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Early Fault Classification in Rotating Machinery
With Limited Data Using TabPFN

L. Magadán , J. Roldán-Gómez , J. C. Granda , and F. J. Suárez

Abstract—Intelligent fault detection and classification is
a cornerstone of prognostic and health management of
rotating machinery (RM) research. Correctly classifying and
predicting RM faults not only increases productivity in indus-
trial plants but also reduces maintenance costs. The datasets
from real facilities needed to train fault classifiers often
have few samples due to the expense of provoking faults
in real scenarios to obtain data. This article proposes the
use of the tabular prior-data fit network (TabPFN) model for
the classification of faults in RM. TabPFN is a model which
has been pretrained with a large amount of synthetic data
with many causal relationships. This allows the model to
perform Bayesian inference on the data used for training. The
advantages of this model are its ability to be trained with
limited data without generating overfitting problems and its high speed (if a graphics processing unit (GPU) is available).
To compare its performance with traditional algorithms for tabular classification such as XGboost and random forest,
three public datasets were used. Results show that TabPFN performs more accurately than algorithms with limited data,
so it is suitable to be deployed in real scenarios when the amount of data available from the monitored RM is limited.

Index Terms— Fault classification, IIoT, predictive maintenance, rotating machinery (RM), tabular prior-data fit network
(TabPFN).

I. INTRODUCTION

THE fast growth of industrialization requires increasingly
safe, accurate, and effective machinery. Approximately

40% of electro-mechanical and mechanical systems include
rotating machinery (RM). These fundamental elements may
trigger serious faults due to the conditions where they are
installed and the long operating times [19]. Depending on
where these faults occur, they may be minor or major, but
they always entail a risk. Between 40% and 50% of RM faults
are caused in bearings. The second most common faults are
stator-related, accounting for 30%–35% of the total. Rotor
faults account for approximately 10%. The remaining faults
are caused principally by looseness or gear faults [7], [15].
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Maintenance accounts for 15%–60% of the total production
costs [30]. Predictive maintenance is the best alternative in
terms of both cost and performance, carrying out maintenance
tasks only when a fault has been detected, preferably at an
early stage [13]. Predictive maintenance can increase produc-
tivity by 20%, and the life of RM by up to 50%. Maintenance
costs can be reduced by 50% [6]. Detecting when an RM is
about to fail requires continuous monitoring, and it depends
on many operational factors, such as the rotating speed, the
load it supports, the type of bearings, and all the nearby
machines [14]. Early detection of faults is vital, leading to
a considerable increase in the availability and productivity of
machinery.

Fault classification enables proactive maintenance strategies,
such as condition monitoring and predictive maintenance,
by providing insights into the health status of RM [24].
Accurate fault classification advances the field of machinery
design and manufacturing, facilitating the development of
more robust and reliable RM with improved fault tolerance
and enhanced performance [12].

Data-driven models have emerged as a promising approach
for fault classification in RM, analyzing large amounts of
sensor data and identifying patterns for different fault types.
Data-driven models need a large amount of data for training.
In RM fault classification, this must contain RM faults, which
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is difficult to collect in real environments. A further compli-
cation is that RM behavior is not always consistent as RM
can work under different loads or rotating speed, and faults
may manifest themselves differently under different operating
conditions. The limited amount of data available is especially
problematic with recently installed RM. Overfitting is another
problem with data-driven models, especially when dealing
with limited data, as models tend to memorize noise rather
than learn true patterns [29]. Overcoming these challenges is
crucial to ensure the reliability and effectiveness of data-driven
fault classification models in real-world applications.

Although there are different data-driven approaches to
fault classification in RM, one of the most widely used is
deep learning [10], [11]. Gradient-flow-based meta generative
adversarial network (GAN) for data augmentation in fault
diagnosis by Wang et al. [25] addresses the scarcity of labeled
data. The authors propose using a flow-based meta generative
adversarial network (GFMGAN) and support this model with
single natural image (SinGAN), which deploys generative
models with a single natural image [23]. The distribution of
data is captured and characterized as vibrations by concatenat-
ing training samples and converting them into an image. The
generative model obtained is used to generate new samples
during the data augmentation process. To improve the ability to
generate the model, they introduce a gradient-flow-based meta-
learning technique. Finally, they use a convolutional neural
network (CNN) to perform the classification. The authors
validate their proposal with two types of bearing faults: inner
race and outer race. A minor limitation of the proposal is that
if a new type of fault is included, it is necessary to repeat
the whole training process including the data augmentation
process with the new fault. The characterization of vibrations
as images may limit the deployment of this system in real-
time.

Another work that uses CNN for the classification of
faults is CFCNN: A novel convolutional fusion framework for
collaborative fault identification of RM by Xu et al. [28]. The
authors extract multilevel features from the different vibrations
and integrate a module to merge these features using the
correlations between them. Then, a smoothing mechanism is
used to reduce possible overfitting when training the model.
Finally, the authors validate their model with a cylindrical
rolling bearing dataset and a planetary gearbox dataset. This
work integrates vibrations from different sources, although it
does not solve the problem of the limited datasets in this field.
The inclusion of a smoothing mechanism to avoid overfitting
is a step in the right direction, but may be insufficient when
classifying more types of faults.

An intelligent fault diagnosis method of small sample
bearing based on an improved auxiliary classification GAN by
Meng et al. [16] uses two different deep learning architectures
to solve the problem of data scarcity. The authors use a GAN
to generate data and perform the data augmentation process.
This neural network introduces the Wasserstein distance in the
cost function in a way that alleviates the vanishing gradient
problem. In addition, an attention mechanism is introduced
that focuses on the blocks obtained with the convolutions. The
features obtained by the attention mechanism are merged with

the convolutions to classify faults. The method is tested with
the public bearing dataset of Case Western Reserve University
and the bearing simulation dataset of the Yanshan University
Laboratory. Although the proposal is very interesting, it has
certain drawbacks. First, GANs are very prone to overfitting,
especially with limited data, which can cause them to gen-
erate very similar elements. They are also very sensitive to
hyperparameter selection, because a bad balance between the
generator and the discriminator can result in learning nothing
or always generating similar samples. Finally, the authors use
accuracy as a metric in imbalanced datasets, although other
metrics usually fit better in this type of datasets.

There are also proposals that focus on the methods to
characterize data, such as a visual vibration characteri-
zation method for intelligent fault diagnosis of RM by
Peng et al. [20], which measures vibrations using images.
These vibrations are obtained through the phase difference in
the image. This means that the differences between images
are obtained with their maximum frequencies. A video of the
machinery while working is recorded and this technique is
performed between different frames. This makes it possible
to characterize the vibrations as an image directly, without
transforming the vibrations into images, as in previous works.
Once the vibrations are characterized as image differences,
a CNN is trained to classify and detect faults. The novelty
of this work lies in the elimination of the signal-to-image
transformation process for the use of a subsequent CNN, but
the authors do not propose a mechanism to solve the problem
of limited training data.

It is common to use CNNs and characterize vibrations as
images. However, there are other approaches to data character-
ization, such as the graphs used in fault diagnosis of rolling
bearing based on knowledge graph with data accumulation
strategy by Xiao et al. [27]. In this work, the nodes contain
information about the different extracted features, and the
edges contain the feature-fault correlation. This representation
constantly updates the model with new data using weighted
random forest, which classifies the faults and also updates
the network information when training with more samples.
The strength of this proposal is that it generates a network
structure for the characterization, which enables incremental
training. However, it does not offer solutions for datasets with
few samples: the recurring problem in this field.

Different data-driven approaches to characterization have
been tested, and different data augmentation methods have
been developed to address the problem of the scarcity of
labeled data and consequently the overfitting of most of the
data-driven approaches. However, to the best of the authors’
knowledge, there is no work that proposes using a tabular
prior-data fit network (TabPFN) for fault classification. This
article proposes an early fault classification method using
TabPFN as a data-driven model to classify different RM
operating conditions when very little data are available, such
as in new installations or after changes in the RM operating
configuration. The performance of the model has been ana-
lyzed using three different datasets and its response tested as
the size of the training set decreases and the size of the test set
increases. The results show that the proposed model performs
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better than the traditional machine learning (ML) algorithms
when the amount of available data is limited. Furthermore,
the model makes better predictions without overfitting and
adjusting hyperparameters, training in less than a second using
graphics processing unit (GPU). This makes the proposed
classification method suitable for implementation with newly
installed or reconfigured RM.

The rest of this article is organized as follows. The key
concepts of the research are outlined in Section II. Section III
describes the environment used for testing. A description of
the tests carried out and the results obtained by the proposed
solution are shown and discussed in Section IV. Finally, the
concluding remarks and future work are outlined in Section V.

II. BACKGROUND

In this section, the key concepts for the development of this
work are described. In particular, the different RM faults to
be classified are analyzed, and TabPFN and its advantages for
the classification of these faults are described.

A. RM Faults
RM refers to any device that rotates, converting electri-

cal energy into rotational kinetic energy. It has two main
components: the stator, which is stationary, and the rotor,
which moves. The bearing, which enables relative motion
between the rotating and stationary parts, is essential to the
operation of RM. To ensure consistent productivity, RM must
operate continuously, with high reliability and no breakdowns.
This work uses datasets in which the major contributors to
RM faults are present: unbalance, misalignment, and bearing
faults [5]. Misalignment can be vertical or horizontal and there
are several types of bearing faults depending on where they
occur. Each of these faults is explained in more detail below.

1) Unbalance occurs when there is an uneven distribu-
tion of mass within the rotating component of the
machine. Unbalance is usually caused by defects in
manufacturing, wear, or improper assembly. This leads
to excessive centrifugal forces during operation, gener-
ating vibrations that affect performance and can be a
risk for the entire system [4]. If they are not properly
fixed, they can produce significant damage, reducing the
remaining useful lifetime of RM and in the worst cases
causing catastrophical damage. Vibrations can also have
detrimental effects on the surrounding equipment and
structures.

2) Horizontal misalignment happens when the centers of
rotation of the driving and driven components are not
perfectly aligned along the horizontal axis. It commonly
appears due to installation errors, thermal expansion,
or incorrect placement of the machine on its base [21].
If not properly addressed, it can cause excessive friction
and accelerated wear on horizontal shafts and bear-
ings, leading to reduced energy efficiency and increased
power consumption. To rectify it, precise alignment
techniques such as laser alignment or dial indicator
measurements are used.

3) Vertical misalignment is similar to horizontal misalign-
ment. It occurs when the centers of rotation of the

driving and driven components are not aligned, but in
this case along the vertical axis. Both types of misalign-
ment lead to similar issues: increased forces, vibrations,
and strains [21]. However, vertical misalignment affects
vertical components and can cause an increased stress on
thrust bearings. Like horizontal misalignment, vertical
misalignment can be rectified using precise alignment
techniques.

4) Outer race bearing faults refer to the breakdown or
malfunction of the outer race of bearings. The outer
race is the outer ring of the bearing, which encloses
the rotating elements that support and guide the rotating
shaft [26]. These faults usually appear due to misalign-
ment, improper lubrication, or excessive loads. They
can lead to severe consequences in RM, causing exces-
sive vibrations and noise, and reducing productivity
and efficiency. When outer race bearing faults are not
properly addressed, the fault can cause damage to other
components such as the shaft or the housing of the RM.
They can also lead to damage in external components
or structures that are connected to the bearing. Regular
maintenance, proper lubrication, and condition mainte-
nance are usually used to prevent them.

5) Inner race bearing faults are similar to outer race
bearing faults, but they appear in the inner ring of
bearings [26]. The inner ring interacts directly with the
rotating elements, facilitating smooth rotation. These
faults are caused by excessive loads, misalignment,
improper lubrication, or fatigue over time. They can
cause excessive vibrations and noise, as well as dam-
age to the shaft or housing of the RM, reducing RM
performance.

6) Ball bearing faults are the breakdown or malfunction of
the rotating elements of the bearing, which are metal
balls or cylinders that roll between the inner and outer
races of bearings [26]. They are used to reduce friction
and enable smooth rotation of shafts. When these faults
occur, they can lead to increased friction, excessive heat
generation and vibrations, reducing the RM efficiency,
and increasing energy consumption. They can also affect
other parts such as the shaft.

B. Tabular Prior-Data Fit Network
TabPFN is a prior-data fit network (PFN) [17] designed

to perform supervised classification tasks on tabular data [8].
This model proposes a radical paradigm shift with respect to
other current models in the state of the art. TabPFN provides
a transformer that has been trained to perform Bayesian
inference. For this purpose, single causal models are generated
and Bayesian neural networks are used. The objective is to
train the PFN model to approximate the posterior predictive
distribution of the data to be predicted as closely as possible.
The goal is for the transformer to perform Bayesian inference
for a wide range of causal relationships. When trained on
a different dataset, such a model is able to approximate the
posterior predictive distribution of new data in a single pass.

While classical approaches, such as neural networks, focus
on finding the distribution of the data based on each of the
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samples, TabPFN focuses on finding the best final distribution
given the initial distribution of the training data. Since TabPFN
has been pretrained with synthetic datasets that hold simple
causal relationships, TabPFN searches for approximations to
such causal relationships [18].

The experiments carried out by the authors seem to conclude
that a key difference with respect to other state-of-the-art mod-
els is that TabPFN does not incur overfitting when the dataset
is small. This is because it is pretrained with a large number
of datasets that collect different types of causal relationships.
Therefore, the model is able to achieve an approximation of
the final distribution of the new training data, as long as the
initial distribution of the new training data follows the patterns
it extracts from the pretraining data. It is also capable of
training without hyperparameter optimization, obtaining very
good training times, especially if a GPU is used.

However, TabPFN has a number of limitations. It can deal
with 1024 training samples, ten different families, and 100 fea-
tures at most. These limitations are due to the fact that the
execution times of the PFNs scale quadratically based on the
training data and the need to keep model training times short.
A softer limitation is that TabPFN degrades its performance
with missing values or categorical features. One example of
categorical feature is the lubrication level, which can be low,
normal, or excessive. Another limitation of TabPFN is that it
may fail to generalize when the data contain very complex
causal relationships, since it has not been pretrained with data
with such relationships.

These limitations mean that TabPFN has very specific
requirements. When these requirements are met, it is a viable
alternative that does not require hyperparameter optimization
and allows training in less than 1 s.

III. TEST ENVIRONMENT

The test environment was configured with an Intel1 Core2

i7-9750H CPU (2.6 GHz), 16-GiB RAM, and an NVIDIA
GeForce GTX 1650 (4 GiB) graphic card. The programming
language used was Python 3.10 using the PyCharm framework.
The proposed model was tested using three different datasets
to evaluate its performance under different RM conditions and
fault types. These tests were repeated with different tradi-
tional ML classification models: random forest (RF), support
vector machine (SVM), gradient boosting (GB), multilayer
perceptron (MLP), eXtreme gradient boosting (XGB), and
label propagation (LP). The results obtained by TabPFN were
compared with those of these traditional ML classification
models.

The datasets were divided into the training and testing sets,
varying the size of the training set. For each training set size,
each ML model was trained with the same training set and
tested with the same testing set to compare their performance.
If the models are trained with only one training set and tested
with only one testing set, the results obtained may be biased
by the training set used. For this reason, cross-validation
was carried out, repeating each test 50 times, varying the

1Registered trademark.
2Trademarked.

TABLE I
EXTRACTED TIME-DOMAIN FEATURES

training and testing sets and computing the mean of each
of the evaluation metrics. In addition, different experiments
were performed where the number of samples of the training
set was increased progressively, from 2% to 50% of the
whole dataset, using the remaining data in the dataset as
the corresponding testing set. The objective was to test how the
different algorithms behave with small training datasets.

The first step is to extract a total of seven time-domain
features from the raw vibration data of each vibration axis.
These time-domain features and the formulas used to extract
them are shown in Table I. Next, each of the datasets is divided
into several training and testing sets, using different sizes of
the training set. All the traditional classification methods were
previously configured by manually adjusting their hyperparam-
eters to obtain the best possible results. In contrast, TabPFN
does not need hyperparameter optimization.

To measure the performance achieved by TabPFN and
compare it with that of the traditional classification meth-
ods, each of them was analyzed as a multiclass classifier.
True positives (TP) are obtained when the classifier correctly
identifies an instance as belonging to a specific class, making
the prediction correctly. False positives (FP) occur when the
classifier identifies an instance as belonging to a particular
class when it actually belongs to another, making an incorrect
prediction. True negatives (TN) refer to instances that are
correctly classified as not belonging to a specific class. Finally,
false negatives (FN) appear when the classifier identifies an
instance as belonging to a specific class, but the actual class
label indicates that the prediction is wrong. The follow-
ing metrics were used to evaluate the performance of the
tests.

1) Accuracy: This metric measures the overall correctness
of the classification model by calculating the propor-
tion of correctly classified instances out of the total
number of instances in the dataset. It provides an assess-
ment of the ability of the model to correctly classify
both the positive and negative instances. Accuracy can



30964 IEEE SENSORS JOURNAL, VOL. 23, NO. 24, 15 DECEMBER 2023

be computed using the following equation:

Accuracy =
TP + TN

TP + TN + FP + FN
. (1)

2) Precision: This metric measures the ability of the clas-
sification model to avoid FP. Precision is computed with
the following equation:

Precision =
TP

TP + FP
. (2)

3) Recall: This metric measures the ability of the classifica-
tion model to avoid FN. It is a very important metric as it
tests the possibility allowing faults to appear in the RM
without being detected, which could cause a reduction
in productivity and even the complete breakdown of the
RM. Recall is computed using the following equation:

Recall =
TP

TP + FN
. (3)

4) F1-Score: This is used to provide a more global view
of the performance of the classification model. It is
the most balanced metric as it takes into account both
precision and recall, working well in cases of imbal-
anced datasets [22]. The F1-score is computed with the
following equation:

F1-score = 2 ·
Precision · Recall

Precision + Recall
. (4)

A brief description of each of the datasets is given below.
These datasets have been selected because they are imbalanced
and exhibit different types of failures in RM.

A. CWRU Dataset [1]
The CWRU dataset is one of the most commonly used

datasets in bearing fault classification. The test rig used for
this dataset consists of a motor, a token converter, an encoder,
and a dynanometer. Three vibration sensors are placed at
different locations (drive end, basement, and fan end) to collect
vibration time-series data.

CWRU simulates the system working under different oper-
ating states: healthy, inner race bearing fault, ball bearing fault,
and outer race bearing fault. Data were collected at different
rotating speeds, and each of the faulty operating conditions
was simulated with different levels of severity. Drive end
bearing faults were collected at a frequency of 12 and 48 kHz,
while fan end and basement bearing faults were collected
only at 12 kHz. For healthy operating conditions, data were
collected at 48 kHz.

During the tests, only healthy operating conditions and drive
end bearing faults were analyzed. Data collected from the
sensor were as segmented into 10 248 data points to gener-
ate samples from which to extract the time-domain features
shown in Table I. After preprocessing this dataset, a total of
2208 samples composed of seven time-domain features were
extracted, corresponding to healthy operating conditions, inner
race bearing faults, outer race bearing faults, and ball bearing
faults.

B. MaFaulDa Dataset [2]
The MaFaulDa dataset is another commonly used dataset in

fault classification in RM. It comprises various types of faults
at different rotating speeds and levels of severity. It consists of
multivariate time-series data collected from a machinery fault
simulator test rig. The machinery fault simulator simulates the
system working under different states: healthy, unbalanced,
horizontal misalignment, vertical misalignment, inner race
bearing fault, ball bearing fault, and outer race bearing fault.

The dataset is composed of 1951 files including vibra-
tion data collected from two three-axis accelerometers (axial,
radial, and tangential), the rotating speed, and the noise around
the system. Each data sample was collected at a frequency of
50 kHz for 5 s.

The dataset was preprocessed to extract the time-domain
features shown in Table I for each vibration axis. After pre-
processing the dataset, a total of 1951 samples were extracted,
each composed of 42 time-domain features (seven time-
domain features per axis per sensor).

C. HUST Dataset [9]
This recently published dataset consists of vibration data

gathered at 51.2 kHz from different bearings under different
operating conditions. There are a total of 90 raw vibration data
sample files, including four types of bearing states (healthy,
inner race, outer race, and ball bearing faults) on five different
bearings, under three different working conditions.

During the tests, all the bearings were taken into account.
Data collected from the sensor were segmented into 18 000
data points to generate samples that were used to extract the
time-domain features indicated in Table I. Once this dataset
was preprocessed, a total of 2036 samples composed of seven
time-domain features were extracted, corresponding to healthy
operating conditions, inner race bearing faults, outer race
bearing faults, ball bearing faults, and both inner race and
outer race bearing faults of five different types of bearings.

All these datasets after feature extraction are summarized
in Table II. First, the CWRU dataset was selected to test
the performance of TabPFN while classifying bearing faults
only. Then, the MaFaulDa dataset was used for the tests with
misalignment and unbalance faults. Both the datasets exhibit
a clear imbalance between healthy and fault states. Finally,
the HUST bearing dataset was used for the tests with bearing
faults for different bearing types while classifying states where
inner race and outer race bearing faults occur simultaneously.

IV. RESULTS AND DISCUSSION

The performance of the proposed model using TabPFN and
the performance obtained with traditional classification models
were compared. As explained in Section III, three public RM
fault diagnosis datasets were used.

In the next subsections, the results obtained for each of the
datasets are presented and discussed, comparing the TabPFN
model with the rest of the classification models.

A. Results Obtained With CWRU Dataset
Once the CWRU dataset was preprocessed, a total of

2208 samples, each of them with seven time-domain features,
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TABLE II
DESCRIPTION OF USED DATASETS

Fig. 1. Results of the CWRU dataset. (a) Accuracy. (b) F1-score.

were extracted. Only 216 of the samples correspond to
a healthy state of the RM. The rest of them contain
bearing faults: 649 ball bearing faults, 717 inner race
bearing faults, and 626 outer race bearing faults. The
dataset was divided into training and testing using 2%,
5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, and 45%
for training, which means using between 45 and 994 sam-
ples for training. The number of training samples was
always lower than the 1024 training sample limitation of
TabPFN.

Table III includes all the performance results (accuracy,
precision, recall, and F1-score) obtained by TabPFN and
traditional ML models used for fault classification in the
CWRU dataset while the training set size increases from

2% (45) to 45% (994) of the samples. The average training
time for each of the tests is also included. As can be seen in
Table III, TabPFN offers the best results in terms of accuracy,
precision, recall, and F1-score in all the cases. As for the
other ML models, XGB, GB, and RF offer good results,
but always worse than TabPFN. TabPFN is always trained
in less than 0.35 s. LP is the fastest trained in all the
cases, but its performance metrics are significantly worse
than those obtained with other models. The results of all
the models improve as the size of the training set grows.
A detailed comparison of the performance of TabPFN, XGB,
GB, and RF is shown in Fig. 1(a) and (b), where accuracy and
F1-score are analyzed, respectively.

B. Results Obtained With MaFaulDa Dataset
After preprocessing the MaFaulDa dataset, a total of

1951 samples were obtained, each of them with 42 time-
domain features: 49 of the samples correspond to the healthy
state and the rest to fault states. Of the fault state samples,
197 have horizontal misalignment, 301 vertical misalignment,
333 unbalance, 376 inner race bearing faults, 372 outer
race bearing faults, and 323 ball bearing faults. The dataset
was divided into training and testing using 2%, 5%, 10%,
15%, 20%, 25%, 30%, 35%, 40%, 45%, and 50% for
training, which means using between 40 and 976 sam-
ples for training. The number of training samples was
always lower than the 1024 training sample limitation of
TabPFN.

The results obtained with TabPFN and the traditional ML
models are shown in Table IV. TabPFN offers the best results
in terms of accuracy, precision, recall, and F1-score, except
when 20% of the dataset is used for the training set, when
MLP has slightly higher recall. As for the other ML models,
MLP, XGB, and RF have good results, but always worse than
TabPFN. TabPFN is always trained in less than 0.60 s. In these
tests, SVM and LP are trained faster than the rest of the ML
models, but the performance metrics obtained are worse than
the rest of the ML models. Again, the results of all the models
improve as the size of the training set grows. To facilitate the
comparison, Fig. 2(a) and (b) shows the accuracy and F1-score
of each of these models, respectively, as the training set size
increases.

C. Results Obtained With HUST Dataset
The HUST bearing dataset was preprocessed, and a total of

2036 samples, each of them with seven time-domain features,
were extracted. From these samples, 435 correspond to healthy
state while the rest correspond to bearing faults: 296 sam-
ples have ball bearing faults, 435 inner race bearing faults,
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TABLE III
RESULTS USING CWRU DATASET

TABLE IV
RESULTS USING MAFAULDA DATASET
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Fig. 2. Results of the MaFaulDa dataset. (a) Accuracy. (b) F1-score.

435 outer race bearing faults, and the remaining 435 samples
correspond to RM where there are both inner race and outer
race bearing faults. This dataset was divided into training and
testing using 2%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%,
45%, and 50% for training, which means using between 41 and
1018 samples for training. The number of training samples
was always lower than the 1024 training sample limitation of
TabPFN.

The results for each test are shown in Table V. TabPFN
provides the best results until the training set size exceeds
30% of the total. After this, the results obtained by TabPFN
are still good, but those of XGB are better. RF results are
also better when the size of the training set is 50%. The
training times of XGB and GB increase as the number
of training samples increases, always lower than 1.20 s.
The training time of TabPFN increases less than the other
two ML models, always lower than 0.65 s. LP is again the
fastest ML model to be trained, but the results are signif-
icantly worse than the results of the rest of ML models.
Fig. 3(a) and (b) shows the accuracy and F1-score of the
different ML models and TabPFN as the training set size
increases.

Fig. 3. Results of HUST dataset. (a) Accuracy. (b) F1-score.

D. Discussion
As can be seen in the results shown in Sections IV-A–IV-C,

TabPFN provides significant improvements in the classification
of RM faults. With the CWRU bearing dataset, the results
obtained with TabPFN are significantly better than those
obtained with the traditional ML models, especially when
the number of samples used for training is very low. As the
size of the training set increases, the performance obtained
by the traditional ML models becomes more similar to that
obtained by TabPFN. The results with the CWRU dataset show
TabPFN to be a valuable tool when classifying bearing faults
and healthy operation, in spite of the imbalance of the dataset.

In the second test, the MaFaulDa dataset was used, com-
bining bearing faults, vertical and horizontal misalignment,
and unbalance faults. In this case, TabPFN has significantly
better results for all the sizes of the training set. Thus, not
only is TabPFN valid for bearing faults’ classification but
also it provides better results when the dataset used is clearly
imbalanced, containing only 49 samples of healthy behavior
and approximately 300 samples for each type of fault. This
confirms the initial assumption that TabPFN tolerates training
with few samples without overfitting, even when the datasets
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TABLE V
RESULTS USING HUST DATASET

are highly imbalanced. These results make the proposed solu-
tion suitable for real scenarios where the number of fault
samples is low, such as new RM installations, changes in RM
operating configuration, or when the installation is already in
production but the number of faulty samples is limited.

Finally, TabPFN was tested with the HUST dataset, which
includes faults in bearings of different types. It also includes
samples with simultaneous inner race and outer race faults.
In this case, the results obtained are better than those of the
rest of the ML models until reaching 35% of the data as
the training set. From this point on, the results obtained with
TabPFN are still competitive but those of XGB are better.
These results may be due to the bias that was arbitrarily
introduced in TabPFN, with respect to causal relationships,
based on the Occam’s razor principle [3]. TabPFN gives more
importance to simple causal relationships, because of the large
amount of synthetic data with this type of relationship. In this
dataset, there are more complex failures so the result is slightly
worse, although it is still viable for classification in this
dataset.

TabPFN’s training times are consistently below 1 s, although
they are not the fastest. This is because the training is
performed with a single pass to adjust the weights of the
neural network. This is possible because the preweights of
this network were already defined in the pretraining with the
synthetic data used to generalize a large number of causal
relationships.

It is very important to predict healthy states correctly
to prevent unnecessary downtime of RM and therefore a
reduction in productivity and unnecessary maintenance costs.
Therefore, each dataset was divided into training and testing
using 10% for training and the remaining for testing to obtain
the confusion matrices. It must be noted that this test was
only done once, so the results shown in Fig. 4 correspond
to the confusion matrices of a single test. The vertical labels
correspond to the actual values and the horizontal labels to
the predicted values classified by TabPFN, showing how the
model classifies healthy states (H), ball bearing faults (B),
inner race bearing faults (IR), outer race bearing faults (OR),
horizontal misalignment (HM), vertical misalignment (VM),
unbalance (U), and simultaneous IR–OR.

As can be seen in Fig. 4(a), the healthy states are all
correctly predicted with the CWRU dataset. However, due
to the imbalance of the CWRU dataset, eight faulty states
are predicted as healthy. Something similar happens with the
MaFaulDa dataset [see Fig. 4(b)], where only two healthy
states are predicted as if they were faulty, but eight faulty
states were predicted as corresponding to healthy operating
conditions. Finally, as shown in Fig. 4(c), all the healthy and
faulty states are correctly predicted using the HUST dataset.

Based on the results obtained, TabPFN classifies healthy
states correctly although sometimes it classifies faulty states
as healthy. This problem is due to the imbalance in the dataset
of healthy and faulty states, where the number of faulty states
is much higher than the number of healthy states. In real
scenarios, the number of healthy states is much higher than the
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Fig. 4. Confusion matrices using 10% for training on each dataset. (a) CWRU dataset. (b) MaFaulDa dataset. (c) HUST dataset.

number of faulty states, making the proposed solution not only
feasible for industry but also achieving better performance than
the traditional ML models.

V. CONCLUSION AND FUTURE WORK

A novel early fault classification method for RM using
TabPFN with limited data has been proposed. The method
was tested using three different RM public datasets. Seven
time-domain features from each vibration axis were extracted
and then used to classify RM faults.

The results show that TabPFN works correctly with lim-
ited data for training, achieving better performance than the
traditional classification algorithms without hyperparameter
optimization, avoiding overfitting and completing the training
process in less than 1 s in a GPU. Furthermore, its abil-
ity to correctly classify healthy and faulty states has been
proved with both the balanced and imbalanced datasets. Thus,
TabPFN is suitable for use in industrial plants where the mon-
itored machinery has been recently installed or reconfigured
and the amount of data for training is limited. To summarize,
our achievements are as follows.

1) TabPFN is a reliable model for fault detection in RM.
2) The inherent characteristics of the datasets that generate

RM faults are beneficial for TabPFN. Good results are
achieved even with imbalanced datasets.

3) The TabPFN-based fault detector performs well in the
three public datasets tested because the model can gen-
eralize even with different types of faults.

4) In this context, TabPFN achieves competitive results
with other state-of-the-art algorithms, especially when
there are very few samples to train on.

Future work will be geared toward applying TabPFN to
current signature features in rotating machines that are not
accessible for vibration measurement, such as submerged
pumps. Moreover, its utility in other scenarios, such as gear
faults or even combustion motor faults, will be explored.
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