing,
submersible electrical motor (SEM), unscented Kalman Filter (UKF).

I. INTRODUCTION

FOR ELECTRICAL submersible pump monitoring the
data from telemetry systems that process information

about pressure, temperature, vibration, cable insulation resis-
tance, and other technological processes parameters to ensure
stable operation, control, optimization, and for real-time deci-
sion making are used [1].

Nowadays, the largest produced oil share is obtained by
means of electrical submersible pumps (ESPs) [2], [3], [4]. All
information collected from the surface and underground ESP
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parts can be used to optimize the ESP operation processes and
determine its technological parameters.

An important factor is to increase the oil production pro-
cess’s economic efficiency, which can be achieved on the basis
of information from a variety of sensors. The oil production
process’s economic efficiency is especially relevant during
low oil price periods [5], [6], [7], [8]. Recently, there is an
anomaly in the oil cost behavior on the trading floors. Thus,
in May 2020 for the first time in history, the oil cost has fallen
below zero. Also for the first time, the correlation between the
oil prices and the COVID-19 pandemic was deduced. In the
future, it is possible that such scenarios will be repeated.
ESP control methods improvement to solve the oil production
process economic efficiency increasing challenge is one of the
key factors of the oil-producing companies competitiveness’
rising in the energy resources market. Thus, this task is actual
for the researchers.

When planning the technological modes of an oil- and gas-
producing enterprises, an important objective is the energy
consumption assessment of the electrical complex equipment.
Most of the electrical and mechanical equipment operates in
nonnominal modes, respectively, this equipment has nonnom-
inal operating parameters [9].

At present, the nature of energy consumption is insuf-
ficiently taken into account in managing energy resource,
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which requires the solution of the mathematical description
and synthesis of energy and technological models as the basis
for assessment of the current state and the required increase
in the energy efficiency of whole enterprise [10].

Nowadays, telemetry systems are used to monitor the ESP
technological parameters, which consist of both the surface
part and the underground part. The underground part of
telemetry systems is located in an aggressive environment,
where at any time an unpredictable event can damage the
measuring instruments [11], [12], [13]. Accordingly, such con-
ditions affect the instruments’ service life. Besides, in the most
common telemetry systems design, where dc communication
signal is transmitted over the three phases, there is no tolerance
to single-line-to-ground fault that could damage the downhole
telemetry electronics. One of the sensors’ failures can lead to a
critical situation in which the operator will not have sufficient
information to reconstruct the entire technological process
picture. Damage of submersible measuring devices is usually
accompanied by its uninstallation. This process is undesirable
because it is expensive and time-consuming: the well suffers
a loss of production rate, and expensive equipment is required
to lift and then lower the ESP (all this operation can take
several days) [14], [15]. Due to the described disadvantages,
it is desirable to reduce the usage of measuring devices to
a minimum [16], [17], which will increase the reliability of
the entire installation [18]. This can be achieved through the
use of indirect methods for evaluating the ESP technological
parameters.

ESP consists of a large number of different elements.
The greatest interest from the ESP control point of view is
the submersible electrical motor (SEM) [19]. In the electric
drive theory, state observers, which are usually used not only
to estimate the electric motor internal variables but also to
estimate shaft mechanism variable states have found their
application [20], [21], [22], [23], [24]. From this point of
view, it is possible to assess the ESP underground param-
eters without using additional measuring equipment, from
parameters obtained from the frequency converter current and
voltage sensors, or from a measuring system that includes
measuring phase voltages and currents after the transformer
with specialized sensors such as Hall effect current and voltage
transducers.

A variety of different estimators are used to estimate the
electric motor state variables, which can be divided into
measuring ones and based on the motor electromechanical
processes. The measuring estimators’ operation principle is
to use motor properties magnetic inhomogeneity. Recently,
measuring estimators using the method of high-frequency
injection have been very popular in [25], [26], and [27].
At the same time, these estimators cannot be used in the
case under consideration, since the use of these estimators
implies hardware and software intervention in the frequency
converter. Estimators based on electromechanical motor pro-
cesses include motor reference adaptive systems (MRAS) and
observers based on the Kalman filter. The MRAS estimation
accuracy directly depends on the motor parameters setting
accuracy [28]. At the same time, the cable line resistance,
which is an unknown parameter, has to be taken into account

Fig. 1. ESP sensorless control and parameters observing system block
diagram.

in the SEM model. Therefore, the MRAS estimator application
is not an optimal solution. In turn, the Kalman filter allows
for estimating the cable line resistance value by including it
in the ordinary differential equation (ODE) system describing
the SEM [29].

The flow rate is the ESP’s main parameter. Nowadays,
the well flow rate is widely measured with automated group
metering units. At the same time, the well flow rate is
measured discretely with a long time interval, which can
lead to ESP emergency conditions’ untimely identification.
Therefore, there is a need to use algorithms to measure the well
flow rate with less discreteness. Since the developed system is
sensorless, it implies the use of indirect methods for assessing
the flow rate using a digital ESP model.

II. ESP COMPLEX MODEL

To build a complex ESP model, it is necessary to use
mathematical and simulation models of the ESP parts. The
developed ESP complex model includes the following ele-
ments: SEM mathematical and imitation model with a vector
control model; electric centrifugal pump imitation model;
transformer imitation model; cable line imitation model, and
mathematical model of fluid flow to the bottom of the well.

Fig. 1 shows the block diagram of the developed ESP
sensorless control and parameters observing system. In this
case, the input signal will be the ESP flow rate q.

Legend: FRR—flow rate regulator; SR—speed regula-
tor; CR—current regulator; CCB1. . .3—coordinate conversion
blocks; UKF—Unscented Kalman Filter; TO—SEM electro-
magnetic torque observer; FROS—ESP flow rate observing
system; IM—induction motor.

ESP control is carried out using a flow rate regulator, a vec-
tor control system for an induction submersible motor with
internal speed and current control loops, an unscented Kalman
Filter (UKF), an SEM electromagnetic torque observer, and
an ESP flow rate observing system. The desired flow rate is
maintained at the expense of the flow rate regulator, which
compares the target flow rate with the flow rate received from
the flow rate observing system and, if necessary, generates
a reference for the speed ωref. The speed regulator generates
the current reference Iref to the current regulator. The current
regulator forms the stator voltage vector US and transfers
it to the windings of the submersible induction motor. The
projections of stator voltage US and stator current IS on
the αβ-axis are used by UKF to estimate motor variables.
The torque observer uses stator flux linkage 9̂ S and stator
current Î S to estimate electromagnetic torque Te. The speed
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Fig. 2. Γ-shaped equivalent circuit.

ωr (ωr = ω · z p—electric rotor speed, where z p—number of
pole pairs) and the electromagnetic torque Te are the input
parameters of the flow rate observing system, which estimates
the ESP flow rate current value.

A. SEM Mathematical and Imitation Model
In the ESP selected for modeling, the SEM is represented

by an induction motor. The IM model assumes taking into
account the processes occurring in the motor. For this, it is
necessary to take into account the relationship between the
electromagnetic and electromechanical processes occurring in
the IM. To account for these processes, models of the IM
electrical and mechanical parts are required. The electrical
part model is based on the IM electromotive force (EMF)
equilibrium equation. The electric motor mechanical part is
described by an equation that takes into account the action of
the torques on the shaft. The IM equivalent circuit is used to
research transient and steady-state operating modes, and the
given equivalent circuit parameters can be used when adjusting
the control system regulators. In many sources [30], [31], [32],
when synthesizing current and speed regulators of the vector
control model, the IM 0-shaped equivalent circuit parameters
are used (Fig. 2).

Fig. 2 contains the following parameters 9⃗R—rotor flux
linkage vector, RS—stator resistance, RR—rotor resistance,
L M —mutual inductance, Lσ —leakage inductance, I⃗ S—stator
current vector, I⃗ R—rotor current vector, and I⃗ M —mutual
current vector.

Dynamic equilibrium for the 0-shaped equivalent circuit is
represented by the stator and rotor equations in vector form
reduced to a stationary stator

U⃗ S = RS · I⃗ S +
d9⃗ S

dt
(1)

U⃗ R = 0 = RR · I⃗ R +
d9⃗R

dt
− jωr · 9⃗R (2)

where U⃗ R—rotor voltage vector.
The best way to write dynamic equilibrium equations for

the IM vector control system regulators synthesis is their
representation in a rotating coordinate system with the stator
current projection orientation along the rotor flux linkage

Lσ

d I⃗ S

dt
= U⃗ S − (RS + RR + jω1 · Lσ ) · I⃗ S

−

(
jωr −

RR

L M

)
· 9⃗R (3)

Fig. 3. IM vector control system functional diagram.

d9⃗R

dt
= RR · I⃗ S −

(
RR

L M
+ j(ωr − ω1)

)
· 9⃗R (4)

where ω1—the d-q coordinate system angular velocity
rotation.

In a rotating coordinate system d-q, which has the same
angular rotation velocity as the rotor flux linkage vector,
the vector equation (3) will be written in the following
form [21], [33]:

Lσ

d ISd

dt
= USd − (RS + RR) · ISd − ω1 · Lσ · ISq

+
RR

L M
· 9R

Lσ

d ISq

dt
= USq − (RS + RR) · ISq + ω1 · Lσ · ISd

+ ωr · 9R .

(5)

To describe the IM model mechanical part, the torques
acting on the IM shaft are used

dω

dt
= −

C · ω

J
+

Te − TL

J
(6)

where ω—rotor mechanical angular speed, Tå—IM electro-
magnetic torque, TL—resistance torque, C—friction factor,
and J—moment of inertia.

To ensure sufficient reliability of sensorless parameters
observing and accurate control of the ESP, it is necessary
to solve the control system synthesizing problem. To solve
this problem, an imitation model of the electric motor control
system is required as a complex ESP model part.

The ESP SEM control method significantly affects the
robustness and accuracy of the sensorless SEM control system.
This is largely due to the nature of the load torque on
the IM shaft, which has a variable character with zones of
underload and negative moments. As shown in [33], [34], and
[35], electric motor vector control has a better performance
compared to scalar control when using sensorless methods of
IM control, therefore it will be considered further. The IM
vector control system functional diagram is shown in Fig. 3.

To orient the rotating coordinate system and perform coor-
dinate transformations (Fig. 3), information about the rotor
flux linkage vector angular position is needed, which can
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TABLE I
INDUCTION MOTOR IMITATION MODEL PARAMETERS

be calculated by various methods. In the developed system
a simple rotor flux linkage observer, based on (2) and (4)
and using the stator flux linkage projection on the axes αβ,
obtained by UKF.

When calculating the rotor flux linkage, a constant compo-
nent accumulates [33], which leads to a bias in the result. This
is called the direct integration problem [36]. The following
formulas are used to calculate the rotor flux linkage vector. The
differential equations are represented in the complex domain

9Rα =
(USα − ISα · RS)

s + 1
− Lσ · ISα

9Rβ =
(USβ − ISβ · RS)

s + 1
− Lσ · ISβ .

(7)

The developed vector control system model was investigated
by simulation. The submersible induction motor parameters
used in the imitation model are presented in Table I.

B. Electric Centrifugal Pump Imitation Model
When simulating an ESP, it is also necessary to take into

account the main part of the ESP, i.e., electric centrifugal
pump. Unlike most technological objects, the description of an
electric centrifugal pump using a differential equations system
contains some fundamental difficulties. First, the differential
equations system describing an electric centrifugal pump con-
tains a large number of uncompensated nonlinearities. Second,
this approach is not universal, since the differential equations
system will correspond to only one specific pump [37], [38],
[39]. Accordingly, the use of such an approach is undesirable
in the system being developed.

A possible approach to building an electric centrifugal pump
simulation model is to describe the pump by its technological
and frequency characteristics. Such information is always
contained in the pump passport. Most pump manufactur-
ers provide this information for a 1- or 100-stage pump.
It should be noted that the type of pump characteristics remains
unchanged for any number of stages, only the dimension of
the axes on the graphs changes [40].

Regarding the electrical centrifugal pump imitation model
developed in the MATLAB Simulink software environment.
The model also contains the model of an SEM presented by
IM, well, transformer, cable line, and pumping pipes models.
The system works as follows—voltage from the transformer
model goes to the cable line, from the cable line voltage is
supplied to the motor winding, the SEM spins up, transferring

TABLE II
SIMULATION RESULTS COMPARATIVE CHARACTERISTICS

rotational motion to the electric centrifugal pump, and the
pump starts pumping oil liquid out of the well.

The adequacy of the simulation results was verified against
measurement results obtained from a well operating the same
pump (Novomet VNN5-30 [41]) with the number nst = 135 of
stages and with the density of the oil liquid ρ = 974 kg/m3.
Table II provides a comparison of real and simulated data—
SEM speed, SEM torque on the shaft, and pump capacity (flow
rate).

Based on the results obtained in Table II, it can be con-
cluded that the simulation results are close to real ones. Some
inaccuracy in the simulation result is due to the fact that during
the ESP operation, some element parameters could change
slightly.

III. SYNTHESIS OF UKF AND THE SEM TORQUE
ESTIMATOR

To use the flow rate estimation algorithm, which is intro-
duced further in the article, it is important to know the
mechanical power, produced by the SEM, and this turns out to
be a big problem. SEM placed in an aggressive environment
and has strict restrictions on construction capability, with this
set of conditions, placement of speed and torque sensors is
very difficult and sometimes impossible, even if there is a
possibility to place it, there is a problem of transmitting
the information. The downhole part of ESP has only one
communicational channel, which is tied to the neutral wire.

This way, the described problem translates into the design
of SEM state estimators, which should give speed and elec-
tromagnetic torque as outputs. The sphere of electric drives is
always in seek of new ways of estimating the motor states,
based on a set of traditional, high-performance estimators
which are used in a lot of control applications. The essence of
these types of estimators is to find an adaptive law (commonly
it is a PI-controller) [4], which adapts the rotor model,
by tuning the mechanical speed parameter. All observers of
this type require knowledge of voltage, applied to the stator
winding. With application to a submersible pump, there is a
problem, due to a long cable line, across which voltage drop
appears. In most cases, ohmic resistance is significantly higher
than stator resistance, so the direct calculation of electromag-
netic torque is met with difficulties. To use surface voltage
measurements, the cable line resistance should be accounted
for, which cannot be directly measured in the operating mode.

Since the induction motor is a nonlinear system, described
by five states, a linear Kalman filter cannot be used. The
classical and very popular approach for Kalman filter design
for induction motor is linearizing the system about the point of
current estimate, which is the extended Kalman Filter (EKF).
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Usage of EKF gives good enough results to include it in
the conventional IM control strategies, such as field-oriented
control, direct torque control, or scalar control. In comparison
with the EKF, UKF does not require the linearization step,
which can cause poor and sometimes unstable performance
in applications with low-cost microprocessor units [42], [43].
UKF has better properties on convergence, and recovery and
gives more optimal results in the sense of estimate variance
minimization [44]. In the scope of the ESP system, UKF
was chosen as an estimator for several reasons. ESP system
has strong nonlinearities, regarding the SEM angular velocity
and load torque and UKF handles nonlinearities in the more
“proper” way by applying an unscented transform, which in
the case of the nonlinear system results in the more accurate
state estimate. Despite the computational complexity of UKF
which lies in the predict step (integration of ODEs 2n + 1
times, where n is the system’s order), it is still not as
computationally heavy as other methods which proven their
reliability in the state estimation of nonlinear system, such as
moving horizon estimator or the particle filter.

The algorithms and methods for sensorless SEM control
involve observing the SEM parameters, such as the SEM
shaft rotation speed and the torque on the SEM shaft. The
electric motor rotation speed ensures optimal fluid withdrawal
from the well by maintaining the required dynamic fluid level.
In addition, it is necessary to know the torque on IM the shaft,
since it helps in solving the problem of estimating the virtual
well flow rate.

Thus, to solve the problem of sensorless SEM parameters
observing and control, in the system, it is necessary to provide
the following state observers’ software implementation: the
UKF to observe the SEM shaft rotation speed and the observer
of the torque on the SEM shaft. In this case, it is necessary
to take into account the influence of the cable line across
which the unmeasured voltage drop appears. And to get precise
voltage drop estimation it is unwelcome to account for cable
line resistance as some specific constant value from passport or
field tests. Because the actual value of ohmic resistance varies
in the range of tenths from the measured value, this inaccuracy
can cause undesired fluctuations in estimated parameters, the
value of which may not reflect the actual operating state of
the ESP. Besides the ohmic resistance, the model of the cable
line also includes reactance in the form of capacitance, the
value of which is considered to be approximately 10−9 F/m,
and this value does not differ by more than one order in the
majority of cases. It should be noted, that the Kalman filter
only account for the active part of the electrical impedance,
this decision was made because of the satisfactory results of
parameter estimation with admitted simplification.

A. UKF Synthesis With Application to SEM
UKF uses a system of the first-order stochastic differential

equations and a set of discrete-time observables, which can
be generally described with the expressions given in the
following:

d
dt

x(t) = f(x(t), u(t), t; β) + wd(t)

zk = h(x(tk)) + nk (8)

where x—state of the system, u—control input, zk—the mea-
surement at the kth iteration, β—system parameters, wd—zero
mean white process noise; and nk—observation measurement
noise at the kth iteration. With application to the SEM,
dimensionalities are: xk ∈ R8

; zk ∈ R2
; uk ∈ R3.

In the ESP modeling section, the induction motor was
described with the use of the 0 model in the stator reference
frame αβ. It is possible to represent the induction motor
model using only stator variables, this representation gives
a positive impact on the Kalman filter performance, caused
by the presence of more variables that are coupled with
control inputs, this implementation ensures the accuracy of
the integration step. The transition from rotor flux linkage
to the stator is accomplished with the use of the following
expression:

9⃗R = 9⃗ S − Lσ · I⃗ S. (9)

Substitution of this expression into the stator equilibrium
equations results in the first-order ODE for stator current in
space-phasor form, without explicit use of rotor flux linkages

Lσ

d I⃗ S

dt
= U⃗ S −

(
RS + RR + jωr · Lσ −

RR · Lσ

L M

)
· I⃗ S

+

(
RR

L M
− jωr

)
· 9⃗ S. (10)

The decomposition of gotten expression into αβ compo-
nents results in two differential equations for the UKF. The
following two states are the stator flux linkages, which are
described by stator equilibrium equations with one modifica-
tion in them. Since voltage drop appears not only on the stator
winding but also across the whole cable line, it is necessary to
add submersible line resistance to the stator resistance. Note
that line resistance is not just a parameter, it is the new state
of the system, described by a differential equation, which
implies that cable resistance does not change over time. The
description of induction motor concludes with the modeling
of the mechanical part, which reflects the relationship between
mechanical shaft rotational speed, electromagnetic torque, and
load torque [reference to (10)].

Load torque comes directly from the break horsepower
expression (BHP), which is the mechanical power, required
to drive the pump and can be expressed as a product of
electromagnetic torque and mechanical rotor angular speed.
ESP units come with catalog characteristics, which describe
head, BHP, and efficiency (ratio of mechanical and hydraulic
powers). Catalog characteristics come as a family of curves,
to describe these characteristics in a function form, polynomial
interpolation is accomplished. By using affinity laws and
polynomial interpolation between points, gathered from a
catalog, the function of the following form may be achieved:

BHP(ω, qop) =

N∑
n=0

[
an ·

(
qop

ωref

ω

)N
]

·

(
ω

ωref

)3

(11)

where an—polynomial coefficient and qop—production flow
rate at the operating point.

Dividing this function by mechanical rotor speed results
in the direct expression for load torque. Which comes in the
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form of the following polynomial (this polynomial realistically
enough describes pump and compressor load):

TL(ωr ) = k0 + k1ωr + k2ω
2
r . (12)

Expression (12) describes the load torque of a pump in
a range of operating angular velocity values, except for the
“shut-down” mode of an installation. The divergence of esti-
mated load torque values depends on the accuracy of BHP
polynomial which gathered either from catalog characteristics
or by means of interpolation on the test data set.

Two coefficients (k1 and k2) of the presented polynomial
define the value of the load torque depending on the current
value of the angular velocity value, so it can be used to
describe the transients in the load. Subsequent reasonings are
based on the proportional dependence between load torque
and angular velocity rates of changes, which implies neglect
of flow dynamics [45]. By taking the time derivative, following
expression obtained:

dTL

dt
=

dTL

dωr

dωr

dt
= (k1 + 2k2ωr )

dωr

dt
. (13)

In this way proportional relationship of rates of change
defined with an affine function. At time reaching steady-
state condition, proportionality constant converges at a specific
value by taking this into account it is possible to make
zeroth-order approximation and consider this variable as pseu-
doconstant cp, which then can be included in the system of
ODEs for the Kalman filter. With made assumptions in mind,
the system of nonlinear ODEs for UKF will take the following
form, as in (14), shown at the bottom of the next page.

B. Unscented Transform
The unscented transform (UT) is the essence of the UKF,

which allows computing mean and covariance of sigma points,
transformed by a nonlinear vector field. The idea behind this
algorithm is to pass a set of sigma points (Gaussian random
variables) through a nonlinear function and then by utilizing an
UT get weighted mean and covariance as the output, which
characterizes a new prior estimate of the system. There are
many algorithms for the implementation of UT transform,
which define how many sigma-points to pass, how to pull
out these points from the Gaussian distribution, and how to
estimate mean and covariance of a transformed set. In this
article, general UT is used, which was originally established
by Rudolph Van der Merwe in his Ph.D. thesis [46] and since
then used in many scientific and industrial applications. A set
of equations that define sigma points for general UT are given
in the following:

χ i =


x̂k, for i = 0

x̂k +

[√(
n + λ

)
Pxk

]
i
, for i = 1, . . . , n

x̂k −

[√(
n + λ

)
Pxk

]
i−n

, for i = n + 1, . . . , 2n

(15)

where n = 8, according to (14); i th and (i–n)th subscripts
indicate the corresponding column of the matrix square root;
λ—parameter, which defines the spread of the sigma points
around the mean estimate x̂k , defined as follows:

λ = α2(n − κ) − n (16)

where α and κ are primary and secondary scaling parameters,
correspondingly.

Each point has two weighting coefficients that are used
for mean and covariance computation, zeroth sigma point has
different weights for the mean and covariance computation,
and the rest of the points got the same weights for both of the
statistical moments

wm
0 =

λ

n + λ

wc
0 =

λ

n + λ
+ (1 − α2

+ β)

wm
i = wc

i =
1

2(n + λ )
(17)

where β evaluates the significance of the incorporation of the
prior knowledge of the mean distribution x.

These parameters are then used in predict and update steps
of the UKF

Y = f(χ)

x̂−

k =

2n∑
i=0

wm
i Y i

P−

xk
=

2n∑
i=0

wc
i (Y i − x̂−

k )(Y i − x̂−

k )T
+ Q.

(18)

To get a transformed set of sigma- points Y , each of the
prior sigma points should be passed through the Runge–Kutta
integration scheme, which integrates equations described ear-
lier (14)

Z = h
(
x̂−

k

)
µz =

2n∑
i=0

wm
i Z

y = z − µz

Pz =

2n∑
i=0

wc
i (Z i − µz)(Z i − µz)

T
+ R

K =

[
2n∑

i=0

wc
i (Z i − x̂−

k )(Z i − µz)
T

]
P−1

z

x̂k = x̂−

k + Ky
Pxk = P−

xk
− KPzKT

(19)

where Z—set of prior states, transformed by the measurement
function h, which in the case of the induction motor is
linear, and can described in the matrix form, shown below;
µz—weighted mean of sigma-points converted into measure-
ments; z—measurements vector; y—residual; and Pz and
Pxk —covariance matrices

H =

[
1 0
0 1 02×6

]
. (20)

The actual measurement vector consists of three compo-
nents: a, b, and c stator currents, gathered from current
sensors. In the sphere of electric drives, it is conventional
to transform three-phase measurements into two-phase equiv-
alent, which results in simplification of the measurement
matrix. However, the noise has to be considered, which is
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introduced by each of the sensors and there are three of
them. Transformation of three-phase noise into two-component
equivalent noise, performed with the use of definition for
measurement uncertainty, which reflects the behavior of noise,
introduced in measurements

VAR(Tαβnk) = E
[
(Tαβnk)(Tαβnk)

T ]
= E

[
TαβnknT

k T T
αβ

]
= TαβE

[
nknT

k

]
T T

αβ (21)

where Tαβ—Clarke transform matrix of size 3 × 2. By assum-
ing that sensor measurements are uncorrelated the following
expression for matrix R appears, in terms of variance, that
characterizes white noise nk :

R = Tαβ

 σ 2
a 0 0
0 σ 2

b 0
0 0 σ 2

c

T T
αβ (22)

where σ 2
a , σ 2

b , and σ 2
c —noise variance terms for each of the

three current sensors.
Implementation of UKF was accomplished in the

Simulink environment. To implement update-predict steps,
the “MATLAB function” block was used. The submersible
cable line was modeled as a series RL-branch, with an ohmic
resistance of 1.47 � and inductance of 1.5 mH, line parameters
are the same for each of the phase.

The predict and update step of the Kalman filter uses
covariance matrices Q and R to parametrize system and
measurement noise. Determination of the R matrix can be
done experimentally, by investigating variations for three-
phase measurement current. (Consider filtered signal as a
mean, and then come to variance calculations).

The design process of the Q matrix depends on the
noise source (we assume that noise entering system directly
from voltage measurements), in the case of induction motor
noise introduced with voltages, which can be determined as
uncertainties in generated control inputs or the measurement
noise coming from voltage sensors. Either way, the equations
describing the Q matrix have the same form, since noise has

the same entries to the system (via voltages). Noise entry
matrix L has the following form:

L =


1

L Sσ
0 1 0

0
1

L Sσ
0 1

∣∣∣∣∣∣∣ 02×4


T

. (23)

With a presence of noise entering the system through matrix
L, the system of ODEs will look as follows:

d
dt

x(t) = f(x(t); β) + L
[

(uSα + ũSα)

(uSβ + ũSβ)

]
(24)

where ũSα and ũSβ—sensor noise in αβ reference frame.
With a knowledge of matrix L, it is possible to find the

covariance matrix Q by definition

Q = E
[
(LũSαũSαβ)(L ũSαβ)T ]

= E
[
LũSαβ ũT

SαβLT ]
= LE

[
ũSαβ ũT

Sαβ

]
LT . (25)

By assuming that measurement noise from individual volt-
age sensors is independent, expected value will take form of
a diagonal matrix Q̃ with a noise variance of each sensor on
the diagonal

Q̃ =

[
σ 2

uSα
0

0 σ 2
uSβ

]
(26)

where σ 2
uSα

and σ 2
uSβ

—variance of noise measurement in αβ

reference frame. As a result of noise discretization and reduc-
tion of (26), matrix Q will look as follows:

Q =



σ 2
uSα

1t2

(σ L S)2 0
σ 2

uSα
1t2

σ L S
0

0
σ 2

uSβ
1t2

(σ L S)2 0
σ 2

uSβ
1t2

σ L S
σ 2

uSα
1t2

σ L S
0 σ 2

uSα
1t2 0

0
σ 2

uSβ
1t2

σ L S
0 σ 2

uSβ
1t2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
04×4

04×4 04×4


.

(27)

d
dt



ISα

ISβ

9Sα

9Sβ

ω

RSl

TL

cp


=



(
RR

L M
−

RS + RSl + RR

Lσ

)
· ISα − z p · ω · ISβ +

RR · 9Sα

L M · Lσ

+
z p

Lσ

· ω · 9Sβ +
USα

Lσ

z p · ω · iSα +

(
RR

L M
−

RS + RSl + RR

Lσ

)
· ISβ −

z p

Lσ

· ω · 9Sα

+
RR · 9Sβ

L M · Lσ

+
USβ

Lσ

−(RS + RSl) · ISα + USα

−(RS + RSl) · ISβ + USβ
3z p

2J
·
(
9Sα ISβ − 9Sβ ISα

)
−

C
J

· ω −
TL

J
0

cp

(
3z p

2J
·
(
9Sα ISβ − 9Sβ ISα

)
−

C
J

· ω −
TL

J

)
0



(14)
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In either way, with the noise coming from the uncertainty
in control action or from the voltage measurements, the
parametrization of Q matrix is defined by the variance of the
noise introduced in the signal.

For the voltages which come in the form of measurements,
the determination of noise variance comes down to the exper-
iment of applying a constant voltage to a motor winding.
Then with a basic data analysis method variance of the noise
for each voltage sensor can be determined. By applying the
same transformation as in (22) to voltages, variance in αβ

reference frame can be found. Also, in the same experiment
noise parameters for current measurements can be determined.

For the voltages which come in a form of control action
there is no intuitive methods for determining the variance,
since it covers modeling uncertainties, which are hard to
define. In this case, variance values could be determined
iteratively via a series of experiments until the satisfactory
performance of the filter is reached. Or there is also methods
which use adaptive and optimization approach for tuning Q
[47], [48]. In a lot of works dedicated to the investigation of
Kalman filter with application to induction motor, just use of a
diagonal matrix Q seems to give good results [29], [42], [43].

Measurement noise matrix is (with the same variance for
each state: 0.5 (A)2)

R = diag
[

0.33 (A)2 0.33 (A)2 ]
. (28)

The choice of initial P covariance matrix builds on the
assumption that the motor was in the idle state that said no
voltage was applied to the stator winding. This assumption
results in diagonal terms of P being close to zero

Pxk = diag
[
(0.1/3)2 (A)2 (0.1/3)2 (A)2

(0.01/3)2 (Wb)2 (0.01/3)2 (Wb)2

(0.01/3)2 (rad/s)2 (0.5/3)2 (Ohm)2

(0.01/3)2 (N·m)2 (1/3)2]. (29)

The following diagonal elements of matrix P were chosen
via three standard deviations, which is the value by assuming
the state to be with the probability of 99.7%, then dividing
this value by three and rising it to the second power gives
variance of the following state.

To prove the viability of the theory given above, three ESP
operating state scenarios were considered:

1) static operating point at four standard angular velocities,
determined by the range of operating frequencies in the
manufacturer catalog;

2) step-down change of operating point;
3) variations of cable line ohmic resistance at static ESP

operating point.

C. UKF Performance Given Static Operating Point
Condition

The aim of this scenario is to give the UKF a test of typical
ESP operational conditions (from startup to steady state) on
a range of standard operating frequencies. Line resistance is
initialized as 1 �, while the real is 1.47 �.

The submersible cable line estimated ohmic resistance is
shown in Fig. 4. It should be noted that the cable line is

Fig. 4. Results of estimating submersible cable line ohmic resistance
with UKF.

modeled with reactance taken into account in the form of
capacitance. The real ohmic resistance has a value of 1.47 �,
and the output of the UKF converges at the value, which is
slightly higher.

Generally, in all the considered scenarios the estimated
stator currents have the same change compared to the mea-
surements. High-frequency noise introduced with the current
sensors is attenuated because of the low-pass action, intro-
duced by the Kalman filter (Fig. 5). Regarding the stator
flux linkages, they are evaluated with consideration of ohmic
cable line resistance, which results in more accurate estimates
compared to the “stator model” based estimation technique.

The simulations were performed at the set of operating
points, determined with the range of operating frequencies,
given in the catalog characteristics. Thus, the low-speed oper-
ating point corresponds to an operating frequency of 35 Hz
and high speed to 80 Hz. Estimated angular velocities with
corresponding ground truth and their root-mean-square error
(RMSE) are given in Fig. 5.

Estimated load torque and the pseudoconstant cp, describing
load dynamics are shown in Fig. 6. Approximations made
result in the lag of estimated load torque compared to the
real, but approaching steady state it gives a very accurate
estimation of the on-shaft load, this can be seen from the
evaluated RMSE, given in Fig. 6.

D. UKF Performance Under Condition of Operating Point
Change

With the control system design goals (flow-rate regulation)
it is necessary to test the UKF performance under operating
point change conditions. The test has proceeded as follows:
pump startup; reaching steady-state conditions for one operat-
ing point; at the ninth second of simulation change of operating
point is accomplished from 50 to 35 Hz; reaching steady
state for the second operating point. Results are presented
in Fig. 7.

E. UKF Performance Under Condition Cable Line Ohmic
Resistance Change

To analyze the performance of the proposed Kalman filter,
it should be tested under conditions of sudden resistance
change, despite the introduced cable line ohmic resistance
variations related to the emergency state of ESP. During
the simulation, cable line ohmic resistance was subjected to
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Fig. 5. Results of estimating SEM parameters with UKF. The left part shows both stator currents and fluxes, estimated currents are compared with
measurements. The right part shows results of estimating angular frequency at the recommended operational range and RMSE to ground truth for
each of the operating points.

Fig. 6. Results of estimating load-determining parameters with UKF. The left part shows estimated and ground truth load torques with RMSE for
set of operating points. The right part shows results of estimating pseudoconstant cp.

resistance change multiple times: resistance drop, resistance
recovery, and resistance rise. Results are presented in Fig. 8.

F. Observer of Electromagnetic Torque on SEM Shaft
Consider an observer of the electromagnetic torque on the

motor shaft—this object performs the task of evaluating the
current torque on the motor shaft. First, the observer under
consideration is required for the well flow rate observing
system implementation. Second, the torque observer reduces
the ESP cost, since torque sensors are expensive equipment.

Since the SEM in the developed system is represented by
the IM, some used formulas have already been prescribed in
the vector control system synthesis. To implement the torque
observer, first of all, it is necessary to pass to the IM stator
model in a fixed coordinate system αβ [32], [33]. First, write
down the equilibrium equation of the stator winding (1) in a
slightly modified form, as well as the equations of the vector

ratio

9⃗ S =

∫ (
U⃗ S − RS · I⃗ S

)
dt (30){

9⃗ S = (Lσ + L M) · I⃗ S + L M · I⃗ R

9⃗R = L M · I⃗ S + L M · I⃗ R .
(31)

By transformations, obtain the following equation describ-
ing the rotor flux linkage through the stator current and
voltage:

9⃗R =

(∫ (
U⃗ S − RS · I⃗ S

)
dt − Lσ · I⃗ S

)
. (32)

The relationship obtained in (32) describes the IM stator
model.

It should be borne in mind that the rotor flux linkage
calculation directly by (32) is accompanied by the problem
of integrating the current and voltage obtained from the
measuring devices, which over time will certainly lead to an
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Fig. 7. Results of estimating SEM parameters with UKF under condition
of operating point change.

increase in the calculation error. This problem can be solved
by replacing the integrator with an aperiodic link [49]. The
possibility of using such a replacement is explained by the
fact that the initial characteristics of these links are similar
and, accordingly, at high frequencies, this will not affect
the results. It should be borne in mind that the use of this
approach can negatively affect the simulation results at low
frequencies, since amplitude–phase distortions will appear in
the calculations of the rotor flux linkage.

Transforming (32) for use in a fixed coordinate system αβ

and replacing the integrating link with an aperiodic one, obtain
an equations system (7), which will describe the IM stator
model.

The rotor flux linkage evaluation will allow determining the
electromagnetic torque on the motor shaft since to determine
the torque it is necessary to know the rotor flux linkage and

Fig. 8. Results of estimating SEM parameters with UKF under condition
of cable line resistance sudden change.

stator current

Te =
3
2

z p ·
(
9⃗R × I⃗ S

)
. (33)

Thus, (33) makes it possible to estimate the current torque
on the SEM shaft and implement the torque observer. It should
be noted that the evaluation accuracy primarily depends on the
accuracy of the IM parameters used in the equivalent circuit,
while these parameters may undergo slight changes during the
ESP operation due to temperature changes.

In addition, in the torque observer, it is necessary to use
a low-pass filter, due to which the obtained torque will be
smoother, which will ensure greater correspondence to reality.

Consider Fig. 9, the red line is the electromagnetic torque
obtained from the “ideal sensor” and the black line is the elec-
tromagnetic torque obtained from the state observer. The figure
shows that the observed SEM torque coincides with the real
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Fig. 9. SEM electromagnetic torque observer work results.

one. Thus, it can be concluded that the torque observer is
working correctly and accurately estimates the torque.

IV. ESP FLOW RATE OBSERVING SYSTEM

When developing a system for sensorless ESP control
and parameters observing, one cannot limit it to observing
only SEM parameters. It is also necessary to estimate the
instantaneous well flow rate, since this parameter helps to
recreate the operating state of the pump and provides the
possibility of feedback control. It is important to note that it is
not always possible to place flowmeter as a part of downhole
equipment; in such a way, the flow-rate estimator allows to
augment the set of estimated parameters of the pump.

A. Flow Rate Observing System Based on Predefined
Pump Catalog Characteristics

One of the way to estimate flow-rate production is to
compare the on shaft mechanical power (estimated BHP)
and one determined by catalog characteristics of the ESP
[45], which taken as a base for polynomial interpolation. The
implementation builds around the working principle of integral
action of a PID-regulator. On shaft brake horsepower is taken
as a reference to which a certain capacity corresponds. The
polynomial function evaluated at this capacity value matches
the reference value. The integrator ensures the zero steady-
state error of the described observation process.

At the output estimator gives two potential operating points.
Further identification of the actual ESP state required digital
manometer and accomplished by matching measured and
calculated head drop. For more detailed acquaintance with the
estimation principle, you can refer to [50].

Despite the significant theoretical basis, this method of
calculating the flow rate is rarely used in practice. First,
the calculation requires accurate determination of a large
number of different ESP parameters, while some parameters
are dynamic, while others are difficult to accurately deter-
mine value even with sensors and other special measuring
equipment. Second, this method require redundant steps to get
the result, which are the placement of digital manometer and
speed change at the operating state, which can be complicated
from unit to unit [51]. Therefore, the ESP flow rate must be
estimated using other indirect methods.

TABLE III
MODEL ACCURACY EVALUATING RESULTS

B. Flow Rate Observing System Based on
Machine-Learning Model

A possible solution is to estimate the flow rate using statisti-
cal data analysis methods. Some ESP dynamic observables and
static known values will be the input parameters, and the flow
rate will be the output parameter. It is possible to implement
a well-flow rate observing system for such a structure using
machine learning algorithms. Since such a task corresponds to
a typical regression task.

Consider the ESP flow rate observing system based on a
machine-learning model. The output parameter will be the well
flow rate. The input parameters will be the SEM shaft rotation
speed, the torque on the SEM shaft, and the oil liquid density.
These parameters were not chosen by chance, they have the
greatest impact on the well flow rate. Other ESP parameters
were also considered. For example, the oil liquid temperature,
the oil liquid viscosity, SEM vibrations, and so on. It was
experimentally determined that these parameters do not have
a large effect on the flow rate, and taking into account some of
these parameters would complicate the development of an ESP
complex model, and would also have a negative impact on the
speed and quality of simulation the processes occurring in the
ESP (an example of such a parameter is the SEM winding
temperature).

To estimate the models’ accuracy, the used dataset was
divided into training and test subset in a ratio of 1000 to 200.
To estimate the models’ accuracy, trained machine learning
models evaluate the well flow rate for each test subset instance.

The model’s performance was evaluated using the mean
square error metric

MSE =

∑n
i=1

(
yi − ŷi

)2

n
. (34)

The models’ results are presented in Table III. The table
also shows the RMSE, since this value represents the greatest
interest for research

RMSE =

√∑n
i=1

(
yi − ŷi

)2

n
. (35)

In addition, Table III shows the maximum error value made
by the model when evaluating the ESP flow rate on test values.
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Analyze the machine-learning model results presented in
Table III. All the considered machine learning models, when
properly configured, have shown good results and can be
used in a flow rate observing system. The difference in the
errors magnitude in different models can be explained by the
model properties. The linear regression main disadvantages
are the laboriousness of finding model coefficients and the
inability to adequately model nonlinear processes, which is
the reason for the large error value, since the function of type
f (ω, Te, ρ) is nonlinear. The k-nearest-neighbors algorithm
does not create models and works only on training sample
data, which affects the error magnitude. The support vector
machine main regression is its instability to noise. The data
under consideration is noisy, so the constructed models have a
large max error. The best result was shown by the random
forest regression with the number of trees nt = 40. This
model was chosen as the basis for the ESP flow rate observing
system. The random forest regression estimation accuracy
increases as the trees number increases. Thus, a larger trees
number gives a better result. The flow rate estimation accuracy
obtained using 40 trees is high. This is the optimal trees
number to work with the available computing power. Most
of the hardware computing power used is spent by the UKF.

V. LIMITATION OF STUDY

All considered results are from simulation with corrections
which accuracy must be confirmed by comparing the simu-
lation and pump catalog data results. The authors bring the
simulation data closer to real ones by adding Gaussian white
noise to the measured values. From another point of view, test
measurements on a real well are associated with a wide set
of hardware solutions that require independent research. This
work is currently in the process. This article presents only the
software part of virtual flow rate system without technological
sensors. The future work will be devoted to the development
of a telemetry system, a system for collecting data from
current and voltage sensors, studying real data from the ESP
and comparing it with simulation results. In addition, it is
necessary to solve the problem associated with the industrial
controller’s technical capabilities, since the developed system
requires large computing power, especially the UKF.

Data used for the machine learning model partially comes
from the ESP complex model. We had to resort to this, since
the oil company only provided the authors with data from
three wells operating ESPs with centrifugal pump VNN5-30,
at three different speeds. Obviously, this amount of data will
not be enough to train the machine learning model, then most
of the data were generated using the developed ESP complex
model.

VI. CONCLUSION

The ESP and SEM operating modes parameters determi-
nation is an important task, both from the viewpoint of the
equipment correct selection at the well design stage, and
from the viewpoint of energy efficiency at the its operation
stage [52].

Based on the research results, the ESP complex model
was developed, including models of transformer, cable line,

submersible motors with vector control model, electrical cen-
trifugal pump, and fluid flow to the bottom of the well. The
ESP complex model results adequacy was confirmed by com-
paring the measurement results and the data obtained in the
simulation. Also, the ESP sensorless control and parameters
observing system was developed and adjusted which is based
on the ESP electromagnetic torque observer and UKF.

The proposed Kalman filter designed for ESP gives good
estimation results with little deviations from the reference
parameters. The angular frequency deviation values does not
exceed 0.1 rad/s in a steady state; the load torque deviation
values does not exceed 0.5 N·m in a steady state; the cable line
resistance deviation values does not exceed 0.05 � in a steady
state. Thus, information can be used to monitor technological
process without any additional equipment used to measure
the cable line resistance. In addition, UKF gives a desirable
response with the sudden change of technological parameters
(which unlikely to appear in the real technological process),
this fact proves the reliability of the system model used in
Kalman filter.

Considering the flow rate observing system, several
machine-learning models were used. Most of them gives a
desirable flow rate estimation result. Random forest regres-
sion best captures model that describes relationships between
mechanical motor variables (load torque and mechanical angu-
lar frequency), fluid parameters and flow rate as an output
of the model. Random forest regression fits well in the
current tasks, since ESP operated at a certain range and
never going through borders, which established in the catalog
characteristics. Therefore, the main random forest regression
disadvantage (extrapolation) does not apply to the considered
task. Since it gives the best accuracy (the error is less than
0.1 m3/day) this model was chosen as a primary method.
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