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Metal Particle Detection Methods and Their Use
for Freeze-Dried Vaccine Inspection: A Review

Jack B. Jedlicki, Denise Tellbach , and Brian Subirana

Abstract—We establish a set of metal particle detection
methods that are suitable for automated inspection of freeze-
dried vaccines. We first identify the requirements for freeze-
dried vaccine inspection. We then assess metal particle
detection methods obtained through a comprehensive liter-
ature review with the requirements for automated inspection.
In particular, we find inductive sensors, superconducting
quantum interference device (SQUID)-based sensors, giant
magnetoresistive (GMR)/tunneling magnetoresistive (TMR)-
based sensors, and THz imaging, hyperspectral imaging,
thermal imaging, X-ray inspection, and radio frequency iden-
tification (RFID)-based sensors promising for automated
inspection of freeze-dried vaccines. However, experiments
assessing the applicability of these methods for freeze-dried
vaccine inspection are severely limited, and future research
is required to choose the best performing methods.

Index Terms— Automated control, conductive particles, lyophilized vaccines, quality monitoring, turbid, visually
opaque media.

I. INTRODUCTION

EFFECTIVE quality control is a common challenge for
two major developments to meet global vaccine demand:

1) increasing production capacity through continuous manu-
facturing and 2) creating thermally stable vaccines through
freeze drying [1].

The production volume of vaccines is steadily increasing
to meet demand; for example, the global production capacity
for pandemic vaccines rose from 6.2 billion (2013) to more
than 12 billion doses (2021) annually [2], [3], [4]. However,
expanding production capacity requires real-time quality con-
trol and introduces new modes of failure [5], [6].

Freeze drying solves several issues of thermally unstable
vaccines [7], [8], [9], such as eliminating stringent cooling
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requirements [10], which can account for up to 80% of
vaccination cost [11], and improving accessibility to vaccines.
For example, COVID-19 vaccines require storage and trans-
portation temperatures between −80 ◦C and −20 ◦C for a
lifetime of three to six months with stable lifetime dropping
to only 2–24 h at room temperature [12], [13]. Approximately
two-thirds of the world population live in a country without
the necessary refrigeration technology available to ensure an
unbroken cold chain [14], leaving an estimated three billion
people without access to COVID-19 vaccines due to a lack of
cold storage [15]. However, freeze drying of vaccines makes
a visual inspection of final products more difficult due to
the visually opaque nature of freeze-dried vaccines, which
can fully or partially obscure defects such as metal particles
[16] and the resemblance between defects and normal product
appearance variation [17].

One particular issue for quality inspection of vaccines is
the elimination of metal particles in vaccine products before
they leave the production facility. Metal particles pose a risk
to patients in the form of adverse effects on their health
[16], [18]. We know that metal particles have led to high-
profile recalls of millions of vaccines in the past years. For
example, 1.63 million doses of Moderna’s COVID-19 vaccine
were recalled after distribution to patients had already started
in Japan in 2021 [19], [20].

In this work, we examine the literature on existing methods
for metal particle detection with regard to their suitability
for inspection of freeze-dried vaccines. We first establish the
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requirements for the successful inspection of freeze-dried vac-
cines for metal particles and use these requirements to assess
the metal particle detection methods identified in the literature.

The remainder of this article is structured as follows.
We discuss related work in Section II. Section III outlines our
methodology for literature selection and handling. We discuss
the requirements for a promising metal particle detection
method for vaccine inspection in Section IV. We then present a
summary of metal particle detection methods and discuss them
in relation to the requirements of inspection of freeze-dried
vaccines in Section V. Next, we discuss the potential fulfill-
ment of vaccine inspection requirements and outline the future
work required to meet them in Section VI. Finally, we sum-
marize our findings and outline potential future avenues for
research in Section VII.

II. RELATED WORK

A. Inspection of Freeze-Dried Vaccines
Current approaches for inspection of freeze-dried vaccines

encompass manual inspection by human operators and semi-
automated inspection with automated handling but human
inspection and fully automated inspection using line cam-
eras [21]. All commercially rolled-out technologies have in
common that they are incapable of detecting any defects under
the surface of the freeze-dried vaccine cake.

Research on new inspection methods for vaccines, both
liquid and freeze-dried, explores data processing and sensing
technology approaches to enhance computer vision [22]. While
machine learning (ML)-based methods using line camera input
are able to operate inspection at high speed, they lack the
ability to identify subsurface features [23], [24], [25], [26].
In contrast, some novel sensing techniques, such as near-
infrared (IR) spectroscopy [27] and nuclear magnetic res-
onance (NMR) relaxometry [28], are capable to discern
subsurface vaccine features but lack the ability to detect
metal particles. A recent review of nondestructive inspection
methods for solid particles in freeze-dried vaccines compares
a number of spectroscopy and imaging techniques. While
this review assesses the ability of different methods for the
detection of metal particles among other types of particles,
it fails to present a comprehensive picture of metal particle
detection methods [29].

The work specifically on metal particle detection in vaccines
is limited, even more so for freeze-dried vaccines. Metal parti-
cles, even trace amounts, in vaccines have been detected using
atomic absorption spectrometry, atomic emission spectrome-
try, flame emission spectrometry [30], and energy dispersive
X-ray spectroscopy [20]. However, these methods are very
slow (on the order of hours) and require the destruction of
the investigated vial specimen, therefore being unsuitable for
automated inspection of 100% of vaccine vials.

B. Current Reviews of Metal Particle Detection
Multiple previous works provide reviews of methods for

metal particle detection. However, each of these reviews leaves
gaps that we are seeking to close in this work. Previous reviews
can be grouped according to their area of focus. One group of
reviews discusses metal particle detection methods related to

a specific area of application, and the second group discusses
methods belonging to a specific type of metal particle detection
method or methods focused on detecting a certain type of
metal particle.

Reviews of metal particle detection methods presented in
[31], [32], [33], [34], [35], [36], and [37] focus solely on
methods that apply to wear monitoring in lubricant oil by
detecting metal particles of sizes between approximately 1 µm
and 1 mm. [31], [32], [33], [34]; all mainly focus on online
detection methods, such as photodetector, resistive–capacitive
sensor, acoustic sensor, and inductive sensor with [31] and
[33] classifying the sensors into acoustic, optical, electric,
and magnetic sensors. Yang et al. [34] exclusively focus on
inductive sensors. Jia et al. [31], Wei et al. [32], Sun et al. [33],
Myshkin and Markova [35], and Lukas and Anderson [37]
omit online sensors not prevalent in lubricant oil analysis, such
as X-ray imaging, THz cameras, thermal cameras, and lensless
imaging. Regarding offline detection methods in addition to
online detection methods, Wei et al. [32] and Myshkin and
Markova [35] provided a surface-level review of methods
such as optical microscopes, electron microscopes, and X-ray
diffraction (XRD). While Murali et al. [36] include both online
and offline methods in the review, the working principles
of detection methods are not discussed. Jia et al. [31] and
Sun et al. [33] do not include offline detection methods in
their review. Lukas and Anderson [37] limit their review to
an incomplete summary of the main methods, both online and
offline of metal particle detection in lubricant oil, primarily
covering spectrometry and ferrography. The aforementioned
reviews, therefore, paint an incomplete picture of metal parti-
cle detection methods.

Other works review methods for metal particle detec-
tion in pure water [38] or aqueous solutions [39]. While
Tutulea et al. [39] focus on electrochemical sensors for detect-
ing metal ions, Trumsina et al. [38] discuss detection methods
for nanoparticles such as microscopy, spectroscopy, tracking
analysis, and electrography.

Davis [40], Rao [41], Hunt [42], Humphrey and Martin
[43], and Davies [44] review metal particle detection meth-
ods for the purpose of condition monitoring in commercial
applications, which means the detection of metal particles in
fluids, mainly lubricant oil. However, with the exception of
[44] that was published ten years ago, all these reviews are
over 20 years old, which means that they do not include recent
advances in detection methods, such as superconducting quan-
tum interference device (SQUID) sensors, magnetoresistive
sensors, inductive sensors, and other methods.

Other reviews have focused their reviews on specific types
of metal particle detection methods. Abedini-Nassab et al. [45]
review magnetic sensors with a focus on magnetoresistive
sensors, SQUID sensors, and magnetorelaxometry. Xu et al.
[46] focus on the detection of heavy metal ions through
surface-enhanced Raman scattering.

C. Novelty and Contribution of Our Approach
Based on the aforementioned reviews, the research of

metal particle detection is split among different types of
applications, and a review covering the entire field of metal
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TABLE I
DETAILED SEARCH TERMS AND RESULTS OF METAL PARTICLE

DETECTION METHODS IN THE LITERATURE

particle detection has never been published. In addition, the
discussed reviews do not describe the physical properties of
metals exploited for detection, which is key for understand-
ing the working principles of metal detectors and further
development of the field. In general, the properties of metals
such as their high electrical conductivity, magnetic properties,
or generation of eddy currents, which are essential for metal
particle detection, are not explained in these review papers.
As a consequence, building an understanding of the physical
phenomena exploited by different sensing techniques allows
an educated assessment of each method’s merits.

In contrast to previous work, we provide a comprehensive
overview of methods for metal particle detection. We fur-
ther establish the requirements for successful metal particle
detection in freeze-dried vaccines and discuss each detec-
tion methods’ merits and disadvantages with regard to these
requirements.

III. METHODOLOGY

We establish the requirements for inspection of freeze-dried
vaccines by studying the relevant legal requirements (with a
main focus on U.S. Government requirements for inspection)
and inspection standards established in the industry and the
research community. Finally, we include requirements based
on the characteristics of freeze-dried vaccines that might only
be implicitly considered in current inspection approaches.

To compile a complete picture of metal particle detection
methods that we assess for metal particle detection in freeze-
dried vaccines, we follow a two-step process. First, we search
for papers on Google Scholar using a combination of search
terms, as outlined in Table I, which yields 161 unique, relevant
publications. Second, we included publications referenced in
the results of our primary search, which discuss metal particle
detection techniques. This step yields further 168 publications.
We build a complete picture of current metal particle detection
methods based on the publications that we identified and then
assess them using the previously established requirements for
the inspection of freeze-dried vaccines.

IV. REQUIREMENTS FOR THE INSPECTION OF
FREEZE-DRIED VACCINES

Vaccine inspection with the goal of detecting metal particles
needs to fulfill three main functions: 1) reliably detect metal

TABLE II
SUMMARY OF REQUIREMENTS FOR METAL PARTICLE DETECTION

IN LYOPHILIZED VACCINE PRODUCT

particles within the relevant size range inside glass vials at
sufficient distance; 2) not destroy or adversely affect vaccine
quality; and 3) operate at sufficient speed and cost with
reasonable resources. We discuss the requirements for metal
particle detection in freeze-dried vaccines in the following
chapter and present a summary of the requirements in Table II.

To aid our understanding of requirements for metal particle
detection methods, we define what constitutes the typical
metal particles that vaccine inspection seeks to eliminate.
Government regulations dictate visual inspection of 100% of
vaccine vials with the aim of an end product that is “essentially
free” of particles [47], [48], [49]. Crucially, particles are
defined by being unintentionally present in the vaccine, and
they can consist of different materials, such as glass, fibers, and
rubber, but, for the purpose of this article, we focus on metal
particles. The main concern lies with particles of sizes greater
than 10 µm, which are the subject of regulatory inspection
standards [50]. To achieve vaccine vials essentially free of
particles, inspection relies on unaided human vision under
controlled conditions (e.g., light brightness and background
color).

Human vision, therefore, sets the benchmark for any other
inspection technology, and human limitations to inspection are
crucial for assessing the merit of a proposed detection method.
Human inspection is inherently probabilistic, detecting approx-
imately 95% of particles at 200 µm, which rapidly declines
to 40% of particles at 100 µm and further as particle size
diminishes even under ideal inspection conditions in liquid
vaccine product [51].

Due to stainless steel being widely used for vaccine produc-
tion equipment [52], metal particles in freeze-dried vaccines
are most likely to be of stainless steel as was the case in
past recalls [20]. While other metals may possibly be present
in vaccine production equipment, we focus our analysis on
stainless steel, which is the most common wear particle that
may be introduced to vaccines. A metal particle detection
method, therefore, needs to detect stainless steel.

Quality inspection needs to keep up with the production
process of vaccines. We consider the speed of inspection meth-
ods currently used in the pharmaceutical industry as a point
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of comparison to assess methods. Manual inspection achieves
an inspection speed of approximately 3 vials/min [16].
On the other end of the spectrum, automated inspection
operates at a speed of approximately 400 vials/min [16]. Any
metal particle detection method needs to perform at least
comparable to these methods.

To achieve such high inspection rates, the detection system
needs to be integrated with an automatic feed of vaccine
vials, meaning that we require inline inspection to meet the
requirements for speed and inspection of all vaccine vials
simultaneously.

Furthermore, 100% of vials without defects cannot be
inspected in a destructive fashion as no vials would be left
for distribution. However, apart from nondestructive testing,
an inspection method that is only selectively destructive for
vials containing metal particles is acceptable as well.

Because the different regulatory requirements necessitate
inspection as a last step before vaccines can be released from
a production facility, the product needs to be inspected inside
a glass vial. This means that not only does a metal particle
detection method have to penetrate a glass vial but it also
needs to be able to detect metal particles at a distance of at
least half the vial diameter, which can vary but is typically on
the order of a few centimeters.

Last but not least, any metal particle detection method needs
to yield repeatable measurements under the same conditions
and over time.

V. DISCUSSION OF METAL PARTICLE DETECTION
METHODS THEIR SHORTCOMINGS AND BENEFITS

FOR VACCINE INSPECTION

Metal detection methods typically involve sending a phys-
ical signal, such as acoustic or electromagnetic waves, to the
sample. The interaction between the metal particles and the
signal is then measured using a sensor. We believe that an
essential future trend of work will involve exploring the limits
of the detection of metal particles in vaccines, considering
factors such as their size and depth. Since these limits are
strongly influenced by the type of the signal detected and the
materials present in the sample, a classification of methods
based on the nature of the signal detected would greatly aid
the advancement of the field. Consequently, we categorize
metal detection methods into five primary groups: 1) acoustic
methods; 2) electric methods; 3) magnetic methods; 4) optical
methods; and 5) electron-based methods. Each group leverages
specific properties of metals, which we will explain further.
In addition, there are four outlier techniques that rely on differ-
ent principles: 6) mass spectrometry; 7) gravimetric analysis;
8) the thermal product sensor; and 9) the resonance frequency
shift method. To summarize our analysis, we provide a visual
representation in Fig. 1. For each metal particle detection
method, Fig. 1 outlines the type of signal used for metal
particle detection, the detectable particle size, whether or
not the method is applicable to the inspection of freeze-
dried vaccines, and the main type of information the method
provides about detected metal particles.

We begin with a brief analysis of the suitability of methods
6)–9) in freeze-dried vaccines. Mass spectrometry provides

the quantitative and qualitative elemental composition of the
sample [53], [54], [55], [56], [57] and, as a consequence, can
detect metals [54], [57], [58]; however, it requires atomizing
and ionizing the sample, making it inapplicable in a vaccine.
In gravimetric analysis, a liquid sample is passed through a
membrane [41], and the remaining debris is weighed, mak-
ing it also inapplicable in a vaccine. The thermal product
sensor [59] can generate false alarms due to water or noise
and requires the sample to be in contact with the sensor.
In addition, it has only been tested with liquids. Hence, it is
not a recommended choice for vaccine inspection. The sensor
based on resonance frequency shift measures a variation of
the resonance frequency of a cavity due to the presence of a
particle, which has allowed the detection of metallic objects
inside a cavity [60], [61], [62]; however, it seems inapplicable
for detecting metal particles in a freeze-dried vaccine.

A. Acoustic Methods
Metal detectors relying on measuring acoustic waves can be

classified into the collision-based acoustic method, ultrasonic
sensors, and scanning acoustic tomographs.

The collision-based acoustic method employs a target such
as a grounding electrode in order to attract ferrous particles and
uses the acoustic signal generated when the particles collide
with the target for obtaining information about the number and
size of the particles [35], [63]. However, it can only be used
when the viscosity of the material allows the particles to reach
the electrode at a large enough speed, which would not be the
case in a freeze-dried vaccine.

The ultrasonic sensor relies on the change of acoustic
properties of the sample, such as acoustic reflection coefficient,
due to the presence of solid debris. It is composed of an
ultrasonic transmitter and a receiver; the transmitter sends an
ultrasonic wave that penetrates the studied substance; and the
receiver detects the reflected or the transmitted wave. If solid
particles are present in the channel, they scatter the ultrasonic
wave and attenuate the transmitted wave. Thus, the measure
of the transmitted or reflected waves can indicate the presence
of particles and their number and size [64], [65]. Ultrasonic
sensors have been used in oil analysis [64], [66], [67], [68],
[69] and can detect, count, and measure particles in oil
with sizes ranging from 3 to 2000 µm in concentrations
between 0.01 and 12.8 ppm [66]. In addition, the method
can distinguish solid particles from air bubbles and water
droplets due to differences in the scattering properties of these
materials [66], [67]. However, the sensor cannot distinguish
metal particles from nonmetal particles when they have a
similar behavior under acoustic waves; temperature, sample
viscosity, flow speed, and mechanical vibration may affect the
performance of the ultrasonic sensor, limiting most of its real-
life applications in oil analysis [31], [32]. Ultrasonic sensors
have been used for the analysis of surface or subsurface
defects in solid objects such as metals, plastics, or wood [70],
in food [71], and in bottled beverages [72]. Hæggström and
Luukkala [71] employed ultrasound reflection measurements
in cheese and marmalade and detected 1-mm steel particles
at a 75 mm depth. However, the signal-to-noise ratio (SNR)
decreased in nonhomogeneous samples, reducing the maximal
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Fig. 1. Summary of metal particle detection methods. Method applicability refers to metal inspection of freeze-dried vaccines and is based on
comparing reported methods with mass inspection requirements as described in the text. When the literature does not provide enough information,
as in the case of the thermal product sensor, we have marked them as unclear. Particle size refers to the spectrum of particle sizes that can be
detected through each method. It does not exclusively correspond to the detection of individual particles; for instance, magnetoresistive, Hall, and
SQUID sensors have reportedly identified clusters of magnetic particles measuring around 10 nm. In cases where the detection limit is ambiguous,
we have estimated it through our analysis and represented the limits with curved lines. No supporting experiments in vaccines have been described
in the literature, and depth detection needs to be established before validating depicted choices. Some methods, such as mass spectrometry, may
be applied but only in samples that are destroyed.
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detection depth. In [72], particles of different metals and
different sizes (larger than 1 mm) were detected in bottled
beverages.

An image of the sample can be obtained through scanning
acoustic tomography, which represents a fast and nondestruc-
tive technique for detecting defects such as delamination,
cracks, voids, or changes in density in materials. It achieves
very high resolution, detecting internal defects as small
as 1 µm [73]. However, air highly attenuates ultrasonic
waves [74], which necessitates the use of contact measure-
ments, thus resulting in higher inspection times. A solution
was proposed for performing noncontact ultrasonic sensing in
food [75]; however, only particles larger than 2 × 2 mm2 were
detected. Note that ultrasonic detectors have not been report-
edly used for detecting metal particles in freeze-dried vaccines,
and it is not clear if the difference of the acoustic properties
between metallic particles and the freeze-dried vaccine cake
allows for the detection of metal particles. Hence, future
research is necessary in this area.

B. Electric Methods
Electric methods can be classified into electric chip detec-

tors, electrostatic sensors, resistive–capacitive detectors, radio
frequency identification (RFID)-based detectors, electrochem-
ical sensors, and gas discharge visualization electrography
(GDV EG).

Electric chip detectors are inapplicable in vaccines due
to their working principle. They are used in channels with
oil flow; a magnetic field leads to accumulation of ferrous
particles on the surface of two electrodes; once they reach a
certain amount, they bridge the gap between the electrodes
and generate a signal [76].

The electrostatic sensor detects charged particles and is able
to sense charged microparticles with diameters down to 20 µm
in an oil channel with a flow rate up to 9 L/min [77]. The
sensor is robust, provides real-time detection, and is relatively
inexpensive [78]. The method relies on the fact that charged
metal particles passing through the detection zone induce the
presence of the same amount of opposed charge in the probe.
However, the ring probe is not sensitive to particles placed
in the center of the channel [79]. Research to improve the
sensitivity of the electrostatic sensor has investigated [78],
[79], [80], [81], the effect of sensor parameters on its detection
sensitivity [79], and the benefits of signal processing [81].
Since a single electrostatic sensor exhibits inhomogeneous
sensitivity, Tang et al. [78], [80] developed a hemisphere-
shaped electrostatic sensor with a circular array yielding a
more homogeneous sensitivity. The device was later improved
using the compressive sensing algorithm [78]. The electrostatic
sensor is limited due to external interference and noise highly
affecting its performance, and its use on vaccine inspection
depends on whether metallic debris in vaccines is charged,
which is unclear and should be further investigated.

In the resistive–capacitive method, two electrodes are placed
on opposite sides of a small channel, generating an alternating
electric field. A particle passing through the electrodes with
different conductivity or permittivity from the filling medium
will produce a resistance or capacitance change in the poles,

generating a signal. The method has been primarily used in the
detection of wear debris in oil [36], [82], [83], [84], [85], [86],
[87], [88]. Since the capacitive approach allows the detection
of relatively conductive particles in a nonconductive medium
[84], it can be applied to other nonconductive samples such
as vaccines. The capacitive sensor can detect and count metal
particles as small as 10 µm in lubricating oil flowing inside
a 40 µm (H ) × 100 µm (W ) channel with a flow rate of
70 µl/min [36]. In order to increase sensitivity, Islam et al. [87]
developed a high-precision cross-capacitive sensor providing
the exact relation between capacitance and permittivity of the
studied medium. In order to decrease the particle size detection
limit, Murali et al. [36] employed a microfluidic capacitive
sensor; however, this results in a lower throughput and a lower
detection size range. A solution to this problem is the use of
sensors employing multichannels, such as studied in [85]. The
use of silicon steel sheets, which enhance electric field lines,
also improves sensitivity without reducing throughput [89].
The resistive–capacitive method has three main drawbacks:
1) ferrous and nonferrous metal particles cannot be dis-
tinguished since their permittivity is almost equal, making
their response to an electric field very similar; 2) the signal
is affected by the chemical state of the sample [31], and
other particles with permittivity different from that of the
sample (e.g., air bubbles and water droplets) can also cause
capacitance pulses leading to false alarms; and 3) in the
case of oil analysis, the applied electric field accelerates oil
deterioration, which, in turn, affects the dielectric permittivity
of oil [32] and can cause measurement errors. Hence, whether
the electric fields can affect the state of the vaccines should be
analyzed.

The RFID-based detector employs an RFID system—
generally consisting of a tag or transponder, a receiver, and
a transmitter. The presence of metal particles disturbs the
electromagnetic properties of the sample—such as electri-
cal conductivity and magnetic permeability—which, in turn,
affects the performance and characteristics of the system
antennae [90], [91]. As a consequence, RFID systems have
been used as sensors for detecting the presence of metal
particles [92] and cracks in a metal structure [93]. Yin and Ren
[92] placed an oil sample between the tag and the receiver, and
detected the presence of ferrous particles and their amount;
2–3-µm iron particles at a total mass between 0.5 and 2.0 g
were detected in a 40 mm (D) × 50 mm (H ) glass container
filled with oil. Note that future research is expected in order
to reduce the noise and improve accuracy.

In electrochemical sensors, the sample reaches a sens-
ing electrode where an electrochemical reaction occurs, and
the signal is transformed into an electric signal, providing
information about the concentration of specific ions. Hence,
electrochemical sensors have been used for detecting metal
ions [39], [94], [95], [96] in food [94], aqueous solutions
[39], and blood [96]. Metal ions can be detected through
electrochemical stripping analysis; however, this requires the
accumulation of the target analyte or a compound of the
target on a working electrode [97], which cannot be performed
in vaccine inspection. In addition, only metal ions and not
large metal particles seem detectable through electrochemical
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sensing, making it inapplicable for detecting large metal
particles in vaccines.

GDV EG relies on the Kirlian effect and is based on the
detection with a digital camera of the electrical discharge
or radiation emitted by the sample after the application of
a high-frequency high-voltage current [38]. It has been used
for detecting metal nanoparticles in water [38]; however, its
suitability on freeze-dried vaccines has not been studied, and
therefore, its possible application in vaccines is unclear. Notice
that the method has been classified an electric detector since
it is based on electrical discharge and the emission of electric
fields by the sample.

C. Magnetic Methods
Metal particle detectors relying on measuring magnetic

fields can be classified into three main methods: 1) the
radio frequency (RF) approach, which involves sending RF-
electromagnetic waves and using a magnetic sensor to measure
the perturbation of the magnetic field by the metal parti-
cles; 2) the direct-current (dc) approach, where the sample
is exposed to a static magnetic field and a magnetometer
measures the distortion caused by the ferrous particles; and 3)
NMR and magnetic resonance imaging (MRI), which involve
exposing the sample to both dc and RF fields and measuring
the magnetic field produced by the atomic nuclei of the
sample.

Due to the high penetration of magnetic fields and RF
waves in biological materials, magnetic detectors are one of
the best choices for detecting metals inside a vaccine. We first
introduce the main physical effects that lead to the detection
of metal particles by magnetic methods.

These effects are mainly the eddy current effect and the
magnetization effect, both resulting in the generation of new
magnetic fields. The eddy current effect arises in metals due
to their high electrical conductivity, attributed to the presence
of free electrons that move easily within the material. When
subjected to a time-varying magnetic field, these free electrons
create eddy currents, generating a magnetic field opposing the
external one. Eddy currents only appear in sufficiently con-
ductive materials, and thus, they should be generally weaker
in the vaccine cake compared to a conductive metal. On the
other hand, the magnetization is only significant in ferrous
metals such as iron, cobalt, nickel, gadolinium, and alloys.
It results from specific atomic arrangements and magnetic
moment interactions, causing the alignment of the moments of
magnetic domains when an external magnetic field is applied,
leading to the generation of a new magnetic field in the same
direction. Note that stainless steel, which is the main metal of
interest in vaccine inspection, is a relatively good conductor
of electricity; however, its magnetism depends on the specific
phase. For instance, in the martensitic phase, it displays a
ferromagnetic nature and a robust remanent magnetization,
while, in the austenitic phase, its remanent magnetization is
comparatively weaker.

The RF approach takes advantage of both eddy current
and magnetization effects. It involves using a magnetometer
to measure time-varying magnetic fields. The most common
application of this method relies on the use of an inductive

Fig. 2. Working principle of the inductive method, where an alternating
magnetic field is applied on the sample. (a) Ferromagnetic metal parti-
cle: although both eddy current and magnetization effect take place, the
magnetization overcomes the eddy current effect, leading to an increase
in the magnetic flux in the sensing zone. (b) Nonferromagnetic metal
particle: the eddy current effect dominates, reducing the magnetic flux
in the sensing zone.

sensor due to its several advantages. Therefore, we provide
in the following a review of the RF method performed with
an inductive sensor, which we will simply call the “inductive
method” for convenience.

In the inductive method, exciting coil(s) generates an
alternating magnetic field inside the channel, which induces
the generation of a new magnetic field by metal particle
passing through the detection area, due to the eddy currents
and the magnetization effect. Fig. 2 illustrates the working
principle of the inductive method; in ferrous metal particles,
the magnetization effect overcomes the eddy current effect,
while, in nonferrous metal particles, the eddy current effect is
predominant. Hence, nonferromagnetic metal particles locally
weaken the magnetic field, while ferromagnetic particles
enhance it, leading to opposite changes of magnetic flux in the
sensing zone. Therefore, the phase of the signal for nonferrous
metal particles is opposite to the one of ferrous particles,
allowing their distinction. In addition, the method presents
several advantages such as being contactless, nondestructive,
consisting of a simple structure, providing a rapid analysis
[99], and functioning under high temperatures and vibrations.
Due to the high penetration of radiowaves in most materials,
it can detect metal particles underground or snow and in food
[100], [101], textile materials and paper [102], juice [103],
lubricating oil [86], [89], [99], [104], [105], [106], [107],
[108], [109], [110], [111], [112], [113], [114], [115], [116],
[117], [118], [119], [120], [121], [122], [123], [124], [125],
[126], [127], [128], [129], [130], [131], [132], [133], [134],
[135], [136], [137], [138], [139], [140], [141], [142], [143],
[144], [145], [146], [147], [148], [149], [150], [151], [152],
[153], [154], [155], [156], [157], [158], [159], [160], [161],
and inside a closed hand [162]. The inductive method can
detect an iron particle as small as 5 µm in oil in a 1-mm
diameter solenoid [149] and a copper particle as small as
20 µm in a coil with a 0.3 mm inner diameter [131]. However,
commercialized inductive detectors have a higher detection
limit, e.g., the debris sensor developed by GasTOPS can detect
in oil a 125-µm diameter ferrous particle and a 450-µm
diameter nonferrous particle using a 8-mm sensor bore and at
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a flow rate up to 12 L/min. It is also important to note that the
method is insensitive to air bubbles, water droplets [108], and
nonmetal particles. To determine the material composing the
detected particle, Flanagan [104] performed the demodulation
of both frequency and amplitude of the signal independently,
obtaining two output voltages and allowing an estimation
of the material based on a locus diagram. In addition, the
amplitude of the signal is proportional to the mass for a ferrous
particle and to the surface area for a nonferrous particle [43].

In general, inductive sensors do not provide the loca-
tion of the particles. In order to overcome this problem,
Chady et al. [163] used an electromagnetic tomography system
relying on multiple transducers and giving the 3-D location of
metallic objects, and Suzdaltsev and Lobanova [164] proposed
a metal detector based on three transducers placed at different
angles from the sample, giving the location of the metal
particle.

Extensive research has been carried out in order to increase
the sensitivity of inductive detectors [31], [32], [33], [34],
[89], [110], [112], [113], [114], [115], [120], [122], [124],
[127], [134], [135], [136], [149], [152], [165], [166], [167],
[168], [169], which is mainly realized by increasing the
strength of the magnetic field in the channel and decreasing
the particle-sensor distance. These two approaches can be
performed in various ways, such as using microfluidic chan-
nels [124], multichannel-based sensors [112], [152], [170],
placing multiple sensing coils inside the channel [169], using
multilayer sensing solenoids [149], adding silicon sheets [89],
[135], and ferrite cores to the sensing coils [136], [168]. The
SNR can also be increased by adding a capacitance to the
coils and working in a resonant state [113] and with the use
of signal processing algorithms [149], [165], [166], [167].
Detection sensitivity of nonferrous particles can be improved
with the addition of resistance detection [134], [136], with the
increase in excitation frequency [122], and with the reduction
of particle velocity [120], [127]. On the other hand, it is easier
to detect ferrous particles as the frequency decreases [122].

The inductive method has several drawbacks: 1) the mag-
netic fields produced by ferrous and nonferrous particles may
cancel each other out, rendering the particles undetectable;
2) multiple small particles can be interpreted as a single larger
particle; and 3) commercialized inductive sensors fail to detect
metal particles smaller than 60 µm.

Compared to RF magnetic fields, static magnetic fields have
several advantages; notably, they eliminate the skin effect,
which can lead to an increase in temperature and distortion
of the magnetic field, and they simplify the drive circuit
and are more resistant to interference [171]. Hence, metal
detectors employing static magnetic fields have also been
investigated [42], [142], [172], [173], [174], [175], [176].
Under this approach, a static magnetic field is applied to the
sample, and the magnetic fields produced by the magnetized
particles are measured during or after its application. Since the
property that is being probed is the magnetization of particles,
only ferrous particles can be detected. The perturbation of
the magnetic fields is measured with magnetometers such
as SQUID, Hall effect, magnetoresistive sensors, inductive
coil, nitrogen-vacancy diamond (NVD) magnetometers, spin

Fig. 3. Schematic of the dc magnetic method for metal particle
detection. A sample is moved on a conveyor belt first through a pair
of magnets, which is used to magnetize ferromagnetic particles in the
sample. The sample is then moved under an electromagnetic shield
where a magnetometer measures any remnant magnetic fields from the
magnetized particles in the sample. Adapted from [98].

exchange relaxation-free (SERF) magnetometers, and others
[177], [178]—for an extensive review of magnetometers,
we recommend consulting [178]. The general working princi-
ple of the dc magnetic method is represented in Fig. 3.

Using the dc method based on inductive coils [142], [173],
[174], [175], [176], the detection limit lies at 13 µm for iron
particles using the high-gradient magnetic field method, with
a 40-mm-diameter and 100-mm-long oil channel and at a flow
rate of 3.75 L/min [175].

The other main magnetic sensors that have been reportedly
used for detecting metal particles under the dc method are
SQUID, Hall effect, and magnetoresistive sensors. Although
these sensors have mostly been used for the detection of
magnetic beads in biosensing, they present a promising
approach for industrial inspection of vaccines. In addition,
the deconvolution of the magnetic responses under a certain
range of external magnetic fields can allow the distinction of
different types of magnetic nanoparticles and the detection
of their fractional ratios within a mixture [179]. Combining
the measurements with magnetorelaxometry, different types
of nanoparticles can be distinguished based on their different
relaxation times [180]. We discuss next the main benefits,
drawbacks, and reported applications of these sensors in
detecting metal particles.

SQUID sensors are the most sensitive sensors to magnetic
fields in a wide frequency range, from dc fields to frequencies
up to a few GHz [177], and have achieved the detection of
a single ∼120-nm nanoparticle [181] placed near the edge of
the sensor. The SQUID sensor has been applied in biosensing
[182], [183], [184], [185], MRI [177], [186], food inspec-
tion [98], and industrial product control [187]. Krause et al.
[187] detected a 0.09-mm stainless steel particle in industrial
products with and without aluminum wrapping. Tanaka et al.
[98] used three high-Tc RF SQUID sensors for finding small
steel particles with 0.3–0.8-mm diameters in food in sample
volumes up to 150 mm (W ) × 100 mm (H ). The stand-off
distance was 117 mm, the conveyor moved at 20 m/min, and
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the signal was approximately proportional to the volume of
the particle in the studied range of sizes. Moreover, the signals
were not affected by other electromagnetic fields due to the
use of electromagnetic shields [98]. In order to ensure high
sensitivity in relatively wide areas, Tanaka et al. [188] used
a two-channel high-Tc SQUID gradiometer system composed
of two planar high-Tc SQUID gradiometers for detecting the
remnant magnetic fields from iron particles in lithium-ion
batteries. A single SQUID gradiometer detected 40–75-µm
diameter iron balls on a conveyor belt at a speed of 6 m/min
at a 3 mm distance from the SQUID gradiometer. The
two-sensor system was able to detect an iron particle of
100 × 100 µm2 surface and 50 µm thickness at a liftoff
distance of 3 mm and at a detection width of 22 mm. The
inspection can also be improved to obtain an image of the
sample by scanning the sensor over the sample surface, such
as performed in [189], where the authors used a remanence-
based SQUID sensor and detected 25-nm magnetic particles
in tissue at 1.7 cm distance from the sensor with a sensitivity
of 10 ng and a spatial resolution of ∼1 cm. However, SQUID
sensors have to be used under very low temperatures [177],
[185], [190] in order to achieve superconductivity, making
their application in industrial environments difficult.

Hall effect sensors measure static or alternating magnetic
fields with frequencies below ∼1 MHz [191] and are generally
small, light, and inexpensive devices, requiring low power and
operable at a wide range of temperatures [191]. They can
detect magnetic particles [179], [192], [193], [194], [195];
however, they are limited by their low sensitivity.

Magnetoresistive sensors are, in general, less sensitive than
SQUID sensors. They measure magnetic fields through the
use of simpler devices requiring low power and without
the need for ultralow temperatures. These sensors rely on the
magnetoresistive effect, i.e., the change of electrical resistance
of a ferromagnetic material due to the change of the magnetic
field. The three main types of magnetoresistive sensors are
anisotropic magnetoresistive (AMR), giant magnetoresistive
(GMR), and tunneling magnetoresistive (TMR) sensors, and
they can detect nanoparticles with sizes down to ∼10 nm [196]
on the surface of the sensor at large enough concentrations.
AMR sensors have a simpler structure than GMR and TMR,
and have been used for detecting superparamagnetic particles
[197], [198]; however, GMR and TMR sensors can achieve
higher sensitivity. The use of GMR sensors for biosensing,
in order to detect magnetic nanoparticles labeling specific
antibodies, has been studied previously [45], [185], [196],
[199], [200], [201]. Compared to commercialized inductive
techniques, magnetoresistive sensors consume less power, are
less complex, and present better portability [202]. However,
it is difficult to use GMR sensors for noncontact measure-
ments; in general, magnetic nanoparticles have to be kept
at a small distance from the sensing unit since the GMR
signal rapidly decays over distance [202]. Furthermore, the
presence of noise in low-frequency fields [45] further limits the
sensor. TMR sensors present advantages over traditional Hall
sensors, AMR, and GMR sensors, such as higher sensitivity,
working under a wider range of temperatures, and resistance
to mechanical shock and vibration [203]. TMR sensors have

been used for detecting magnetic particles in biosensing [45],
[185], [202], [203], [204], [205] and present advantages over
traditional optical sensors such as being able to overcome
the interference of background color and light with complex
samples, high sensitivity, and accurate quantification [203].
In addition, compared to fluorescence signals, the magnetic
signal emitted by magnetic beads suffers less from attenuation
and is more stable [203]. TMR sensors are able to overcome
environmental interference and can, thus, be applied to many
different samples, such as water, food, and blood [203]. They
have also been used for detecting 1-mm iron particles in manu-
facturing environments [206], and electromagnetic interference
can be greatly eliminated using the matched filtering tech-
nique, resulting in an increase in detection sensitivity [206].
However, the TMR sensor is limited by sensitivity to noise
and complex fabrication [45].

In NMR, a static magnetic field and an orthogonal alternat-
ing magnetic field are applied on the sample, and as a result,
the electromagnetic waves produced by the atomic nuclei are
detected. NMR can be used for the detection of debris such
as metals in a fluid such as oil, water, or fuel [207], either
by detecting the spectrum produced by an element such as
1 H and detecting perturbations of the spectrum due to the
presence of contaminants or by directly measuring the signal
generated by the metal particles [207]. It is possible to obtain
3-D information of the sample using high-gradient magnetic
fields—in this case, the method is known as MRI. Either
using NMR or MRI, it is possible to detect the presence
of small metal particles, down to sizes in the nanometer
range [208]. NMR and MRI have been applied in the medical
field for detecting metals [208], [209], [210], [211], [212],
and metal objects can be detected because they cause intensity
changes of the MRI image [211] and image anomalies [213],
[214]. However, MRI remains a high cost and time-intensive
technique, making it inapplicable for inline inspection of
vaccines.

Note that measurements of the magnetic properties of the
sample can also be obtained with magnetic force microscopy,
which has allowed the detection of metallic molecules in bio-
logical samples [215]; however, it cannot be performed offline;
it only provides information about near-surface particles and
requires direct contact with the sample.

D. Optical Methods
Optical detection methods rely on detecting light and

can be classified into: 1) photodetector-based sensors; 2)
imaging sensors; 3) spectroscopic analysis techniques; and
4) ferrography.

1) Photodetector-Based Sensors: Photodetector-based sen-
sors rely on measuring variations of light flux and correlating
them to the amount of particles. In the area of oil condition
monitoring, photodetector-based sensors counting the number
of particles have been developed. The most simple optical
counter is based on light obscuration [42], [216], relying on the
blockage of visible light by opaque particles. The use of a light
slit instead of a collimated beam provides a higher SNR [42].
However, a high sensitivity implies the use of small channels,
reducing the size detection range. A higher sensitivity is
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Fig. 4. Schematic of the photodetector-based method. Light in the
visible spectrum, IR, or THz is used. Photodetectors ① and ③ detect light
scattered by the particle, and photodetector ② detects the transmitted
light. A sensor using only detector ② relies on the principle of light
obscuration.

achieved in particle counters based on light scattering [42],
where the photodetectors are placed at different angles and
the scattered light is detected. The working principle of the
photodetector-based method relying on the principles of light
scattering and light obscuration is illustrated in Fig. 4. Optical
counters from Rio based on light scattering can detect particles
with sizes from 0.2 to 2 µm. Particles in a wide size range
can be detected with the optomagnetic detector based on the
formation of chains of ferrous particles in a liquid under the
application of a magnetic field. It can detect ferrous particles
in oil with sizes from ∼1 nm to ∼100 µm [35]. In liquids, the
light scattered by moving particles also yields key information
using Doppler anemometry [217], [218], photon correlation
spectroscopy (PCS) [219], [220], and photon cross correlation
spectroscopy (PCCS) [221]. However, Doppler anemometry,
PCS, and PCCS are inapplicable in freeze-dried vaccines.
In order to detect metal particles in opaque samples, it is
preferable to use light in wavebands other than visible light.
IR rays have been used for detecting wear debris in dirty oil
[35], and THz radiation presents unique properties making it
the source of new and promising methods for detecting metal
particles.

THz waves present several advantages, such as being non-
ionizing, noninvasive, and spectral fingerprinting [222], and
having a high penetration in nonconductive and nonpolar
materials, such as plastic [223], graphene [224], pressboard
[225], paper, clothes, cardboard, ceramics, wood, and some
food products. Since metals strongly reflect THz waves, THz
detection allows an easy distinction of conductive particles in
a nonconductive material [223]. However, water also strongly
reflects THz waves, making THz sensors inapplicable in
aqueous solutions. Using a transmitter and a receiver antenna
and detecting the scattered THz radiation, Kitahara et al. [223]
detected a single 300-µm stainless steel particle on a plastic
film, but smaller particles were not detected since the intensity
of the scattered light and the SNR ratio greatly diminished with
particle diameter [223]. Yang et al. [224] proposed a rapid and
accurate method providing the concentration of metal nanopar-
ticles in a nonpolar material based on a THz time-domain

spectroscopy (TDS) system. The method detected nanosilver
particles with an average diameter of ∼100 nm in a graphene
film [224] and relies on the fact that the used particles scatter
THz waves according to Rayleigh scattering, which yields a
linear relation between the transmitted THz amplitude and
the concentration of particles. However, thicker samples could
have a less predictable influence on the transmission amplitude
of the THz waves, and thus, the reliability of the method
could decrease in thicker samples. The effectiveness of THz
detection in vaccines depends, among other factors, on whether
enough radiation can be transmitted through the whole vac-
cine, which should be further studied. Gamma rays can achieve
high penetration and can, thus, be used in thick samples. The
sensor developed in [226] detects gamma rays produced by
positron annihilation and allows the nondestructive detection
of metal particles and other impurities in liquids confined in
relatively thick pipes, such as 30-cm aluminum tubes or 10-
cm stainless steel tubes [226]. However, the method implies
injecting positron nuclide in the sample, is only applicable to
liquids, and can damage the sample.

2) Imaging Sensors: Imaging techniques that have been
used for detecting metal particles can be classified into: 1)
microscopic techniques that are only performed offline and 2)
detectors that can be used online, mainly digital shearography,
direct imaging, lensless imaging, hyperspectral imaging with
IR/near IR (NIR), thermal imaging, THz imaging, and X-ray
imaging.

Metal particles have reportedly been detected with
microscopy techniques, such as photothermal microscopy
[227], [228], [229], [230] and interferometric cross-
polarization microscopy [231]; however, these methods are
only performed offline. Dark-field microscopy [232] and
nanoparticle tracking analysis have also been used, but they
are only applicable on the surface of liquids and cannot be
performed inline.

Direct imaging sensors use the light blockage by opaque
particles for providing images of relatively transparent sam-
ples; they can be applied in inline inspection and can detect
and count particles in oil as small as 5 µm in a 100-µm-thick
sample [233]. However, if a high resolution is needed, the
field of view (FOV) and the depth of view have to be
kept sufficiently small [234], limiting the inspection of large
volumes. The lensless sensor takes advantage of the diffraction
of light caused by particles and can achieve a higher depth of
view. For instance, it can reach resolutions around 2 µm in
large sampling volumes (FOV: ∼20 mm2 and depth of field
(DOF): ∼1 mm), detecting particles in the sample based on
the shadows that they generate [234]. In biological samples,
such as blood, 3-µm particles can be detected with a resolution
around 1–2 µm and an FOV of ∼25 mm2 [235]. The lensless
sensor in the coherent mode, also known as digital inline
holography (DIH), enables a further reconstruction of the
holographic images in order to resolve the original particles
with resolutions below 1 µm [234], providing the size, 3-D
position, and velocity of particles [236]. DIH has been used
for detecting aluminum particles in combustion [236] and wear
particles in lube oil [234], as well as tracking particles in
multiphase flows [237]. In [234], DIH was combined with
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stroboscopic illumination. As a result, wear particles were
imaged and detected with a field-of-view of 5.5 mm ×

4.1 mm, depth of view of 500 µm (for ∼70 µm particles),
and a resolution of 2.5 µm/px, with a flow rate around
1–3 L/min [234]. Although the direct imaging sensor and the
lensless sensor typically employ visible light, they could be
used with THz waves in order to detect metal particles in
an opaque vaccine. However, their working principle using
THz waves might change (e.g., in the case of the lensless
sensor, a diffraction of THz light different from the diffraction
of visible light by opaque particles could lead to a slightly
different technique). Hence, their possible application in a
vaccine is unclear.

THz-based cameras allow the detection of metallic objects
in industrial packaging [238], security screening (e.g., detect-
ing a knife behind a newspaper [239]), and food [240], [241],
[242], [243], e.g., inside a chocolate bar [244]. However, the
spatial resolution of THz cameras is on the order of some
hundred micrometers [243]. The use of a horn antenna has
been proposed for increasing the spatial resolution [240];
however, the obtained resolution was still over 500 µm. THz
pulsed imaging (TPI) has been used in the pharmaceutical
field [245] for determining the uniformity of tablet coatings
and measuring their thickness [245], [246], and presents
advantages such as employing extremely low power and being
insensitive to air bubbles [245]. In TPI, ultrashort pulses of
THz radiation are sent to the sample and partially reflected
back at each interface [246]. However, the optical delay has
to be scanned mechanically at each pixel, which results in a
slow acquisition [247], leading to the inspection of an entire
tablet requiring tens of minutes [245], which, although faster
than X-ray micro-computed tomography (CT), is still time-
expensive for inline application. A solution to this problem
was proposed with the use of a quantum cascade laser and a
scanning mirror, providing an image of ∼40 mm diameter in
1.1 s [248], obtaining an image of dimension 77 × 70 pixels.
In addition, using CT and combining the projection images
obtained at different angles, the authors obtained 3-D images
of an ellipsoidal sample with axes of ∼40 mm within 87 s.
However, the analysis was not aimed at the detection of
particles. Palka et al. [225] used a THz-TDS system, rastered
the THz beam over the surface, and, as a result, detected
∼300-µm metal particles in the middle of 2.5-mm-thick
pressboard samples, with an acquisition time of 0.3 s per
pixel. In addition, since the sizes of the spots caused by
the presence of metal particles were much bigger than the
actual particles, the imaging process could potentially be
performed more rapidly using larger step size, providing a
more easy detection than using X-rays, where the spots are
smaller [225]. Indeed, THz imaging provides higher contrast
than X-ray imaging [29]. In order to provide high sensitivity
while keeping a fast acquisition, Ok et al. [241] developed a
continuous-wave sub-THz transmission system with a polyg-
onal mirror for scanning, which yielded a faster analysis
than prior sub-THz transmission imaging systems. The system
achieved a scanning speed of 80 mm/s and a resolution of up to
2.83 mm, and according to the authors, a higher imaging speed
can be acquired with the use of image processing algorithms

and digital signal processing [249], [250], [251]. For some
applications, THz equipment cost needs to be addressed before
its commercial use is viable [252], [253].

IR cameras have also been used for detecting metallic
objects as small as 2 × 2 mm on the surface of pork steaks
using hyperspectral imaging [254], which provides both an
image and chemical information. However, the penetration of
IR is limited, and its use in freeze-dried vaccines has not been
studied. The IR radiation emitted by metal particles can be
enhanced with the application of RF waves, which induce eddy
currents in metallic materials and, in turn, raise their temper-
ature [255]. A thermographic camera is then used in order to
collect the emitted radiation. The detection of metal particles
based on thermographic cameras and induction heating coils
has been previously studied [190], [255], [256], [257], [258],
[259], [260], reaching the detection of a 0.15-mm-diameter
stainless steel particle in a ∼0.01-mm-thick high-performance
chemical film [256]. Its use would probably harm the vaccine
but only under the presence of metal particles.

In X-ray imaging, X-rays are sent through the sample,
and the transmitted or scattered rays are detected. The pen-
etration rate of X-rays decreases when the product of the
atomic number and density increases [261], which makes
metals such as iron or copper much less transparent to X-
rays than many materials such as food or plastic. In addition,
density changes can be detected due to changes in the gray
values in the resulting images [262], allowing the detection
of metal particles. X-ray imaging has been performed for
detecting metal particles in food [261], [263], [264], [265],
plastic [266], and biological tissue [267] using dark-field
radiography [268], [269], [270]. X-ray imaging can detect
metal particles as small as 0.3 mm in dry packaged food [264].
The X-ray inspection devices commercialized by Anritsu can
detect ferrous and nonferrous metals, with diameters as small
as 0.3 mm in dry products and as big as 240 mm (W ) ×

120 mm (H ) and at a belt speed up to 80 m/min. However,
X-ray imaging may be unable to detect metal particles pro-
ducing little to no shadow, such as extremely thin particles or
aluminum [267]. X-ray transmission imaging has been used
on planar samples allowing the detection of a 20-µm metal
particle in plastic [266]. To increase the sensitivity of X-ray
imaging, the dark-field mode has been developed, being in
some cases more sensitive than transmission imaging [269].
The resolution can also be increased through microfocus X-ray
radiography, using a very small focal spot, which provides
a higher resolution than conventional systems [271]. Due to
its high penetration capabilities, X-ray has been used in the
reconstruction of relatively large volumes, namely, through
X-ray CT (XCT), providing 3-D information. XCT has been
performed in biological objects [272], [273] and in fluids
containing particles [274], achieving the reconstruction of the
head of a mouse with a resolution of 7.6 µm and a scanning
time of 73 s [272]. Since metals have a higher density than
bone and biological tissues, variations in light attenuation can
allow their detection, making XCT a promising technique for
detecting metal particles in large volumes. X-ray micro-CT can
achieve higher sensitivity, reaching resolutions in the submi-
crometer range [275]. It has been used for the nondestructive
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characterization of food [262]; however, it requires long run
times and small samples, which makes it currently inapplica-
ble in rapid industrial inspection. More generally, in X-ray
imaging, higher sensitivity results in longer running times
(e.g., over an hour in [273]) and depends on the sample size:
for a 100-mm sample, the resolution will be 100 µm, while,
in a 10-mm sample, the resolution will be about 10 µm [262].
X-ray detectors have three main drawbacks.

1) X-ray imaging detects not only metals but also other
nonmetallic materials (depending on their density and
mass number) such as bone or stone. Thus, in order to
detect only metallic particles and to distinguish different
metals, the device has to be coupled to a chemical
inspection element such as in [266].

2) The X-ray method is costly and requires high voltage
power supplies [276].

3) X-rays can sometimes cause ionization and, thus, dam-
age the sample, e.g., when applied in food, X-rays
can damage some bacteria and degrade food taste [98];
however, soft X-rays have been used for the detection
of metals in food inspection [263]. Thus, the effect of
X-rays on a freeze-dried vaccine should be analyzed.

The sample analysis can be complemented with the recon-
struction of a surface profile, which can be done with optical
light using coherence scanning interferometry (CSI) [73] and
digital shearography [277], both providing rapid measure-
ments; however, metal particles cannot be distinguished from
nonmetal particles.

3) Spectroscopic Analysis Techniques: The light absorbed
or emitted by the sample can be used for deducing the
elemental and chemical composition through spectrometric
analysis. This can be performed using: 1) visible, ultraviolet
(UV) light, and X-rays that interact with the electrons in the
atoms yielding elemental information and 2) IR and near-IR
light that interact with molecular bonds yielding molecular
information.

Using visible light, atomic absorption spectroscopy (AAS)
and atomic emission spectroscopy (AES) have been used
for providing the elemental composition of aqueous solutions
[278] and performing oil analysis [279], [280], [281], [282],
[283], [284], [285], allowing the detection of metal particles
[286], [287], [288], [289], [290]. However, these two methods
require the atomization of the sample since the atoms have to
be in their ground state in order to allow the atomic absorption
to occur [291]. A variant of AES, laser-induced breakdown
spectroscopy (LIBS), provides an in situ quantitative and
qualitative analyses of samples and has been used for detecting
metals in food [292], [293], [294], semiconductor manufac-
turing [295], oil [296], [297], and so on [236], [296], [298],
[299], [300], [301], [302], [303], [304], [305], [306], [307],
[308], [309]. However, it employs a pulsed high energy laser
focused on a part of the sample, inducing high-temperature
plasma and, thus, exciting the atoms of the sample, resulting
in a small part of the sample being ablated. In addition, it only
provides a near-surface analysis.

In laser-induced fluorescence (LIF), visible or UV light is
sent to the sample, and the fluorescent radiation is collected
and used for sensing the elemental composition. LIF allows the

Fig. 5. Schematic of X-ray methods that rely on imaging and XRF.
The main components of the setup are ① collimating/focusing assembly,
② X-ray detector (such as a silicon drift detector) for elemental anal-
ysis, ③ X-rays emitted by the sample, ④ transmitted/forward-scattered
X-rays, and ⑤ X-ray detector for image generation (such as a super
metal intensifier camera [263]). Adapted from [263] and [316].

detection of elements with excellent sensitivity since the signal
is observed against a dark background [310]. It is nonintrusive
and nondestructive, and requires little to no sample preparation
[311]. In addition, 2-D and 3-D images can be obtained [310]
with a resolution below the mm range [312]. LIF imaging
has been applied in aqueous flows [313] and combustions
of propellants [314], [315] detecting iron atoms [314] and
aluminum atoms [315]; however, we contend that the low
penetration of visible and UV radiation in an opaque sample
would prevent its use on vaccines.

The use of X-rays, with a higher penetration depth than
visible and UV light, allows the analysis of particles at deeper
locations in the sample. In X-ray fluorescence (XRF), the
sample is excited with X-rays, and the secondary (fluorescent)
X-rays emitted by its atoms are detected and used to obtain
the quantitative elemental composition. XRF is simple, rapid,
and nondestructive, and the analysis is not limited by the
size of the particles, contrary to AAS or AES [317]. XRF
has been used for detecting metal particles in lubricating
oil [106], [318] and to estimate metal particle concentration
[317], [319] for concentrations down to 1 ppm such as iron
[319] and copper [318]. Furthermore, XRF can be used for
performing inline and real-time analysis of a moving sample
[316], and with a similar working principle, it could be used
for inline vaccine inspection. In addition, XRF can be used
in combination with X-ray imaging for obtaining both an
image and elemental information [266]. Fig. 5 provides a
schematic of the working principle of the inline XRF approach
[316] and the X-ray transmission imaging approach [263].
Note that the ionization effects on a vaccine due to the
exposition to X-rays should be studied. The sample can also
be excited with beams of accelerated electrons in order to
detect the emitted X-rays; however, this approach would harm
the sample and can only give information about the near-
surface. In order to achieve a more complete analysis, X-ray
absorption spectroscopy (XAS) can also be used, providing
electronic information, local structures of the sample, and
average diameter of particles [320]; it has been previously
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TABLE III
SUMMARY OF THE MAIN METHODS THAT CAN BE USED FOR DETECTING METAL PARTICLES IN FREEZE-DRIED VACCINES

used for detecting small metal particles [320], [321], [322].
XRD provides information about the crystal structure and is
nondestructive. It has been used for detecting and analyzing
metal particles [323], [324] with sizes down to 1 nm using
silicon slit detectors [324], measuring particle size [325].
However, only information about the near-surface is obtained,
and it requires a prior preparation of the sample, which can
be time-consuming and inefficient [224].

Molecular information can be obtained using IR spec-
troscopy (IRS) and Raman spectroscopy. IR rays interact with
vibrating atomic bonds in the material, transferring molecules
to higher energy states [326] at frequencies that depend on
the elements involved in the bond and the molecular struc-
ture surrounding it [327]. Both IR spectroscopy and Raman
spectroscopy are nondestructive and nonintrusive. IRS can
detect metallic ions or atoms due to their interaction with

the sample (such as the generation of new bonds and the
interaction with functional groups) altering the IR spectrum
[328], [329], [330]. IRS has been used for detecting metals
in oil [329], in solutions even under relatively severe pressure
and temperature conditions [331], in plants and soil [330],
and in powders using diffuse reflectance IR Fourier transform
spectroscopy (DRIFTS) [332]. However, in the transmission
mode, solid samples have to be thinner than 20 µm [326] and
sufficiently transparent to IR rays. For DRIFTS, the powder
needs to be in direct contact with the IR light, and thus, its use
on vaccines confined in glass tubes would make the detection
more complex. Raman spectroscopy relies on the inelastic
scattering of light. To produce a detectable signal surface,
surface-enhanced Raman spectroscopy (SERS) is commonly
used, where the sample is placed on a roughened metal surface,
and a laser with light typically in the visible or near-IR range
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is used [46]. SERS has been used for detecting metal ions
[46], [333], [334]. However, the quality of the spectra might
be affected by interference from the emitted fluorescence [29].
In addition, for near-IR and Raman spectroscopy/imaging, the
penetration depth is in general lower than a few mm [245],
making these methods inefficient for the inspection of an entire
freeze-dried vaccine.

4) Ferrography: In the area of oil analysis, ferrography has
been used for many years [37], [335], [336]. It relies on the
use of magnets to accumulate ferrous particles on a glass slide,
followed by an online analysis [35], [42], [337], [338], [339],
[340] or an offline analysis after extraction of the substrate.
However, its working principle makes it inapplicable in the
inspection of vaccines.

E. Electron-Based Methods
Metal detection methods based on detecting electrons are

mainly X-ray photoelectron spectroscopy (XPS) [322], [341],
[342], [343] and electron microscopes [332], [344], [345],
[346], [347], [348], [349], [350], [351], [352], [353], [354],
[355]. In XPS, X-rays are sent through the sample and
eject electrons from its atoms, yielding chemical information.
However, only electrons from a depth of a few nanometers can
be detected [342], and the method can only be applied in solids
or powders and requires high vacuum [341], [342]. In elec-
tron microscopes, beams of accelerated electrons are sent to
the sample, and the scattered and transmitted electrons are
detected. However, the transmission electron microscope can
only be applied in ultrathin samples, with a thickness of only a
few hundreds of nanometers [356], such that electrons can pass
through the specimen. The scanning electron microscope only
provides information from a depth of up to a few micrometers
[346]. In addition, the electron beam can damage the sample.

VI. SATISFACTION OF VACCINE
INSPECTION REQUIREMENTS

The vaccine inspection methods must satisfy the require-
ments listed in Table II. However, there is currently no
single method fulfilling all the criteria, as we summarize
in Table III. Instead of evaluating each reviewed method’s
partial fulfillment of Table II, we focus, in this section, on the
most promising combination of techniques for vaccine anal-
ysis. This promising set comprises soft X-ray detection, THz
imaging, and magnetic detectors—represented in the abstract
figure—which can be integrated inline using a noncontact
approach. Each of these methods exhibits the potential of
detecting stainless steel particles in vaccines. In addition,
inductive sensors are insensitive to nonmetal particles, X-ray
detectors to low-density debris, and THz sensors to noncon-
ductive particulates. Hence, their simultaneous use can lead to
the specific distinction of stainless steel contaminants.

In terms of nondestructiveness, magnetic and THz methods
fulfill the requirement. Although X-rays have the potential to
ionize and harm the vaccine cake, soft X-rays have been used
in food inspection in a nonharmful way. Therefore, the applica-
tion of soft X-rays in vaccine analysis should be investigated.

Regarding speed, X-ray detectors can be used on conveyor
belts at speeds of 80 m/min, and commercialized inductive

TABLE IV
ORDER OF MAGNITUDE ESTIMATES FOR MINIMUM DETECTABLE

PARTICLE SIZES FOR ACCEPTABLE DETECTION METHODS

detectors reach speeds of 12 L/min in oil channels, which
indicates that both approaches may meet the speed requirement
of Table II. However, for THz inspection, the detection times
can vary depending on the setup used; for instance, if the laser
is scanned over the sample surface, it may lead to detection
times below the expected speed. Further testing is necessary
to determine the applicability of THz methods in vaccine
inspection.

Table IV outlines the order of magnitude estimates of the
minimum detectable particle size for each method identified
as acceptable for freeze-dried vaccine inspection. Commer-
cialized inductive sensors can detect ferrous particles roughly
above 60 µm in diameter in nonconductive samples, and detec-
tion below that limit is mostly conditioned by factors such
as noise and particle-sensor distance. However, we believe
the integration of high-sensibility magnetic sensors such as
SQUIDs or GMR/TMR sensors, and the development of new
coil structures adapted to vaccine vials can lead to an increase
in the detectable particle size. Commercialized X-ray detectors
can detect 0.3-mm metal particles, and in planar samples,
20-µm particles can be detected; however, the detectable size
inside the vaccine cake remains unclear, as it depends on
factors such as the absorption of the X-rays by the vaccine
cake. Similarly, the detection capabilities with THz depend
on the absorption properties of the vaccine cake, and thus,
we expect experiments to know the size detection limits
with both X-rays and THz. It is also important to note that,
either using magnetic, X-ray, or THz detectors, the signal
caused by many small particles may be interpreted as a single
larger particle. Therefore, these sensors must incorporate an
automatic analysis of the signals.

Finally, the detection capability of these techniques for
stainless steel particles at any potential vaccine locations
remains unclear. To resolve this uncertainty, further experi-
ments in this area are expected.

VII. CONCLUSION AND FUTURE WORK

We have conducted what we believe to be the first
comprehensive review of metal detection methods, covering
more methods than former reviews. Based on our research,
we conclude that detecting metal particles in freeze-dried
vaccines is indeed possible under current manufacturing
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requirements. The main methods that we propose to explore
for detecting metal particles in freeze-dried vaccines are
summarized in Table III. In particular, we find RFID-based
sensors, magnetic detectors based on inductive, SQUID, and
GMR/TMR sensors, THz imaging, hyperspectral imaging,
thermal imaging, and X-ray inspection to be promising
approaches. Table IV summarizes the limitations of these
methods in terms of the order of magnitude of the minimum
particle size that may be detected using the method. For some
methods, the minimum detectable sizes were demonstrated in
experiments that sought to detect clusters of multiple particles
due to the nature of the investigated application. In reality, the
minimum detectable size for a single particle might, therefore,
be larger for these methods.

Despite limited experiments on vaccines, we believe that
most of the reported detection techniques could be used
without—or with slight—modifications to test for detection
reliability in vaccines.

Some material properties of freeze-dried vaccines may
limit the detection methods. These material characteristics
encompass a range of factors, including the magnitude of the
acoustic reflection coefficient, electrical conductivity, dielectric
permittivity, magnetic permeability, the depth to which static
electric or magnetic fields penetrate the material, and the
skin depth of various electromagnetic waves, e.g., RF, THz,
IR, visible light, UV, and X-rays. Additionally, consideration
should be given to whether there are notable ionization effects
resulting from brief exposure to UV and X-rays. However,
these material properties are unknown for freeze-dried vac-
cines and should be studied in the future to address their
impact. The glass container of vaccines could further affect
metal particle detection. For example, the glass container may
distort light beams and cause measurement errors.

The one dimension that remains to be established for most
detection techniques is detection depth as a function of particle
size in vaccine samples. This would establish the minimum
detectable particle size as a function of depth for each method.
Depth detection graphs will allow a better evaluation and com-
parison of the performance of different techniques. Another
metric that needs to be established in the future is the speed
of inspection for each detection method, which we believe will
be a function of the size and material of the sample.

Finally, physical effects, such as the coupling effect of
multiple particles in the generation of electromagnetic signals,
are not yet fully understood and can lead to detection errors.
Future research is required to explore such effects through
testing or simulation.

While this analysis focuses on the detection of stainless steel
particles in vaccine vials due to stainless steel being the most
common material in vaccine production machines, other metal
particles may possibly be present in vaccines as well. Particles
of a metal other than stainless steel are the subject of a future
analysis.
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