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Abstract—The breath-by-breath measurement of respira-
tory rate (RR) plays a pivotal role in sports and exercise. The
accurate estimation of RR values on a breath-by-breath basis
with wearable sensors has several open challenges during
training, including motion artifacts and other breathing-
unrelated events. This article presents a novel method
based on a signal quality index (SQI) for identifying and
excluding unreliable breaths from breathing waveforms. The
method analyses the morphological characteristics of the
respiratory signal, comparing each breath with an average
breath template calculated as an average of all individual
breaths. The comparison is made using a template matching
without the need of a reference signal. Experimental tests
have been carried out at rest and during walking, running, and cycling activities to assess the method’s performance
in estimating breath-by-breath RR by comparison with reference values collected with a flowmeter. The comparison
between the RR values has been performed with an ad hoc developed method able to accomplish this task, even
when the number of breaths identified by the two devices is different. The obtained results showed that our SQI-based
method improves the accuracy of RR estimation by reducing the mean absolute percentage error (MAPE) values in all the
tested conditions (18.5%, 22.2%, 2.8%, and 14.1% of MAPE improvement rate during rest, walking, running and cycling,
respectively). Pilot tests during high-intensity interval training (HIIT) also demonstrated a 30.7% MAPE improvement rate.
The promising findings demonstrated that using SQI-based algorithms can lead to more accurate RR estimations during
exercise by using comfortable wearable sensors.

Index Terms— Respiratory rate (RR), sensors, signal quality index (SQI), template matching, wearable device.
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I. INTRODUCTION

PHYSIOLOGICAL monitoring in sports is increasingly
important for improving training methodology, optimizing

athletes’ performance, reducing the risk of injuries, and
protecting the well-being of athletes [1], [2]. As technology
advances, monitoring different physiological parameters has
become increasingly accessible and useful for professional
and recreational athletes. Furthermore, cardiac and respi-
ratory variables are among the most relevant physiolog-
ical variables that can be monitored during sports and
exercise [3], [4].

Respiratory monitoring during exercise has gained growing
interest in recent years [5], [6]. However, most studies have
been conducted in the laboratory, while only a few attempts
have been made so far to monitor ventilatory variables in
real-world sports settings [7]. Nevertheless, a reversal of this
trend is expected considering the importance of respiratory rate
(RR) for exercise monitoring and the increasing availability of
unobtrusive wearable devices recording respiratory waveforms
[8], [9], [10]. Indeed, the time course of RR provides
information on physical effort and is associated with changes
in exercise tolerance in a variety of exercise conditions [3],
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[7], [11], [12]. Numerous technologies are available to support
athletes and researchers in measuring ventilatory variables,
and some of them can be used outside the laboratory setting.
For instance, solutions based on the indirect measurement
of respiratory flow using temperature or humidity sensors
integrated into facial masks provide accurate measurements
of RR [9]. Besides, the fact that RR can be extracted
from the photoplethysmogram (PPG) and electrocardiogram
(ECG) signals may facilitate RR measurement in a variety
of healthcare and sports settings, since these signals
can be obtained by noninvasive electronics devices (e.g.,
smartwatches). For this reason, several algorithms have been
proposed to estimate RR from the respiratory modulation of
ECG and PPG signals. However, despite the high comfort of
the devices in the sports contexts, they may not be suitable
for estimating RR at a breath-by-breath basis because they
are often corrupted by motion artifacts during exercises [13].
On the other hand, a practical and effective solution for
most sporting activities is the indirect measurement of chest
wall deformation or movements caused by respiratory activity.
Several sensors based on different working principles can be
used for this purpose, such as piezoresistive [14], capacitive
[15], and inductive strain elements [16], or magneto-inertial
(IMU) sensors [17], [18], [19] embedded or attached to
sports bands, garments, t-shirts, tops worn around the athlete’s
chest or abdomen area [9]. This integration allows athletes to
perform their sports without discomfort or hindrance while
collecting valuable data. In this context, the accuracy of
the respiratory signal is crucial in interpreting this useful
information.

Although there are numerous validation studies concerning
commercial devices such as Hexoskin1 (Carre Technlogies
Inc., Quebec, Canada) [20], [21], [22], [23], Zephyr
Bioharness2 (by Medtronic, USA) [24], [25], Equivital2 EQ02
LifeMonitor2 (Hidalgo Cambridge, U.K.) [26], LifeShirt1

(Vivometrics, Inc., Ventura, CA, USA) [27], there is room
for improvement in the validation methodology used in these
studies. In most of the validation studies, the comparison
between instrument and reference data is not performed on
a breath-by-breath basis, thus leaving uncertainties on the
suitability of the device for real-time respiratory monitoring.
Also, validation studies often use the output of the company’s
algorithm, especially for commercially available sensors,
although it is often unclear how RR values are extracted [28].
An alternative approach is to evaluate the performance of
RR extracted from the raw respiratory signal using custom
algorithms [28].

When dealing with wearable systems based on strain
sensors, the biggest challenge is to accurately identify each
breath to estimate RR (and other respiratory variables)
on a breath-by-breath basis. A typical method to enhance
parameter estimation from physiological signals involves the
use of a morphology-based signal quality index (SQI) to
locate segments with high-quality signals, thus enabling more

1Registered trademark.
2Trademarked.

accurate estimation of the parameters [29]. Although the use of
SQIs is well consolidated in the estimation of cardiovascular
variables even during exercise (e.g., heart rate estimation
from the ECG signal [30], [31] or ballistocardiogram [32],
pulse rate or stroke volume estimation from the PPG
signal [33], [34]), limited research has been conducted on
the development of an SQI for RR estimation. In this
context, some techniques have been implemented; however,
they have been especially used for clinical applications on
impedance pneumography or PPG signals [35], [36]. Hence,
no studies have attempted to implement SQIs to improve the
accuracy of breath-by-breath RR estimation for real-world
and sports applications by using data collected from wearable
devices.

The challenge lies in recording respiratory data during
exercise, which is considerably more problematic than
collecting data from resting bedridden patients. Indeed,
numerous sources of noise, such as torso movement, changes
of direction, and coughs, make the identification of each
breath challenging and may lead to underestimations or
overestimations of RR during exercise. Furthermore, different
sports activities may introduce various motion artifacts on the
sensor signal due to the motion and vibrations experienced
while combining movements of the legs, torso, and arms
[37], [38]. Additionally, it is difficult to apply SQIs to
identify and exclude abnormal RR values based on the breath
duration [36], which may vary substantially during exercise.
For example, athletes commonly exhibit apneas just before
engaging in intense sporting actions and tend to rapidly
increase their RR in response to vigorous exercise [39]. These
factors affect the morphology of the respiratory waveform
and the accuracy of RR estimation at a breath-by-breath
level.

The aim of this study was to develop and evaluate a
novel reference-independent SQI algorithm. The effect of
using the developed SQI algorithm on the improvement in
RR estimation was tested by comparison with a reference
system under different conditions (i.e., at rest and during
walking, running, and cycling). The proposed SQI allows for
the identification of potentially unreliable (i.e., low-quality)
breaths by comparing the morphology of the respiratory signal
for each breath cycle with that of an average breath template.
Only the reliable (i.e., high-quality) portions of the signal
are then processed to evaluate RR over time on a breath-
by-breath basis. In addition, a new method for validating
measurement systems on a breath-by-breath basis was
proposed.

This article is structured as follows. Section II describes
the proposed SQI. Section III describes: 1) the experiments
performed on athletes to assess the performance of the
proposed SQI during different activities and 2) the custom-
made method to compare RR values retrieved from two
devices. Section IV reports the obtained results. Finally,
Section V presents a feasibility assessment of the proposed
algorithm on a signal collected during high-intensity interval
training (HIIT), followed by the discussions and conclusions
in Section VI.
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Fig. 1. Example of a raw respiratory signal and the related normalized
derivative signal. The signal was collected during cycling with a strain-
based chest strap.

II. PROPOSED ALGORITHM FOR THE DETECTION AND
EXCLUSION OF POTENTIALLY UNRELIABLE

BREATHS AND RR CALCULATION

In this section, the SQI-based algorithm for detecting and
excluding unreliable breaths is described. The algorithm has
been developed by considering raw signals collected with
strain-based wearable sensors, showing an increasing trend
during inhalation and a decreasing trend during exhalation,
as reported in Fig. 1. The proposed method consists of five
major stages.

A. Signal Pre-Processing
A first-order Butterworth bandpass filter with 0.01 and 2 Hz

cut-off frequencies was first applied. This filtering process
allows the exclusion of frequencies in the signal that are not
related to respiratory activity [3]. Then, the derivative of the
respiratory signal was calculated and normalized in the range
{−1, 1} (i.e., x). Hence, the latter results in a positive signal
during inhalation and a negative signal during exhalation
(see Fig. 1). This processing centers the signal around zero,
avoiding any rising or falling trends in the baseline. At this
stage, there are not any baseline wander. However, it may show
amplitude variations that make detecting respiratory peaks
difficult. Hence, the upper (esuperior) and lower (einferior) root
mean square envelope were computed [see Fig. 2(a)] and the
min-max normalization was applied to obtain x ′, as in the
following equation:

x ′ (t) =
x (t) − einferior (t)

esuperior (t) − einferior (t)
. (1)

B. Detection of Breaths in Sliding Windows
The signal was segmented into consecutive 12 s - windows,

each overlapping by 2 s. Subsequently, the power spectral
density (PSD) of the windowed signal was calculated, and
the frequency corresponding to the maximum PSD was picked
out. The dominant peak obtained by the PSD of the signal was
used to determine the temporal threshold for peaks detection
[see Fig. 2(b)].

C. Breaths Segmentation
Each breath was segmented as the signal between two

consecutive maxima. Then, both the amplitude and duration

of each breath were normalized between 0 and 1. Finally, the
average breath template was computed as the mean of all the
individual breaths [see Fig. 2(c)].

D. Similarity Analysis and Exclusion of Unreliable
Breaths

To quantify the similarity of breath morphologies, the
Pearson correlation coefficients (ρ) were calculated between
all the individual breaths and the average breath template.
Therefore, assuming the variable Ai as the breathing waveform
of i th breath and the variable B as the average breath template,
each consisting of N samples (i.e., the length of the two
vectors), the ρ values were calculated as below

ρ
(

Ai , B
)

=
1

N − 1

N∑
j=1

(
Ai

j − µA

σA

)(
B j − µB

σB

)
(2)

where µA and σA are the mean and standard deviation of Ai

and µB and σB are the mean and standard deviation of B.
Then, the correlation coefficient matrix (Ri ) was calculated
as the matrix of ρ for each pairwise variable combination.
Since A and B are always directly correlated to themselves,
the diagonal entries are just 1, as in the following equation:

Ri =

(
1 ρ

(
Ai , B

)
ρ
(
B, Ai ) 1

)
. (3)

Then, all breaths with a correlation below a set threshold
were excluded. The algorithm was implemented to optimize
the performance in estimating RR, by setting the ρ threshold
to 0.6, 0.7, 0.8, or 0.9 [see Fig. 2(d)].

E. Breath-by-Breath RR Assessment
After excluding unreliable breaths considering the different

thresholds, the breath-by-breath RR values were calculated.
Thus, the respiratory periods (T ) were computed as the
time elapsed between successive peaks. Using these values,
the RR was determined by calculating the ratio of 60 and
T . In calculating the breath-by-breath RR, a condition was
imposed whereby if a breath was previously excluded, then
the related RR is disregarded. A schematic representation of
the main steps involved in the new algorithm is shown in
Fig. 2.

III. EXPERIMENTAL TESTS AND PROPOSED METHOD TO
COMPARE REFERENCE AND WEARABLE-EXTRACTED

BREATH-BY-BREATH RR VALUES

A. Population and Experimental Setup
Experimental tests were carried out on 33 volunteers

to evaluate the performance of the proposed algorithm
during both motionless condition (i.e., at rest) and three
different activities: walking, running, and cycling. Those
data were collected in our previous experiments [40], [41].
The experimental setup during rest, walking, and running
consists of a treadmill (RHC500 Treadmill, Air Machine S.r.l.,
Cesena, Italy) on which tests were performed at different
walking/running speeds, the Zephyr Bioharness2 (hereinafter,
BH) wearable chest strap, and a flowmeter (SpiroQuant P from
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Fig. 2. Schematization of the main steps of the novel SQI-based algorithm developed for the exclusion of unreliable breaths. (a) Signal
preprocessing. (b) Detection of breaths. (c) Breaths segmentation and average template signal assessment. (d) Similarity analysis and exclusion
of unreliable breaths.

EnviteC, Honeywell, North Carolina, USA), used for recording
the reference respiratory airflow signals. On the other hand,
the experimental setup for cycling tests consists of a cycle-
ergometer (WattBike Pro, model WAT-1W51-015-15), the BH
chest strap, and a flowmeter (Quark PFT, COSMED S.r.l.,
Rome, Italy) used as reference device. An example of the
experimental setups is shown in Fig. 3(a).

B. Experimental Protocol
The experimental protocol is extensively described in [40]

and [41], and consists of an initial familiarization phase and
a 3 min of warm-up, then participants were encouraged to
perform a synchronization sequence consisting of three deep
breaths followed by apnea [see Fig. 3(b)]. This procedure
was used to synchronize the respiratory signals collected with
the BH and the reference systems. Then, they were asked to
perform four different activities.

1) Motionless Trials (i.e., at Rest): The volunteers were
asked to remain upright and breathe quietly for 60 s.

2) Trials During Walking: The volunteers were asked to
walk at 3 and 6 km/h on a treadmill. Each of the two
stages lasted 60 s.

3) Trials During Running: The volunteers were asked to
walk at 9 and 12 km/h on a treadmill. Each of the two
stages lasted 60 s.

4) Incremental Trial During Cycling: The volunteers were
asked to cycle at a self-selected pedaling cadence and to
replace spontaneous breathing with the RR paced by a

metronome. This test lasted 300 s, and the RR increased
from 20 to 75 bpm in an exponential fashion.

The study was approved by the Institutional Review Board
of the University of Rome “Foro Italico” (CAR 112/2021)
and by the Ethical Committee of University Campus Bio-
Medico di Rome (code: 27.2(18).20 dated June 15, 2020).
The principles of the Declaration of Helsinki were followed
in all steps of the study and written informed consent for study
participation was signed by all volunteers.

C. Comparison Between Reference and
Wearable-Extracted Breath-by-Breath RR Values:
Proposed Method

Reference signals were used to retrieve reference RR values
and evaluate the performance of the proposed SQI.

As stated above, the estimation of breath-by-breath RR
values requires the identification of inspiration (or expiration)
peaks in the signal. As a result, the number of breaths (and
therefore the RR values) may be different between two or
more devices, particularly when low-quality breath signals are
analyzed. This introduces complication to the performance
assessment between the two measuring instruments, often
leading researchers to perform analyses by interpolating
breath-by-breath RR values at 1 s intervals. Hence, a breath-
by-breath comparison requires the number of breaths identified
on the reference and BH signals to be the same. To tackle this
issue, in this article, we suggest a method for comparing RR
values extracted from two different respiratory signals, even
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Fig. 3. (a) Schematization of the experimental setups and (b) protocols
that were carried out during four different types of sports activities (i.e.,
at rest, walking, running, and cycling).

when the number of breaths identified by the two devices is
different.

The method workflow is reported in Fig. 4. Let consider
the reference airflow signal as the signal provided by one
of the measuring reference devices (denoted as device 1 and
related signal 1) while the BH a generic device (denoted as
device 2 and related signal 2). The BH signal was preprocessed
as described in Fig. 2(a), while the reference signal was
first inverted to obtain a signal with the same trend as the
derivative of the BH signal. Then, it was filtered with a first-
order Butterworth bandpass filter with cut-off frequencies of
0.01 and 2 Hz [3]. Subsequently, on both signals, all the
inspiratory events were identified by using sliding windows,
as described in Section II [see Fig. 2(b)]. To compare the
same number of events, the following steps were performed:
considering each event identified in the signal 1 (denoted as
L i

1 with i = 1, . . . , N1), the time distance (disti, j ) between
this event and all the events identified in signal 2 (i.e., L j

2 ,
with j = 1, . . . , N2) were calculated. Then, the event in signal
2 that exhibited the lowest distance value ( j∗|dist(i, j∗) <

dist(i, j)∀ j = 1 : N2) was selected to be compared with
L i

1. Subsequently, the respiratory periods from both device 1
(T i

1 = L i+1
1 − L i

1) and device 2 (T ( j∗)
2 = L( j∗+1)

2 − L j
2) were

used to calculate the related RR values as the ratio of 60 to
the estimated T . Finally, the difference (ei ) between the RR
values provided by the two devices was calculated.

Fig. 4. Schematization of the method used for comparing the reference
breath-by-breath RR values and those extracted by using the proposed
algorithm applied on the signal 2 (in our study, the signal collected with
the BH). Ti

1: i th breath period identified on the signal 1 (i.e., reference

signal); Li
1: location of the i th maximum identified on signal 1; Tj∗

2 : j th

breath period identified on signal 2; Lj∗
2 : location of the j th maximum

identified on the signal 2; N1: number of all breaths identified on signal
1; N2: number of all breaths identified on the signal 2; disti,j: distance
between the position of the i th maximum and the j th maximum; and ei :

error between the RR of the i th breath and that of the j∗th breath.

IV. RESULTS

This section deals with the first step of selecting a
correlation threshold to exclude unreliable breathing cycles.
This evaluation involves the use of a reference system for a
comprehensive comparison, thereby quantifying the extent of
improvement that the algorithm provides. To determine the
adequate trade-off between performance in estimating breath-
by-breath RR and the number of excluded breaths, the mean
absolute percentage error (MAPE) between the BH RR values
and those obtained from the reference signal was calculated,
as in the following equation:

MAPE [%] =
1
N

N∑
i=1

∣∣∣∣∣RRi
BH − RRi

ref

RRi
ref

∣∣∣∣∣× 100 (4)

where N represents the total number of breaths. MAPE
values were calculated in two conditions: first, when the novel
SQI algorithm for excluding unreliable breaths was applied
(MAPEex); and second, when no breaths were excluded
(MAPEnoex). In all the comparisons against the reference
system, the method described in Section III-C has been
applied. To quantify the performance of the proposed SQI,
we investigated the MAPE improvement rate as (MAPEnoex −

MAPEex/MAPEnoex) × 100 expressed in %, together with
the ratio between the percentage of excluded breaths on the
N value ((# excluded breaths/# total breaths) × 100). This
analysis was performed considering each correlation threshold
(i.e., 0.6, 0.7, 0.8, and 0.9). The results, which include
individual activities as well as the average across all subjects,
are presented graphically in Fig. 5.

The results show that the MAPE improvement rates remain
constant between 0.6 and 0.7 during at-rest condition and
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Fig. 5. MAPE improvement rates (in blue) and percentage of excluded
breaths compared to the total number of breaths performed during the
trials (in magenta). Values were calculated considering the average
value between subjects.

running. In contrast, there is an increase in performance in the
walking and cycling activities of 5.1% and 7.1%, respectively.
Also, between the 0.7 and 0.8 correlation threshold, there is
a wider increase in the percentage of MAPE improvement
rate for all activities, except cycling. Specifically, there is
an improvement of 13.8%, 1.2%, and 2.5% in the case
of rest, walking, and running, respectively. On the other
hand, in cycling, there is a minor decrease in the MAPE
improvement rate of 0.2%. Concerning these thresholds, in all
the activities, the percentage of excluded breaths compared
to total breaths is always less than 2.2%. Finally, the use of
0.9 correlation threshold at rest and during running, result in an
improvement in performance with respect to the 0.8 correlation
threshold of 3.2% and 13.0%, respectively. However, in the
case of walking and cycling, performance worsens by 1.4%
and 0.1%, respectively. The percentage of excluded breaths
in relation to the total number of breaths increases from a
correlation threshold of 0.8–0.9 up to a maximum of 10.9%
and 6.7% in the case of cycling and walking, respectively.

Based on the results obtained from this preliminary analysis,
the correlation threshold of 0.8 is the most beneficial
considering the MAPE improvement rates and the percentage
of excluded breaths. Employing this threshold, errors were
assessed considering the RR values extracted from the
reference signals in terms of MAPE for each subject and each
activity, as reported in Fig. 6.

The results show that using the algorithm results in MAPEex
values lower than MAPEnoex values in almost all subjects,
with a maximum decrease in MAPE of 4.0% in subject
9 during cycling. Also, considering the average value among
the subjects, the MAPEnoex is always higher than MAPEex,
with a difference of at least 0.1% (2.8% of improvement
rate) for running up to 1.1% (22.2% of improvement rate)
for walking.

Fig. 6. MAPE values calculated for each activity and each subject,
considering MAPEex and MAPEnoex. std: standard deviation.

V. FEASIBILITY ON HIIT TESTS

Experimental tests were carried out on one healthy volunteer
to test the proposed algorithm on signals collected during HIIT.
This section focuses on evaluating the performance of the
novel algorithm in the context of activities characterized by
sudden changes in RR. The aim is to assess the robustness
of the algorithm in scenarios where abrupt fluctuations in RR
occur. Such instances tend to make the respiratory signal less
reliable due to motion artifacts resulting from the shift in
activity intensity, as illustrated in Fig. 7.

The experimental setup consists of a cycle-ergometer
(WattBike Pro, model WAT-1W51-015-15), the BH chest strap,
and a flowmeter (Quark PFT, COSMED S.r.l., Rome, Italy)
used to collect reference respiratory airflow. After an initial
synchronization phase, the subject was asked to perform
eight repetitions of 20 s of work and 40 s of recovery. The
cyclist self-selected the work-phase power output to reach
approximately a value of 19 of the Borg’s 6–20 ratings of
perceived exertion scale on the last of the eight repetitions.

Thus, the algorithm proposed in Section II was applied to
the BH signal to select each breath and exclude the unreliable
ones. In addition, breaths were identified on the reference
signal and compared to the previous ones, as described in
Section III-C. Subsequently, to assess the performance of the
proposed method at a breath-by-breath level, MAPEnoex and
MAPEex were evaluated by considering a correlation threshold
of 0.8. Hence, the percentage of excluded breaths compared
to the total breaths performed during the trials was evaluated.

Results show that using the proposed method decreases the
MAPE value from 6.5% to 4.5% (30.7% of improvement rate),
by excluding only 4.4% of the total breaths.

VI. DISCUSSION AND CONCLUSION

This study focused on the development of an algorithm for
assessing the quality of respiratory signals through an SQI
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Fig. 7. (a) Raw signal collected with the BH chest strap during HIIT.
A zoom is shown in which there is a transition from the recovery phase to
the work phase. (b) RR trend over time, considering all breaths identified
in the BH signal (in orange) and the reference signal (in blue). (c) RR
trend over time when unreliable breaths were excluded using the novel
algorithm.

based on respiratory signal morphology. This algorithm is
primarily designed for sports contexts, where the recording of
breath-by-breath RR values with wearable devices encounters
inherent challenges. Indeed, motion artifacts can significantly
undermine the signal quality providing incorrect information
to athletes and coaches about the time course of RR values.
Hence, the primary objective of the algorithm was to identify
and exclude unreliable respiratory cycles.

The algorithm was devised to operate autonomously, devoid
of any reliance on a reference signal and additional signals
derived from other sensors (e.g., IMU sensors). Although
these sensors could potentially improve the proposed method
by providing information on the subject’s movements, their
integration would result in both an increase in the bulk
of the wearable system and an increased computational
burden during data acquisition and postprocessing. Hence,
the evaluation of breath quality was solely based on the
characteristics of the respiratory signal itself. This was
achieved by comparing each breath to an average breath
template derived from the average of all the respiratory
cycles performed by the subject. Both the signal and the
average breath template were normalized in both amplitude
and frequency. As a result, the individual-specific dynamics
of the signal were taken into consideration, and only those
breaths deviating from the typical morphology of the subject’s
signal were excluded. In order to assess the performance
of the algorithm in different sporting activities, we carried
out experimental tests involving static positions, walking,
running, and cycling. For these tests, reference signals were
collected to establish the difference in performance between

TABLE I
COMPARISON WITH PREVIOUS WORK

cases where no breath exclusions were performed, and cases
where unreliable breaths were excluded by our algorithm.
The results showed improvements in MAPE performance in
all the investigated activities. In addition, HIIT tests were
conducted to evaluate the behavior of the algorithm when
fast alternation between work and recovery phases results
in abrupt RR changes. The results showed that even under
such dynamic conditions, the algorithm shows promising
performance improvements, with only a marginal exclusion
of approximately 4% of the total breaths.

There are studies in the literature proposing the use of SQI
for performance improvement in RR estimation, as shown in
Table I.

However, these are mainly used in environments such as
clinical or occupational where subject movement is restricted.
Also, some studies present techniques to exclude motion arti-
facts in the respiratory signal. For example, Gwak et al. [45]
used an IMU sensor to clean a respiratory signal collected
with piezoresistive sensors by implementing an algorithm
in a frequency domain analysis. Furthermore, Nabavi and
S. Bhadra [46] proposed a method for filtering motion artifacts
on a respiratory signal extracted from a PPG signal using
information provided by an IMU sensor. However, none of the
methods were developed for a breath-by-breath RR estimation.
Also, they usually require the use of an additional sensor that
increases the overall system footprint. Moreover, while signal
morphology analysis is commonly performed using ECG and
PPG signals [31], [34], [47], its application to respiratory
signals in sports has been overlooked. In this study, we extend
the application of morphology-based analysis to respiratory
signals, offering a novel approach to enhance the accuracy
of respiratory signal processing. Additionally, we propose an
easy-to-implement method to compare breath-by-breath RR
values of a system under validation with those of a reference
system, even in cases where the number of breaths identified
by the two devices differs.
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Although the results of the proposed method are highly
encouraging in all tested sports activities, it is necessary to
acknowledge some limitations of the current study. The main
limitation pertains to the potential impact of differences in
the inspiratory time (Ti ) to total time (Ttot) ratio, which
could affect the recognition of a signal with a Ti /Ttot ratio
as an unreliable breath due to its different shape compared
to that of the average breath template. However, the Ti /Ttot
ratio may not change substantially during exercise, although it
usually increases as exercise intensity rises [48], [49]. Abrupt
variations in Ti /Ttot are sporadic but may occur, especially
during intermittent exercise, where abrupt changes in RR
are observed. Besides, we cannot exclude the possibility
that some breaths identified as unreliable by our algorithm
may contain interesting information from a pathophysiological
perspective. Further research is needed to test this algorithm
in different populations, including patients with pulmonary
diseases, where variations in the morphology of the breathing
cycle may reveal signs of the disease. An example is the
identification of cough events. Another limitation is related
to the number of sports activities and exercise modalities
investigated.

In conclusion, the introduced methods address a critical
issue in wearable device-based respiratory signal analysis,
enhancing the assessment of RR, especially in sports contexts
characterized by motion artifacts. The results obtained
from our experiments underscore the effectiveness of the
proposed algorithm, demonstrating a substantial improvement
in performance across various activities. However, upcoming
advancements in this research direction will focus on enlarging
the sample size to enhance the overall generalizability
of our findings. Also, our study could involve further
refinement of the algorithm’s parameters and exploration of
its potential applications in different sports contexts and
exercise modalities, e.g., outdoor sports where motion artifacts
might be more pronounced. Additionally, the proposed method
based on SQI computation could find applications in the
identification of the so-called “errant breaths” (induced,
for example, by coughing and swallowing while breathing
during exercise) that should exhibit frequency components and
breath shapes different enough from the characteristics of the
template.
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