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A Low-Power Data Logger With Simple File
System for Long-Term Environmental

Monitoring in Remote Areas
Juraj Ďud’ák , Gabriel Gašpar , Roman Budjač , Ivan Sládek , and Peter Husár

Abstract—This research addresses the long-term mea-
surement of environmental data in geographically remote
areas and an energy-optimized method of storing data on
a storage medium. For this purpose, we have developed
our measurement module Advanced Data Logger (ADL).
In terms of connectivity, the module operates in three modes:
1) offline—when measured data is primarily stored on the
storage medium; 2) Internet of Things (IoT) ready—measured
data is stored on the storage medium and sent to the
remote server in defined batches; and 3) online mode—
when measured data is preferably sent to the remote server
immediately after measurement. The design aims to minimize
the module’s power consumption so that the autonomous
operating time is close to one year. As part of the design, the Simple File System (simpleFS) software module is designed
for the role of a simple file system (FS) optimized to minimize I/O operations. Its other feature in data storage is the
automatic normalization of the data transmitted from the attached sensors. The last part of the design is the AdlReader
software solution, used to configure the hardware (HW) module and to retrieve the measured data files. We verified
the correct operation of the ADL module along with nine sensors built in a vertical soil temperature profile probe in
experimental installation and operation for two months. According to the requirements for our solution, the expected
operation time of the ADL module is 9–12 months.

Index Terms— Data logger, energy consumption, file system (FS), memory, microcontroller, optimization, sensor.

I. INTRODUCTION

OVER the years, Internet of Things (IoT) devices have
established their place in sensing applications, mainly

due to their ability to be implemented as compact devices
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that can perform a task and be connected to the Internet
or a local area network [1]. IoT devices and especially in
the form of Industrial IoT are a vital part of the digital
transformation in Industry 4.0 [2]. The contribution of IoT
devices to the Industry 4.0 concept is mainly assumed by
sensing, collecting, and sending data among themselves or to
a higher-level system in a vertical control structure. From our
point of view, interesting situations may occur while using IoT
devices in rural areas. These are devices in forests, mines, and
remote farms to monitor air quality, soil composition, moisture
measurement, and further processing of the collected data [3].
In this case, power consumption is a critical concern. It is also
important to mention that wireless connection significantly
impacts device power consumption [4]. Typically, the power
supply for IoT devices is realized using solar panels and
accumulators. Consequently, in such a case, it is necessary
to provide a mechanism for collecting the measured data, and
with this comes the necessity to address the power consump-
tion efficiency of the individual modules of the off-grid device
and data processing.

The issue of optimizing the power consumption of data
acquisition equipment in Smart OffGrid IoT Deployments is
still an open question, and contributions can be made to this
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issue. Device power consumption can be influenced already in
circuit design. By selecting suitable electrical components with
lower power consumption and subsequent testing, lower power
consumption during operation can be achieved. Another option
to reduce the power consumption of the system is software
design. The power consumption of the microcontroller directly
affects the power consumption of the entire Data Logger [5].
Along with designing the running time of the OffGrid system
to operate efficiently in the time domain (scheduled operation),
the issue of reducing code complexity rises. Both of these
approaches are tailored to the specific application considering
the environment, the environmental conditions, and the goals
to be achieved by the data collection system.

In some cases, reliable connectivity is not available due
to the absence or unsatisfactory data network infrastructure.
Nevertheless, it is quite often necessary using independent
(autonomous) devices or measuring stations and obtaining
data in another way [6]. In the offline mode, data is often
transferred via the serial bus or USB interface. The use of radio
frequency identification (RFID)-type wireless communication
for the transmission of measured files is also potentially bene-
ficial and could increase the usability at the module installation
site. A proposal for such a solution is presented in [7].

In this article, we propose a comprehensive “Advanced
Data Logger” (ADL) solution, which includes hardware (HW)
and software design with emphasis on the minimal power
consumption of the HW module and efficient use of the
logger’s memory capacity for long-term measurements (in the
order of months), with support for a wide range of sensors.

From a scientific point of view, our objectives are to verify
the following hypotheses.

1) Reduction of total energy consumption can be realized
by the following:

a) appropriate integration of HW components;
b) optimal adjustment of the microcontroller operat-

ing frequency;
c) optimization of the program code—minimizing the

time required to communicate with the sensor and
the connected peripherals.

2) The way data is stored in the external memory also has
an impact on reducing the overall power consumption.
Due to the nature of the target application (data log-
ger), it is possible to implement a more straightforward
read-only file system (FS).

Having verified these hypotheses, our targets are mainly
given as follows.

1) Design and development of a low-power data logger
that allows efficient and reliable long-term monitoring of
environmental variables in remote areas. We will focus
our research on optimizing energy consumption through
advanced energy management techniques and verifying
its functionality and efficiency in real condition.

2) Design and implementation of an energy and
HW-inefficient and efficient way of storing collected
data on a storage medium through an optimized data
organization algorithm.

3) Creation of supporting software in the form of clients
and applications for communication with the proposed
HW.

The main scientific objective is to develop a data logger
for long-term environmental monitoring in remote areas with
optimized energy consumption.

A. Advanced Data Logger Proposal
A common problem with data collection systems deployed

in remote locations is their difficulty in accessibility. It means
that it is not possible to have immediate access to them.
In our case, it is a measuring station that is installed in remote
locations. One of the main problems in the design of the
proposed data logger is to reduce the total power consumption
of the proposed module and thus prolong its effective operation
time. Several approaches will realize the reduction of power
consumption:

1) HW Design:
a) selection of components with minimum

consumption;
b) appropriate choice of overall electrical wiring.

2) Software Design:
a) utilization of an efficient way of storing data logger

data—Simple File System (simpleFS);
b) exploiting the low-power modes of the microcon-

troller used;
c) optimizing the instructions in the firmware code—

reducing the number of operations required.
The reasons for choosing HW components are given

in Section III-C. Reducing power consumption through
power-saving modes is described in Section III-E. Last but
not least, optimizing the source code to reduce the number
of machine instructions needed is an important optimization
that should be addressed appropriately. The main task of the
whole device is to perform measurements on the connected
sensors and store the data on local storage. This storage
can be a solid state drive (SSD) memory card or a FLASH
ROM. We have excluded using SSD memory cards because
of possible mechanical damage due to external meteorological
conditions at the place of installation. The other option is
to use FLASH ROM memory, characterized by the speedy
memory read operation—on the order of units of clock ticks.
In contrast, writing operations are time-consuming. Another
aspect is the way the data overwrite operation is implemented.
In FLASH ROM, once written, data cannot be modified. If data
needs to be modified, the memory area or page needs to be
erased, and the data needs to be rewritten. Using the standard
file allocation table FS (FATFS) is possible, but the negative
consequence is the necessary modification of data in the FAT
area of the FS. In this article, we present a data storage method
using our proposed Read-Append FS system, in which the
need for data modification is eliminated. We have called this
system simpleFS. The essential features of this design are as
follows.

1) Support of memories with capacity from 4 kB.
2) Data is stored in binary format.
3) Possibility to create up to 128 files.
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4) There is only one file in the system to which data can
be written.

5) It is suitable for creating data files similar to CSV
format.

6) The file name is generated automatically.
7) Each file has a well-defined structure: the number of

columns or values for one record and the data-type
specification for each value, respectively, column.

When designing the method of storing the measured data,
the overall determination or realistic conditions for using
the data logger and the requirements for minimum energy
requirements had to be taken into account. The primary task
of the data-logger is, therefore, to measure and receive data
from the connected sensors and store this data in a storage
medium in the briefest possible time. Since the ADL module
is to operate autonomously, there is a need to eliminate all not
explicitly required operations. In particular, this is the ability
to open files on the storage medium—an algorithm needs
to be defined to determine which file to open automatically.
In the process of storing sensor readings, it is necessary to
know the format of the measured data in advance. Since
quantities of the same type (e.g., temperature) can come from
different sensors with different raw data format. The simpleFS
software module ensures a standardized data format for the
same measured quantities. No modification of the stored data
is required in the ADL lifecycle. Data is gradually incremented
and written to memory. Thus, no file modification is required.
Formatting or erasing the entire storage medium is the only
destructive operation required.

The ADL device described herein contains a FLASH mem-
ory on which the measured data is stored. Part of the overall
design is the proposal of a universal FS suitable for embedded
modules such as data loggers, where data is captured at a point
in time and a set of measured data needs to be stored, and these
data may be of different types. The proposed simpleFileSystem
data storage system stores data in line-oriented binary data
files, where each line contains values from all sensors. The
simpleFS software module presented in this article addresses
the data storage itself, the data line format, and also the
interface for processing the raw sensor data. Therefore, there is
no necessity to deal with data file manipulation and formatting
on the ADL application level.

The main goal of the work in this article is to signifi-
cantly (measurably) extend the working mode of IoT data
logger and support record level consistency using a cus-
tom FS implementation—simple FS. Simultaneously, verify
the proposed solution experimentally for meteorological data
measurements.

The presented solution, ADL is an autonomous data acqui-
sition device implemented as a stand-alone module intended
mainly for usage in remote environments in areas with limited
or absent communication capability. The purpose of data
logging can be to observe the condition of the monitored
object or location over a long period of time. For example,
to monitor changes in atmospheric pressure, relative humidity
and temperature at a selected location. The ADL module is an
embedded device based on the STM32L082 microcontroller
and can communicate with standard commercial sensors with

I2C, OneWire, SPI, or UART interfaces. Thanks to the real
time clock (RTC) block, the ADL module keeps the current
time after initial configuration via the software handler. For
the measurement itself, a single timestamp is assigned to all
measured data in a given measurement batch. The number
of different measurements is limited only by the internal
configuration of the library providing the implementation of
the FS used. These limitations will be described in detail in
the FS section.

II. RELATED WORK

In this section, the generally available solutions for logging
data are presented. There are several approaches available and
well-known to loggers design.

A. Data Loggers Application
Depending on the application, various solutions differ

mainly in the HW architecture with distinct limitations. Highly
popular is utilizing electronic prototyping platforms such as
Arduino and Raspberry Pi. For instance, Arduino was used to
monitor weather with a set of digital and magnetic weather
sensors connected to a data logger. As Bernandes et al. [8]
presented, utilizing low-cost commercial and open-source IoT
technologies fully meets the expectations regarding the relia-
bility known for high-cost professional weather instruments.
Of course, in professional applications, these prototyping
platforms are rare. Devices based on world’s well-known
and reliable microcontroller platforms are more common in
the practice of logging long time series of data. Specifi-
cally, this includes: STM32, Atmel, ESP, etc. Asaduzzaman
et al. [9] used a platform for building smart data loggers
preventing data losses caused by global system for mobile
communication (GSM) and Wi-Fi network instability. For this
purpose, a reduced instruction set computing (RISC) ARM
microcontroller was implemented in the proposed system.
The authors also declared that the system saves power on
account of implementing fragmentation and request to send
(RTS) threshold methods. The low-cost microcontroller Atmel
ATmega328 was used to control climate conditions and their
climate stability in the world heritage buildings. The dispersion
observed in daily averages is much higher than that of the
weekly or monthly levels [10]. Often, methods for data col-
lection use wireless technologies, especially in wearable smart
devices. The epidermal data logger based on RFID was used in
Miozzi et al. [11] to transfer measurement data of skin and to
upload the stored data into a crossing gate. Presented solution
focuses on logging the temperature and the moisture of the
skin. Another example for using low-cost devices in medical
applications is presented by Srisuchinwong et al. [12]. The
ESP32 microcontroller was used to transfer biomedical data
such as the heart rate, SpO2, or the body temperature to record
data for analyzing sleep quality. Moreover, Del-Valle Soto [13]
implemented a model using sleeping algorithms, focused on
the analysis of energy impact on different types of routing
protocols. Another example shows Mulyana et al. [14] which
demonstrates a data logger as a part of smart city solutions.
Their HW module is based on the ATmega microcontroller.
The proposed module monitors voltage level from photovoltaic
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TABLE I
EXISTING DATA LOGGERS SOLUTION COMPARISON

system of public street lighting. Furthermore, STM32 solutions
were applied in agriculture [15] as a logger for measuring vital
parameters of cattle on farms where data was transferred by the
LoRa system. Another agricultural example for the application
of low-cost and low-powered systems is the open source freely
available and noninvasive data logger for measuring individ-
ual movements in free ranging animals respecting ecological
principles designed by Shipley et al. [16]. Developed system
is based on a tiny and low-powered MSP430 microcontroller,
which enables for almost 100 days of work in the active
mode. Another way is the application for collecting data in
monitoring of industrial machines operating parameters [17],
[18]. As in other fields, microcontrollers were affected by the
opportunity of implementation of advanced algorithms based
on machine learning. Kalliris et al. [19] implemented global
positioning system (GPS) and controller area network (CAN)
bus data logger to classify road conditions based on acoustic
waves. As we show above, IoT data loggers are implemented
in various fields.

Mabrouki et al. [20] proposed a system based on Arduino,
made to monitor air and weather conditions without using
much energy. It uses special sensors that do not need much
power and has a built-in Wi-Fi chip, making it affordable and
efficient. Luharuka et al. [21] proposed another data logger
(based on Microchip PIC16C73B) that is designed with readily
available components and housed in a compact case capable
of storing up to 280 h of Galvanic Skin Response data, thanks
to a data compression algorithm and a 32-Hz sampling rate.
Recording data sessions were validated in laboratory settings.
The device consumes 210 mW of power and can function for
around 50 h, which can be in this specific domain considered
as low powered.

As is obvious from our research (see Table I), many
researchers use different MCU platforms to design low-

energy systems. For instance, Microchip PIC, Microchip
Atmel, or STM. This is mainly due to their accessibility,
versatility, and compatibility with various sensors and mod-
ules, which makes them suitable for energy-efficient projects.
However, in our opinion, for the deployment conditions,
we have preferred a custom board design utilizing STM32
microcontrollers. In the domain of low-powered data log-
gers, STM32 microcontrollers and custom-designed boards
are known to their adaptability and efficiency. The STM32
microcontrollers (especially L family) are known for their
minimal power consumption and high-performance processing
capabilities. These are particularly effective in environments
where energy conservation and real-time data processing are
paramount. Custom-designed boards provide flexibility and
cost-efficiency, allowing for the inclusion of only the necessary
electrical components and the optimization of each for mini-
mal energy usage, which is critical in applications with strict
power constraints. Additionally, these boards can be tailored to
optimize the physical layout for specific applications, offering
enhanced environmental resilience. The advanced features
such as integration capabilities and customization possibilities
offered by STM32 and custom-designed boards make them
more suited for sophisticated, power-sensitive data-logging
solutions in professional settings.

In existing solutions that use battery power, the focus is on
minimizing power consumption. In these cases, the authors
used HW components with reduced power consumption (see
[15], [16], [17]). In our present proposal, in addition to
reduced-power HW components, we also focus on other power
reduction methods described at the end of Section I.

B. Data Storage for Data Logger Purposes
Storing measured data is an essential requirement in design-

ing a data logger. The first parameter in the implementation is
the selection of the physical medium. When using a micro-
controller as the controller, the option is to use SD card
(SDIO interface), FLASH (SPI interface), or EEPROM (SPI
or I2C interface) memory. The second parameter is the choice
of a low-level data format or a suitable FS. The use of the
standard FATFS seems to be a logical choice. Jinhai [22]
analyzes the use of FATFS in embedded systems and compares
it with other FSs that are usable in embedded applications.
In its practical application, FATFS is used with a layered
architecture implementation where additional algorithms are
used for optimized searching, reading, and writing of data
to physical media. The use of FATFS for data storage study
[23], where the authors describe a portable device built on the
STM32F411 microcontroller that reads human physiological
data and stores it on a prepared SD card. Here the authors
used a write/read reliable FATFS, where they used a first in
first out (FIFO) buffer in the buffer function so that at the time
the data is read from the FS, they can prepare the just-scanned
data for writing. The proposed buffer has a capacity of 512 B
which is the maximum sector size in FATFS. He et al. [24]
demonstrates two SD (Dual-TF) interfaces in use with an 8-bit
STC microcontroller. Again, the FATFS is used.

Using the standard FATFS may not be the primary choice
in some applications. This decision may be due to the nature
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of the application, for instance, storage format requirements,
or additional limitations. Xu et al. [25] in their paper “A Fault-
Tolerant Non-Volatile Main Memory File System,” proposed a
specific way of storing data: the NOVA FS. This FS represents
an advanced FS design comparable to commonly used systems
such as ext4 or btrfs. The authors also provide a comparison of
FSs in the study. However, the solution is more performance
demanding for use with microcontrollers (microcontroller
unit). It is rather intended for microprocessors category devices
(microprocessor unit) [26] and used with PC operating sys-
tems. A detailed analysis and determining factors in selecting
a particular type of physical storage medium can be seen in
[27]. Mazumder and Hallstrom [27] list the parameters of
existing memory types such as write/read speed, number of
write/read cycles from DRAM, SRAM, FRAM, NVSRAM,
and FRAM. The authors proposed a fast, lightweight, and
reliable LoggerFS FS designed for wireless sensor networks.
In designing their FS, they considered three types of data:
sensor data, binary data, and configuration data. The LoggerFS
FS utilizes a hybrid implementation approach when RAM,
FRAM, and FLASHoperates simultaneously. The presented
system is also using a fixed size for the file of metadata
and it is implemented on an MSP430 8-bit microcontroller
containing 4-kB RAM and 64-kB FLASH.

The problem of minimizing energy consumption is
described in Othman and Maga [28], where the authors discuss
the energy consumption concerning the set of functions pro-
vided by a sensor node in a wireless network. It is advisable to
add the possibility of supplying the autonomous system from
a source other than the battery or combining the following
sources. The use of photovoltaic cells for energy harvesting in
a sensor wireless network module environment is described in
[29]. The authors compare different energy harvesting methods
ranging from solar radiation through the use of mechanical
vibrations to the use of thermal energy.

C. Energy Consumption
There are several ways to provide enough energy to power

OffGrid systems. For simplicity, we can divide them into
three main ways: 1) measurement-based energy profiling;
2) model-based energy estimation; and 3) simulator-based
energy estimation [30].

Ensuring sufficient energy is also possible by using energy
harvesting methods or decreasing the power consumption [31].
In our proposal, the method for reducing power consumption
and extending the battery life has been selected. Bradley and
Wright [32] focus on minimizing the power consumption
of Atmega328P. The main research focus was to decrease
the power consumption of SD card readers and its impact
on the data logging system. Lambert et al. [33] proposed
a strong foundation for power consumption distributional
characteristics based on manipulation of processors clocking
frequencies to reduce power consumption for Raspberry Pi
Computers. The presented solution reduced power consump-
tion significantly, with the purpose to use a full operating
system on devices where it was not possible due to power
consumption. Guo et al.’s [30] survey came up with a few

TABLE II
EXISTING POWER MANAGEMENT METHODS FOR EMBEDDED DEVICES

crucial elements that affect energy consumption in the case of
embedded devices.

Gakkestad et al. [34] introduce a 2.5-D integrated data log-
ger characterized by its low power consumption and efficiency.
This model prioritizes energy-saving, enabling prolonged and
consistent data collection, low power and efficient 2.5-D
integrated data logger with minimal power consumption.

Table II shows an overview of the analysis performed on
the current state of the art in reducing power consumption in
embedded devices. Existing solutions consistently focus on a
specific application task. In our proposal, it is a device for
data collection in remote areas, and the whole proposal is
subordinated to this power saving. The strength of our design
is the targeted focus on power consumption from several
aspects of design and development: from the choice of HW
components, the design of the HW circuitry, the way the
firmware is created, and the way the data is stored on persistent
memory with a minimum number of operations, but using
a particular data organization; the time optimization of the
measurement cycle for the temperature sensors used. The weak
point of our design may be the way of storing the measured
data on the storage medium—to read this data, a software
operator is needed, but it is included in this design.

III. MATERIALS AND METHODS

This section describes the implementation of the ADL mod-
ule itself. The overall solution consists of HW and software
design. In software design, a significant part is devoted to
designing and implementing the simpleFS library. The module
is designed to operate in three functional modes (see Fig. 1).

The first, RUN mode, a reduced-power mode in which the
necessary measurements are made, data is saved or sent, and
the module transitions from active to deep sleep (STANDBY).
The RUN mode activates itself based on the measurement
frequency settings. In this mode, it will open the last file
on the FS, where the measured values will be stored, the
values from the connected sensors will be read, and the
measured values will be written to the end of the open file.
In order to minimize power consumption, the microcontroller
core frequency is set to the minimum values at which proper
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Fig. 1. ADL state diagram.

functionality is ensured, and at the same time, the micro-
controller will not limit the connected peripherals with its
speed. After this action, the ADL enters the minimum power
consumption mode DEEP_SLEEP, in which all peripherals and
the microcontroller core are deactivated.

The second mode—MAINTENANCE—is activated when
the ADL module is connected to a PC for the purpose
of downloading measured data. In this mode, the battery
disconnector circuitry is activated, and the microcontroller is
set to maximum speed to maximize the transfer rate between
the module itself and the PC. In this mode, it is possible to
set the parameters of the ADL module, such as the current
time for the RTC or the interval for automatic measurements.
In this mode, the measured data can be downloaded to the PC.

The third mode is DEEP SLEEP mode. In this mode, the
RTC is set in the Alarm function. When the set time interval
has elapsed, it will cause the application to wake up set to
RUN mode.

A. Simple File System Proposal
The simpleFS custom library defines how to retrieve data,

format data into a standardized form, create data files, and
distribute data. In this work, we will use simpleFS as a
simplified FS suitable for embedded devices. Its basic features
include a straight overhead for fast data storage on the used
storage medium itself. By “fast storage” we mean minimizing
I/O operations, and thus the storage speed is close to the limits
of a given storage medium. Due to the nature of the resulting
application, simpleFS has been designed as a Read-Append
system. The system allows writing a file, but operations such
as deleting a file or modifying its name are not supported.
The reason for this is that the primary use of simpleFS is in a
data logger application, where the main purpose is to store
data. Toward implementing simpleFS on a specific storage
medium, there is an implementation interface. Any interface
(SPI, I2C, one-wire, parallel interface) can be used for the
storage medium that implements the simpleFS interface to
access basic I/O operations. simpleFS can work with any
storage medium.

Implementation features of simpleFS are as follows.
1) The Read/Append method has been implemented for

dealing with the memory.

TABLE III
VARIANTS OF SIMPLEFS CONFIGURATIONS

2) SimpleFS is independent of memory type (FLASH,
EEPROM) and communication interface (SPI, QSPI,
one-wire, I2C).

3) Memory support from 512 B of capacity.
4) The system is optimized for fast data storage and

reading. The time-consuming “delete” operation is not
used—except for deleting the entire memory in MAIN-
TENANCE mode.

5) Minimal overhead of simpleFS: 112 B–12 kB of the total
memory capacity for simpleFS itself, depending on the
chosen configuration (see Table III).

6) Maximum number of files depending on the size of
memory and chosen configuration (see Table III).

File properties in simpleFS are as follows.
1) Data is stored in a binary format—a fixed-point format.
2) The file is line-oriented, each line contains a timestamp.
3) Several sensor records can be attached to a timestamp.
4) Data is always appended at the end of the last file.
5) The file name is automatically generated as a unique

string derived from the HW identifier (ID) of the mem-
ory used.

6) The file size is limited by the size of the storage medium,
max. size is 4 GB.

7) Files are self-describing; including meta-information
about the stored data and its format in the file.

For storing data on simpleFS, an application programming
interface (API) (or library itself) is provided that contains the
following provisioning:

1) correct formatting of the same data from different
sources. For example, the format for storing temperature
will always be the same even when using different
sensors with different output value representations;

2) output formats, ensuring that the saved record is for-
matted according to the specification of supported data
types or supported sensors;

3) automatic opening/creating the file according to the
number and type of available sensors when starting the
data storage.

Fig. 2 shows the principle flowchart for initializing and
working with simpleFS. When the application starts, it tries
to open the last file in FS. If the file exists, it will open it.
It is followed by checking the contents of the file (finding
out the number and type of sensors that are stored in the file)
and checking the physically attached sensors. If the two sets
are not identical, a new file is created with the current list
of sensors. If this file is successfully created, the application
enters the RUN state. It transitions to the nonstandard ERROR
state and signals a failure if unsuccessful.
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Fig. 2. Principal flowchart for initializing and working with simpleFS.

B. SimpleFS Module Structure
When designing the software module or library of simpleFS,

we defined the requirements for the resulting library.
1) C language implementation to ensure easy implementa-

tion in other projects—an API will be created to access
the essential functions.

2) Independence on the used memory medium and its
capacity—simpleFS must be usable for memories with
SPI, I2C, one-wire communication interfaces; the struc-
ture of simpleFS must be applicable for memories from
512 B (one-wire memories) to tens of MB (FLASH
memories).

3) A unified interface shall be created for storing data of
any type—sensor data.

In the following text, we describe the memory map for
simpleFS.

1) Address Space: The available address space of the
storage medium is divided into four parts: PREAMBLE,
HEADER, META, and DATA (see Table IV and Fig. 3). The
PREAMBLE part is the memory ID; it contains information
about the version of the simpleFS implementation, the type
and capacity of the memory used, a unique memory ID, the
memory space usage variant used (see Table III), and the
maximum number of files that can be stored on simpleFS.
The size of the PREAMBLE area is constant at 32 B.

The structure of the individual memory areas is designed
in such a way that the determining parameters by which the
sizes of the individual areas will be set as: the maximum

TABLE IV
MEMORY AREAS OVERVIEW

number of files per simpleFS and the maximum number of
data in a one file line. These can be chosen arbitrarily, but there
are four configuration variants (see Table III): ultrasmall—for
memories with a minimum capacity of 512 B–2 kB, extra
small—for memories with low capacity (1–64 kB), small—for
memories with small capacity (32 kB—few MB), and large—
mostly SPI FLASH-type memories with capacity from 1 MB.
These values are only recommended and can be modified.

The second area of the memory is labeled HEADER and
contains a list of files that are stored on the storage medium.
The information about each file in this section occupies 32 B.
It contains the following sections.

1) File ID (1 B).
2) FILE_META_ADDRESS—the address to the block

containing the file format description (4 B); this address
is located in the META area.

3) FILE_DATA_ADDRESS—the address of the beginning
of the file (4 B); this address is located in the DATA
area.

4) Filename (16 B).
5) VALUES_PER_ROW—the number of data in a one line

of the data file (1 B).
6) RECORD_LENGTH—the record size for a one line of

the file (2 B).
7) N/A—reserved are 4 B.

The size of the HEADER area is defined by the maximum
number of files that can be stored on simpleFS. The minimum
size for the U variant is 32 B, and for the L variant is 704 B.
The size of the HEADER area is expressed by the following
equation:

HEADER_SIZE = MAX_FILES * 32 B. (1)

The MAX_FILES value is determined by the used config-
uration variant (see Table III) but another value can be used.

The third area, META, contains meta-information about the
files. This area is located after the HEADER area, is constant,
and contains information about existing files on simpleFS. The
data in the data file is stored line by line, where each line
represents values from attached sensors or generated data. The
META section stores information about each data line’s type,
format, and length. The data in a line is described using 12 B
as follows:

1) ID—sensor ID (8 B);
2) sensor type—classification of the stored value according

to the internal codebook (1 B);
3) sensor value format—specification of the format for the

data (3 B):
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Fig. 3. Memory map of simpleFS.

a) record value type—record length for the stored
value and interpretation format (integer, decimal
point) (1 B);

b) record Q type—precision specification for repre-
senting a real number in the fixed-point format
(2 B).

The data required to describe the format of the data in the file
taken (n · 12) B, where n is the number of data to store. For
variant U, the META area is 48 B, variant X—192 B, variant
S—1536 B and variant L—11088 B. The relation gives the
size of the META area in bytes

META_SIZE = MAX_FILES * vpr * 12 B (2)

where vpr represents VALUES_PER_ROW. The last, fourth,
area of the address space is labeled DATA. This area is used
to store the files themselves. A memory map of the simpleFS
system is shown in Fig. 3. As can be seen from relations (1)
and (2), the parameters that define the size of the overhead
(the HEADER and META regions) are the maximum number
of files (MAX_FILES) and the number of data in a single file
line (VALUES_PER_ROW).

The HEADER area lists the files, with 32 B reserved for
each file. The starting address for the i th file in the sequence
is

FILE_HEADER(i) = FILE_ID * 32 [B]. (3)

From this record, we can read the address for the description
of the i th file and the beginning of the data part

FILE_MA(i) = FILE_HEADER(i)[1,. . . , 4
FILE_DA(i) = FILE_HEADER(i)[5,. . . , 8] (4)

where FILE_MA (FILE_DA) is the acronym to FILE_
META_ADDRESS (FILE_DATA_ADDRESS). The expression
[1..4] denotes the first to fourth byte in the given data block.
The data structure FileDescriptor_t (Source code 1)
holds information about single file. It contains file ID, address
for file structure description (FILE_META_ADDRESS), and
address for file content (FILE_DATA_ADDRESS).

At the address FILE_META_ADDRESS(\textit{i})—
address of the i th file metainformation—there are data blocks
describing file structure, each of size 12 B. It contains three
parts: identification of data source (e.g., ID of sensor as a
data source)—8 B, type of stored data—1 B, and format
of stored value—3 B. The principle of this addressing is in

Fig. 4. Map of memory record.

Source Code 1. Data structures for file representation.

Fig. 4. This information is provided as program structure
RecordDescriptor_t in Source code 1.

2) Memory Interface: The simpleFS library defines the
address space, data and file handling, but does not include
functions for direct memory access. To implement a particular
communication interface, the MemoryDriver_t structure
(Source code 2) has been defined, which defines the set of
the low-level operations to be implemented for a particular
memory or memory communication interface.

The simpleFS library provides drivers for the SPI interface,
the one-wire interface, and the dummy interface (memory
RAM block) that is used for simulation (see Fig. 5).

3) Sensor Values Interface: To provide a uniform interface
for loading data into a file, the SensorInterface_t
interface (Source code 3) was created to provide the same
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Source Code 2. Interface MemoryDriver_t.

Fig. 5. Implementation of interface Memory_interface in simpleFS.

Source Code 3. Interfaces SensorInterface_t and
SensorValue_t.

access to each action: initializing the sensor (Init), resetting
the sensor (Reset), getting the sensor ID (getSensorId),
getting the sensor-type specification (getType), triggering
the measurement of the value on the sensor (Measure), and
retrieving the measured value (getValue).

Using the SensorInterface_t interface, all sensors
implemented in simpleFS can be accessed in the same way.

In the current version of simpleFS, interfaces for sensor data
or data types are implemented.

1) RTC data; the RTC peripheral of the STM32Lx micro-
controller is used.

2) A/D converter data; the ADC peripheral of the
STM32Lx microcontroller is used.

3) Data from DS18B20 temperature sensors on the one-
wire bus.

4) Implementation for storing primitive data types.
4) Application Programming Interface: The API functions in

the simpleFS library are divided into two categories.
1) Low-level API—universal memory interface access.

A specific implementation of the MemoryDriver_t driver
is used.

2) User-level API—user functions for working with sim-
pleFS itself and files.

SimpleFS is designed as a Read-Append system, ready for
fast addition and reading of data. The DELETE operation is
implemented over the entire address space. The Read-Append
implementation defines constraints on creating new files and
storing values in files.

1) Files occupy free space sequentially in the DATA area.
2) Data can only be stored in the latest file on simpleFS.
3) When a new file is created, the previous file is closed

and no more data can be saved into it.
Other properties of files on simpleFS are as follows.

1) The file name is generated automatically according to
the unique ID of the memory used; only alphanumeric
characters are used in the name generation; the file
name consists of the generated name, the file sequence
number, and the suffix “adl.”

2) The data is stored in a binary format to save space; the
data format for each file is stored in the META area.

For working with files, a user-level API has been created
that provides file manipulation on one side and communication
with a specific memory on the other side.

The interface for working with simpleFS can be divided into
two groups: functions for manipulating files and functions for
inserting data. These functions form the primary interface for
working with files in simplegaFS.

1) FS Related Functions:

a) FS_init() - init used low-level communication inter-
face;

b) FS_create_file()—create new file;
c) FS_open_file(id)—open file with given ID;
d) FS_num_files()—return number of existing files in

simpleFS.
2) File-Related Functions:

a) file_add_column()—add a new column in the data
file. The column in the created file represents a
sensor value. It has to be called in file creation
procedure.

b) file_data_row_begin()—create a new empty record.
c) file_store_data()—add new value to a new record.
d) file_data_row_commit()—write out prepared data

to a file.
e) file_size()—return size of an opened file.

C. Hardware Module ADL
The ADL module uses the STM32L08x microcontroller,

which belongs to the ultralow power microcontroller family.
A battery is used as the power supply (in STANDBY and
RUN mode) or power from the USB communication interface
is used in MAINTENANCE mode. The following peripherals
are part of the HW design.

1) External Memory for Storing Measured Data: The
memory-type used is NOR FLASH Winbond W25Q128.
SPI is used as the communication interface.

2) USB or UART Communication Interface: It is used for
communication with the ADL module and a file transfer
to PC.
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Fig. 6. HW design of automatic battery disconnection in the MAINTE-
NANCE mode.

3) One-Wire Communication Bus: This software implemen-
tation uses one-digital I/O pin on the microcontroller
side.

4) Control Circuit for Power Management: When the com-
munication interface (USB or UART) is connected,
the SSR relay is opened, ensuring that the battery is
decoupled from the supplied voltage. The switching
time of the used solid-state relay is short (approx.
5 ms), which prevents unwanted restart of the connected
microcontroller (see Fig. 6).

5) Available communication interfaces (I2C, SPI, UART)
for connecting additional sensors.

ADL HW module wiring diagram is shown in Fig. 7.
We provide a detailed list of HW components that signif-

icantly contribute to the overall reduced power consumption
design. This list corresponds to the wiring diagram in Fig. 6.

1) MCU: STM32L082—32-bit ARM Cortex M0+.
2) Low drop output (LDO) voltage controller

MCP1703T3302E. Not shown in Fig. 7, but it is
wired as recommended in the datasheet.

3) Solid-state relay LCB127 for detecting battery power.
Wiring according to the recommended wiring from the
datasheet (see Fig. 6).

4) 128-Mb Serial Flash Memory 25Q123FVSG (see Fig. 7)
for storing measured data.

5) N-channel FET transistor BSS123 for controlling the
one-wire bus to which the digital one-wire temperature
sensors are connected.

D. ADL Module Firmware
The ADL module operates in two active and one inactive

modes, as shown in Fig. 1. In terms of HW implementation,
these operating modes are described as follows.

Fig. 7. ADL wiring diagram and microcontroller block.

1) RUN mode is the basic mode, which is activated to
collect data and store it in a memory. Since the ADL
module uses a battery as a power source, the goal is
to minimize the time when this mode is active. In this
mode, the operating frequency of the microcontroller is
set to 4 MHz.

2) MAINTENANCE mode—the mode in which the ADL
module is connected via USB or UART communication
bus to a PC. The battery power supply is disabled. The
available power from the communication interface is
used as the power source. The operating frequency of the
microcontroller is set to 32 MHz, which is the maximum
frequency of the used microcontroller.

3) STANDBY mode—the mode where all microcontroller
peripherals except the RTC are disabled. In this mode,
the microcontroller power consumption is in the order
of microampers. The duration of this mode can be set
from 3 s to one day with a resolution of 1 s.

The core part of the ADL HW design is the RTC block—a
RTC that works with the alarm to ensure the application wakes
up at predefined time intervals. This interval is configurable
and can be changed using the AdlReader add-on software,
which is used to open and save measured data files and
also to configure the ADL HW module in the MAINTE-
NANCE mode. Fig. 8 shows the principle flow diagram of
the proposed application. When the module starts or wakes
up, after initializing the connected peripherals, an alarm is
set first, which represents the time in seconds of the next
wake-up of the application. The ADL application operates
in two modes: RUN and MAINTENANCE (see also Fig. 1).
Automatic mode selection is based on the detection of the
connected communication interface. The MAINTENANCE
mode is followed by the opening of the latest file located
on the simpleFS. This is followed by a sensor detection
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Fig. 8. ADL principle algorithm.

operation. A new data file is created if the number or type
of sensors detected is different from the open file. Then the
values from the prepared sensors are read, saved to the file, and
the microcontroller goes into a deep sleep state (STANDBY
mode).

When an active communication interface is detected after
waking up the microcontroller, the application enters the
MAINTENANCE mode allowing communication with the
application using the uBUS communication protocol [35],
[36]. If the communication interface is disconnected in MAIN-
TENANCE mode, the application enters RUN mode as shown
in Fig. 8.

There are three operational states of RUN mode as follows.
1) OFFLINE: The ADL module works offline. All mea-

sured data is stored in an external memory. To access
the data files with measured values, the module must be
connected to a PC.

2) IOT-READY: The measured data is stored in an external
memory. The prepared data is sent to a remote server at
defined time intervals. This interval is configurable.

3) IOT: After measuring the data, the data is immediately
sent to a remote server.

E. Minimization of Energy Consumption
An essential aspect of the firmware design was ensuring

minimal power consumption, especially in RUN mode when
the battery is the only source of power. ADL application
parameters in RUN mode.

1) Microcontroller operating frequency: 4 MHz.
2) Deactivation of unused peripherals: UART.

Fig. 9. ADL module current draw in RUN mode.

3) Microcontrollers internal operating voltage-level con-
troller is reduced to 1.5 V when the core operating
frequency is limited to 16 MHz (VOLTAGE_SCALE2
level) [37].

4) The operating time in this mode is minimized to
the essential minimum, which includes initializing the
peripherals, opening the data file, reading the values
from the sensors, and saving the values to a file.
After this active time, the ADL device switches to the
STANDBY mode.

In the STANDBY mode, the power consumption is minimal.
Only the RTC module is activated in the microcontroller,
which consumes 730 nA. To this consumption is added the
current consumption of the HW module, which totals in
210 µA.

Identification of ADL Current Draw in RUN Mode: Fig. 9
shows a plot of the supply current versus time in RUN
mode (see Fig. 1). Over time, the current draw is affected
by the operations defined in the ADL module firmware. The
particular time periods can be divided into five parts.

1) t1: Initialization of the necessary microcontroller periph-
erals. This time interval starts with waking up the
microcontroller from STANDBY mode.

2) t2: Initialization of the simpleFS system and initializa-
tion of the connected sensors.

3) t3: Opening the active file, where the measured data will
be written.

4) t4: Starting the measurement on the sensors and waiting
for the data to be ready.

5) t5: Reading the measured values and writing them to a
file.

In the ADL module, DS18B20 sensors were used as
temperature sensors, resulting in time sessions that must be
considered. The DS18B20 sensors are digital thermometers
communicating on a one-wire bus. The one-wire serial bus
communication protocol operates at a baud rate of 16.3 kb/s.
Therefore, for example, it takes 20 ms to read a single reading.
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The following time values t1–t5 were measured with the
following configuration: five DS18B20 sensors, the number
of files per simpleFS was 11.

1) t1 = 73 ms.
2) t2 = 122 ms. This time includes loading the list of

available sensors. 20 ms is required to identify one
DS18B20 sensor.

3) t3 = 15 ms. This time includes opening the latest
file to find the end of this file. The end-of-file search
algorithm is optimized for speed—a modified binary
search algorithm is used, but the resulting time is
affected by the total memory capacity, which in this case
was 128 Mb.

4) t4 = 100 ms. Time required to convert the sensor data.
5) t5 = 150 ms. Reading the measured data from the

sensors and saving it to a file.

IV. ENERGY CONSUMPTION MINIMIZATION

An important part in terms of minimizing energy require-
ments is the time t4 (see Fig. 9) when the MCU has to wait for
the temperature data transfer to complete. The consumption
at time interval t4 can be minimized by two simultaneous
procedures.

1) Reducing the Accuracy of the DS18B20 Sensor: After
sending a request to measure a value, it is necessary to
wait a certain time (conversion time) until the measured
value is converted, when using DS18B20 digital ther-
mometers. This time depends on the resolution of the
sensor. The resolution of the DS18B20 sensor can be
set from 9 to 12 bit. The time required for conversion
is from 94 ms for 9-bit resolution to 750 ms for 12-bit
resolution. In the ADL application, 9-bit resolution was
chosen.

2) Reduction of the MCU Operating Frequency During
the Wait Time: The microcontroller supports operating
frequency from 65 kHz (RANGE 0) to 4 MHz (RANGE
6) when using the internal RC oscillator as a clock
source.

Table V shows the dependency of the measured microcon-
troller power consumption during the RUN mode life cycle
with respect to the set frequency in the wait state for the mea-
sured temperature data conversion. The actual measurement
process and reading of the values were as follows.

1) The operating frequency of the microcontroller was set
to 4 MHz.

2) After sending the temperature conversion request, the
new working frequency of the microcontroller was set
from 131 kHz to 2 MHz.

3) After the conversion time expired, the frequency was
again set to 4 MHz.

A. Basic Concept of Energy Minimization
From the instantaneous electric current consumption values

i(t), the total electric charge (Q) consumed was calculated from
the following equation. The individual frequencies that were

TABLE V
TABLE OF THE MEASURED POWER CONSUMPTION PARAMETERS OF

THE ADL MODULE IN THE RUN MODE

TABLE VI
INDICATION OF MICROCONTROLLER OPERATING FREQUENCY RANGES

used as the operating frequencies of the microcontroller are
listed in Table VI

Q =

∫ t

0
i(t) dt. (5)

In case we know the different stages of the life cycle in
RUN mode, we can write relation 5 in a simplified way as in
the following equation:

Q ≈

5∑
i=1

ti Ii (6)

where

Ii = I (t)
∣∣ti
ti−1

. (7)

The magnitude of the electric current at time interval t4 is
determined by the manufacturer of the used sensor. The current
value represents the consumption in the mode of measuring
the value on the sensor. The current level is approximately the
same in the other time intervals. The amount of consumption
can be influenced by setting the clock frequency to lower
values. This method was also used in this case. Table VI lists
the frequencies at which the total current consumption was
measured.

As shown in Table V, when the frequency is set lower
than RANGE 3, i.e., 524 kHz, the total charge consumed
increases, which may be due to the increasing time required
to change the frequency of the microcontroller. Additionally,
the total charge consumed increases when the core frequency
is increased above 524 kHz (RANGE 4 and 5). This is due to
increased power consumption when the operating frequency
of the microcontroller core is increased.

Table V shows the duration of the RUN mode and the
measurement of the total power consumption as a function
of the microcontroller operating frequency setting at time t4.

A suitable choice is to reduce the operating frequency of
the microcontroller to 524 KHz (RANGE 3) at time t4, which
will minimize the current draw in part t4.
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Fig. 10. AdlReader configuration application.

B. Support Software
The MAINTENANCE mode is automatically activated

when the ADL module is connected to the USB/UART
communication interface. The following operations can be
performed in this mode.

1) Display information about the ADL module: memory
used, its capacity, and used space.

2) Display the list of files stored in the ADL module.
3) Save existing files to the PC in the CSV format.
4) Set ADL module parameters: current time for RTC

microcontroller module and the time interval for RUN
mode activation.

Fig. 10 shows a preview of the AdlReader software control
screen.

The AdlReader software was created in Python using
the senlib library, which was created to communicate with
measurement modules using the uBUS [38] communica-
tion protocol. The WxPython library was used to create
the first version of the GUI. The resulting application is
platform-independent and it works under commonly used
operating systems.

V. RESULTS

The proposed ADL module represents a complex solution,
including the HW design and a software solution for storing
the measured data in binary files, performing the measure-
ments on the sensors at defined intervals, creating a software
application for setting the parameters, and storing the datasets.
An important aspect of the whole design is the total time of
module autonomous operation. We can consider a measure-
ment interval of 15 min. During these 15 min, the ADL module
is in STANDBY mode and its power consumption is 0.2 mA.
According to Table VII, this mode accounts for up to 99.94%
of the total time. The working time in RUN mode depends on
the number of connected sensors, but according to the results
in Table V we can consider 0.5 s. The ADL module uses three
pcs of AA batteries connected in series as a power supply. The
capacity of AA batteries varies from 2000 to 3000 mAh. Let us
consider a battery capacity of 2500 mAh and the consumption
given in Table VII.

TABLE VII
CURRENT CONSUMPTION IN ADL OPERATING MODES

TABLE VIII
TABLE OF THE MEASURED POWER CONSUMPTION PARAMETERS OF

THE ADL MODULE IN RUN MODE

We calculate the average current consumed during one
operating cycle as a weighted average

I = 0.22 mA ∗ 0.9994 + 4 mA ∗ 0.006 = 0.24386 mA. (8)

For the power supply, three AA batteries were used in
series, so the supply voltage equals 4.5 V. The LDO voltage
regulator used a minimum voltage value of 3.9 V. The accepted
supply voltage level is, therefore, U > 3.9 V, which means
a minimum voltage value for each battery of Ubat = 1.3 V.
Lorenz [39] dealing with the design of a data logger for
pressure sensing analyzed the power consumption require-
ments. In his study, AA alkaline batteries with the capacity
of 2200 mAh and a constant discharge current of 50 mA were
used. Comparing these results and the datasheets of different
battery manufacturers and the fact that the discharge current
in our solution is of short pulse nature, we chose 70% as an
acceptable limit for the battery capacity. Thus, if we consider
a battery capacity of 2500 mAh, its effective capacity will be
2500 mAh ∗ 0.7 = 1750 mAh. The estimated battery lifetime
is 1750 mAh/0.243868 mA = 7176 h = 300 days. Table VIII
shows the consumption data in RUN and STANDBY modes
as a function of the time tSTANDBY, i.e., the time between
two measurement cycles. The real measured consumption of
1.56 mAs in RUN mode is used in the calculations. The
consumption in STANDBY mode was measured ISTANDBY =

0.2176 mA. Column CSTANDBY represents the consumption
during one interval tSTANDBY, and column COVERAL represents
the consumption during a complete cycle: tSTANDBY + tRUN.
Depending on the time tSTANDBY, the number of measurements
for one day is determined and the total consumption for one
day is calculated from Fig. 10. The last column is the total
operating time.

Another aspect of using the simpleFS library is the memory
requirements. Since the data is stored in binary form, the
volume of data is reduced. Again, let us consider a data
measurement interval of 15 min and the following data to
be stored: measurement timestamp, voltage of the battery
used, and ten temperature sensors. The timestamp is 4 B in
length, the battery voltage is 1 B, the temperature is 2 B in
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Fig. 11. Dependence of the ADL module operating time on the tSTANDBY
time.

length, for a total of 25 B. The number of measurements in
24 h is 96, so 2400 B is needed in one day. If the battery
capacity is sufficient for 360 days, the required capacity is
360 ∗ 2400 B = 844 kB.

When determining the minimum time the ADL module is
in STANDBY mode, both parameters must be considered:
the capacity of the battery used and the memory capacity.
Fig. 11 shows the dependence of the ADL module operation
time on the selected interval tSTANDBY, when the ADL module
is in the minimum power state. The parameters chosen for
this chart are the battery capacity, where the total time limit
approaches 365 days, and the memory capacity for storing all
the measured data. If we consider a memory with a capacity
of 16 MB, then the minimum STANDBY mode time is 40 s.
At this time, the battery life is 295 days and the memory
capacity is sufficient for 310 days.

In the section dealing with the ADL module consumption
in run mode (see Table V), it has been empirically found
that during the time when the microcontroller has to wait for
the measured value conversion to complete on the sensors,
it is advantageous to change the operating frequency of
the microcontroller to 524.288 kHz. In Fig. 12, the energy
savings are shown in terms of the number of days gained by
this measure, depending on the measurement interval or the
time tSTANDBY when the ADL module is in the STANDBY
state. The curve shows energy savings converted into days
after MCU frequency optimization applied (microcontroller
frequency reduced to 524.288 kHz).

As can be seen in Fig. 12 the most significant energy
savings are when the tSTANDBY time is approximately 10 s.
However, at this measurement interval, the lifetime is only
189 days (according to Fig. 11). With a measurement interval
of 5 min, the saving is converted to 1.2 days.

As mentioned in Section I, the data in ADL is stored
in binary format, which guarantees raw data compression.
To quantify the compression ratio, we take the file shown in
Fig. 10 (the file in simpleFS is shown in AdlReader software),

Fig. 12. Energy saving by changing the operating frequency of the
microcontroller, expressed in days of operation.

Fig. 13. Experimental meteo field.

which has a binary size of 8722 kB. After converting it to a
readable CSV file, it has a size of 34892 kB. The file contains
677 000 records. The saving of memory space compared to
the text format is four times higher.

Case Study
The validation phase of the proposed design was imple-

mented at the University of Zilina’s campus (see Fig. 13),
within a locally operated meteorological field. There are
experimental meteorological stations on the territory of the
University for the needs of research of the University of
Zilina in this scientific field. In addition, we are planning a
simultaneous deployment at a second experimental site with
a higher level of influence from the external environment.
The second site is located in a forest environment for the
long-term measurement of soil temperature parameters near
forest roads. Several meteorological systems are part of this
field for intercomparison purposes. Further deployment of the
proposed solution is planned in a forest road environment,
where supporting measurements are performed in order to
obtain data input to the pavement degradation simulation
model. The measurements are carried out in two separate
locations located in the valley at the beginning of the forest
road and at the top of the mountain where the forest road ends.



31192 IEEE SENSORS JOURNAL, VOL. 23, NO. 24, 15 DECEMBER 2023

Fig. 14. ADL prototype.

Fig. 15. Temperature measurements records obtained from the pro-
posed data logger.

Fig. 14 shows a prototype of the ADL board with attached
probe containing five DS18B20 thermometers ready for prac-
tical deployment.

The measured data from the vertical temperature probe for
one month are shown in Fig. 15.

VI. DISCUSSION

This article presented the ADL, a device designed for
long-term autonomous data collection. In the design and
implementation of the ADL solution, an effort was made
to prove the hypotheses defined in Section I. Hypothesis
1 concerned ways to reduce the overall power consump-
tion through appropriate choice of HW components, optimal
microcontroller operating frequency setting, and application
firmware optimization.

In the development of the presented solution, several meth-
ods of saving energy consumption of the ADL module were
applied.

1) When choosing a microcontroller, we focused on micro-
controllers of the STM32 family. Since this is a simple
device, the target microcontrollers were identified from
the low-end family containing the Cortex M0 core. There
are two series: the STM32F0 and the STM32L0, with
the F0 series referred to as the Value-Line and the
L0 series as the “Low-Power” solution. These micro-
controllers have similar power levels in RUN mode,
but in STANDBY mode, the power consumption of
the L0 microcontroller is an order of magnitude lower
(1.22 versus 0.53 µA).

2) Utilization of power-saving modes of the microcontroller
used. In the inactive state, the power consumption is
reduced to 8.8% (0.22 mA) of the power consumption
in the active state (4 mA) (see Table VII). The consump-
tion of 0.22 mA includes the consumption of auxiliary
circuitry. This finding confirms Hypothesis 1.A.

3) At the time of measurement (RUN mode), the fre-
quency of the microcontroller core varied adaptively (see
Table V and Fig. 12)—Hypothesis 1.B. In validating
this hypothesis, we found that the RANGE_3 working
setup, which refers to the voltage level of the logic
signals at the microcontroller core level, is the most
suitable for this task.

4) For the measurements on the connected one-wire sen-
sors, the time for converting the measurement values was
minimized from the original 750 to 100 ms (see Fig. 9,
time t4)—Hypothesis 1.C. By reducing the time required
for the conversion, we have reduced the accuracy of the
measurement from a resolution of 2−5 ◦C–2−1 ◦C, which
is acceptable given the nature of the measurement.

The design of the HW part was focused on minimizing the
power consumption. According to the measured consumption
values in the RUN and the STANDBY modes, we esti-
mated the runtime depending on the measurement interval in
Section V. For a measurement interval greater than 5 min, the
running time is 320 days, which is almost 11 months under
the given conditions. To verify this hypothesis, we changed
the parameter tSTANDBY to 3 s, and we used a Li-ion 18 650
type battery with an assumed capacity of 2000 mAh. With this
configuration, the device’s operation time was approximately
65 days. Converting the values in Table VIII using an assumed
battery capacity of 2000 mAh yields a value of 79 days. The
estimated and calculated runtime values are similar, which
leads us to conclude that the values will be similar for a more
extensive tSTANDBY time.

Hypothesis 2 was verified by designing a simplified storage
system (see Section III-B). In this approach, a data storage
method was designed where the operation of overwriting the
data on the physical medium was eliminated. When NOR
FLASH memory is used, reading from memory on a byte-
by-byte basis or in block mode is possible. However, a write
operation is a block operation that must be preceded by erasing
a memory block (4-kB sector, 32-kB block, or 64-kB block).
A write operation follows it. According to the datasheet for the
memory used, the write time is defined as tw = tinit + N · t1B,
where tinit = 30 µs, t1B = 2.5 µs, N = number of bytes to
write. The penalty for utilizing this solution is a property of
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the proposed FS—the proposed simpleFS storage system is a
read-only system. This property is not a disadvantage for the
target application.

The main benefit of the proposed solution is to optimize
the ADL consumption in the working mode and at the same
time to shorten this time. Consequently, this leads to achieve
an extension of the effective operating time.

The experimental installation in order to verify the func-
tionality of the ADL device was carried out at the Research
Centre of the University of Zilina, where one ADL module
with nine DS18B20 temperature sensors was installed. The
data were collected with a period of 10 min for two months.
A specially designed mechanical sensor system [40] referred
to as DBAR was used for the installation. This is an original
design of the sensor arrangement and its mechanical design
to measure the vertical temperature profile of the soil cross
section [41].

The correctness of the measured data from the ADL module
was confirmed by a test measurement, where the same types
of sensors (DS18B20) were used, and the measurements were
taken at similar time intervals. The sensors were connected to
the one wire booster (OWB) measurement module described
in [38].

An alternative to the proposed solution is to use an existing
FS, e.g., FAT32. This system is used by default for memory
storage smaller than 4 GB. It is mainly used in memory cards.
In terms of usability, it was unsuitable in the ADL project
because the goal of designing simpleFS was to minimize
the time required to communicate with memory. When using
FAT32, overwriting the data in the FAT table is required,
which can significantly increase the overhead of writing data.
In the presented simpleFS system, to write data to a file, two
actions are required before the actual write: open the last file
in simpleFS (complexity O(1)), find the end of the file to be
written to [complexity O(log(n), where n is the space reserved
for the file in bytes].

A. Future Work
The ADL HW module in the current version is capable

of long-term autonomous operation as a logger for data
collection in remote locations. When designing the HW part,
an extension of the functionality was foreseen adding a module
for wireless communication. In terms of further optimization
of the solution, we are currently focusing on improving key
parameters.

1) Extending the autonomous operation time by partially
recharging the used batteries with solar cells.

2) Optimization of the measurement cycle time when using
multiple temperature sensors (n > 5). In this case, the
total measurement time is increased due to the commu-
nication speed of the one-wire bus. It can be achieved by
increasing the standard communication speed from the
standard 16.3 to 114 kb/s in overdrive mode. However,
when increasing the communication speed, the length of
the bus, its topology, and shape must be considered.

3) Integration of IoT submodule for wireless batch com-
munication. The goal is to leverage existing IoT
infrastructure. The ADL module will contain a LoRa

module, which will be used to send data to a prepared
storage continuously.

VII. CONCLUSION

In this article, we proposed a novel FS intending to reduce
the energy consumption of data loggers with the expectation
of extending operating time. Overall, our results demonstrate a
strong effect of utilizing our approach. Future research should
consider the simpleFS in different environments and various
application abilities.

Further modifications of the ADL module are planned to
increase the energy independence, e.g., solar energy power
for partial recharging of the batteries or other means of energy
harvesting. Due to the original intention of the ADL module—
use in remote areas—the assumption of direct solar radiation at
the installation site may not always be guaranteed. Therefore,
the PV panel solution hand in hand with other methods has to
be analyzed in terms of the minimum harvested energy that
the solution has to deliver for the overall energy balance to be
positive.

PATENTS
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