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Abstract—Rotating machinery often works under time-
varying speeds, and nonstationary conditions and harsh
environments make its key parts, such as rolling bear-
ings and gears, prone to faults. Therefore, a number of
fault diagnosis methods, including nonstationary signal
processing methods and data-driven methods, have been
developed. This article presents a comprehensive review of
the fault diagnosis of rotating machinery under time-varying
speeds proposed mainly during the last five years. First,
spectrum analysis-based methods, including order tracking,
cyclic spectrum correlation, and generalized demodulation,
are reviewed. Second, the time–frequency analysis (TFA)
methods in machinery fault diagnosis are divided into post-
processing methods and chirplet transform-based methods
and are reviewed. Then, the artificial feature extraction- and
deep learning-enabled intelligent diagnosis methods pro-
posed specifically for time-varying speed conditions are
reviewed. Finally, the research prospects are discussed.
We not only review the relevant state-of-the-art methods and
analyze how they overcome the problems caused by speed fluctuations but also discuss their advantages and
disadvantages and the challenges that will be encountered when applying them to industrial applications. This article is
expected to provide new graduate students, institutions, and companies with a preliminary understanding of the methods
on this topic.

Index Terms— Fault diagnosis, intelligence, order tracking (OT), rotating machinery, time–frequency analysis (TFA),
time-varying speed.

I. INTRODUCTION

ROTATING machinery, such as wind turbines, engines,
and electric motors, has been widely used in industrial

applications. However, due to harsh environments and variable
operation conditions, key parts such as rolling bearings and
gears are prone to faults [1], [2]. Effective fault diagnosis
can reduce unexploited downtime, save maintenance costs, and
ensure safe operation [3], [4], [5]. Therefore, fault diagnosis
of rotating machinery is vital and has received much attention.

Time-varying speeds are common in various indus-
trial fields, such as wind turbines, mining industry, and
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petrochemical engineering [6], [7]. According to statistics,
about 20%∼25% of the total cost of offshore wind turbines
is used for operation and maintenance [8], [9]. However,
the rotating speeds of offshore wind turbines fluctuate vio-
lently following variations in wind power and directions due
to the harsh marine environment, which makes their fault
diagnosis very difficult [10], [11]. The time-varying operation
mode is also common in the mining industry. For example,
the electric shovels, as illustrated in Fig. 1, operate under
intermittent mode, and a whole operation cycle includes
filling up, moving to the unloading location, unloading, and
turning back to the initial location. Although some common
machines do not work under variable speeds, the startup and
shut-down processes also cause nonstationary signals [12],
[13], and these processes contain much running information
and some fault symptoms that cannot be revealed under
constant speed conditions [12]. Therefore, it is crucial for
the fault diagnosis of rotating machinery under time-varying
speeds.

To date, fruitful methods have been investigated on the topic
of machinery fault diagnosis under variable speeds. These
methods can be divided into two categories. The first group
focuses on the circumstance where the machine operates under
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Fig. 1. Examples operated under time-varying speeds. (a) Offshore
wind turbines. (b) Mining shovel.

several different speeds, so the signals correspond to variable
speeds, but, for a certain operation condition, the speed is con-
stant [14], [15]. Machine learning-based intelligent methods
are popular in this circumstance, and they aim at improving
the model generalization of speed conditions. The second
group focuses on revealing the fault symptoms or realizing
the pattern recognition of the machines whose corresponding
speeds vary continuously, which conforms to the industrial
applications, such as wind turbines and mining equipment
mentioned before. In this article, we focus on the second
circumstance, and the time-varying speed refers to the speed
that changes continuously.

The time-varying speeds bring huge difficulties for machin-
ery fault diagnosis. For a time-domain signal, the intervals
of shocks caused by a fault will change if the speed varies,
i.e., the periodic pattern of waveform no longer exists, which
makes it hard to identify the fault by analyzing the intervals
and decreases the recognition accuracy of machine learning
methods based on the time-domain signal. In addition, the
amplitudes of these fault shocks also change due to the vari-
ation in speeds, which also adds difficulty for fault diagnosis.
For a frequency spectrum of a signal or a demodulation signal,
the fault-related frequency components will be blurred because
the fault shocks lose periodicity, the various frequency analysis
methods for the fault diagnosis under constant speeds are no
longer applicable, and the performance of machine learning
methods based on frequency-domain signals also inevitably
decreases. Therefore, the fault diagnosis of rotating machinery
under time-varying speeds is challenging and is a hot topic.

Converting the time-varying fault-related frequencies into
constant frequencies is an effective solution to restoring the
effectiveness of spectrum analysis. Order tracking (OT) is a
commonly used tool to realize this task and is implemented
by resampling the time-domain data with constant angular
increments [16]. According to the implementation, OT is
divided into hardware OT (HOT, a full hardware technique),
computed OT (COT, implemented by an encoder signal), and
tacholess OT (TOT, obtained by the instantaneous frequency
(IF) detected from the signal itself) [17], [18]. Recently,
cyclic spectrum correlation (CSC) theory [19] and general-
ized demodulation [20] have also been utilized in spectrum
analysis. According to those basic approaches, many advanced
methods have been further developed to better reveal interest
frequency components.

Time–frequency analysis (TFA) is also an effective method
for machinery fault diagnosis under time-varying speeds, and

it can pinpoint the frequency components of a signal and
track their variations. Due to the limited time–frequency
resolution of traditional TFA methods, e.g., the short-time
Fourier transform (STFT) [21], wavelet transform (WT) [22],
and Wigner–Ville distribution (WVD) [23], advanced methods
have been developed for fault diagnoses, such as postprocess-
ing methods [24] and chirplet transform (CT)-based methods
[25]. These methods have high resolution and have been
utilized in fault diagnosis.

In addition to the spectrum analysis- and TFA-based meth-
ods, with the rapid development of machine learning methods,
intelligent fault diagnosis has attracted much attention [26],
[27], [28], [29]. Recently, some advanced methods have been
proposed for intelligent fault diagnosis under time-varying
speeds. Those methods aim to adopt signal processing meth-
ods to remove the effect of speed fluctuations and extract
speed-irrelevant features [30] or design deeper models to
directly learn the features from raw signals [31]. Therefore,
those methods highly decrease the human labor necessary for
analyzing nonstationary signals.

Recently, several papers have been published to summarize
the research on rotating machinery fault diagnosis, such as the
publications on resonance demodulation methods [32], mod-
ulation feature extraction methods [33], machine learning in
machinery fault diagnosis [26], [34], deep learning in planetary
gearbox fault recognition [35], data-driven methods in machin-
ery fault diagnosis [36], transfer learning in machinery fault
diagnosis [37], and health indicator construction of rotating
machinery [38], [39]. However, these review papers mainly
focus on constant speeds. To the best of our knowledge, the
review papers on time-varying speed are very limited. In 2014,
Lin and Zhao [40] briefly reviewed OT and TFA methods, and
in 2019, Lu et al. [17] reviewed TOT methods. Since then,
many new methods and meaningful OT and TFA methods
have been proposed. With the emerging of deep learning
methods, intelligent methods for time-varying speeds have
gradually attracted more attention and have achieved great
success. In this article, we conduct a systematic and compre-
hensive review of the state-of-the-art fault diagnosis methods
for rotating machinery under time-varying speeds published
during the last five years, including spectrum analysis meth-
ods, TFA methods, and intelligent fault diagnosis methods.
This article aims at helping readers understand the newly
published methods, the limitations of some advanced methods
in real applications, and the advantages and disadvantages
of similar methods. In addition, several research prospects
are suggested, potentially providing relevant researchers with
valuable insights for their future works.

It should be noted that the relevant papers are retrieved
from two databases, i.e., Web of Science and Google Scholar.
Most papers have been published in the last five years, and a
few classic and representative papers beyond this range are
also involved. The search keywords relevant to algorithms
such as “OT,” “generalized demodulation,” “CSC,” and “TFA”
are combined, respectively, with the diagnosis objects such
as “rotating machinery,” “bearing,” “gearbox,” “shaft,” and
“planetary gear” using the Boolean operator AND. In terms of
the intelligent diagnosis methods in Section IV, the keywords
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such as “intelligent,” “machine learning,” “deep learning,” and
“convolutional neural network (CNN)” and the descriptions
of operation conditions such as “time-varying,” “variable,”
and “nonstationary” are combined with the diagnosis objects
mentioned above, respectively. To make the papers more
relevant to the topic, and as the papers have more reference
values for us, we refined these papers according to the quality
of the journals and the relevance of contents. It can be seen that
the review is systematic and comprehensive, and we hope that
this will provide graduate students, institutions, and companies
with a preliminary understanding of rotating machinery fault
diagnosis under time-varying speeds.

The rest of this review is organized as follows. In Section II,
we focus on spectrum analysis-based diagnosis methods.
In Section III, TFA methods are reviewed. In Section IV,
intelligent diagnosis methods are reviewed. In Section V,
research prospects are provided. The conclusions are provided
in Section VI.

II. SPECTRUM ANALYSIS-BASED DIAGNOSIS METHODS

Spectrum analysis-based methods mainly focus on the fault
diagnosis of rolling bearings, fixed-shaft gearboxes, and plan-
etary gearboxes. The diagnosis results of these methods rely
on matching the prominent peaks with the calculated values of
fault-related components [41], [42]. For rolling bearings, when
the fault is on different parts, e.g., outer race, inner race, and
rollers, the values of fault characteristic frequency (FCF) are
different, so the fault types can be identified by analyzing the
values of FCFs [43]. For fixed-shaft gearboxes, when a fault
occurs, the meshing vibration will be modulated via the shaft
frequency, so the fault is usually localized by analyzing the
sidebands around GMF or its harmonics [44]. For planetary
gearboxes, when the fault is on different parts, such as planet
gear, ring gear, and sun gear, different amplitude modulation
(AM) characteristics will result, so the fault can be identified
by the sidebands around GMF or its harmonics [24], and can
also be identified by the FCFs via amplitude demodulation
[11].

When the rotating speed varies, the intervals of adjacent
shocks caused by the fault will change, so the relevant
frequencies, such as FCF, sidebands, and GMF, also change
following the variation in speed [45]. The traditional spectrum
analysis methods are no longer applicable. Therefore, it is
necessary to convert the relevant frequencies into constants
by nonstationary signal analysis methods, such as resampling
and generalized demodulation. After the transformation, the
relevant frequency components could be revealed by spectrum
analysis methods. Researchers at various universities, such as
the University of New South Wales [46], [47], [48], [49], the
University of Lyon [50], [51], [52], Beijing Jiaotong University
[53], [54], [55], [56], Xi’an Jiaotong University [57], [58],
[59], [60], the Beijing University of Technology [45], [61],
[62], and the University of Ottawa [63], [64], [65], have
contributed a lot to this topic.

A. OT-Based Methods
1) Hardware Order Tracking: HOT is implemented by analog

instrumentation, which adjusts the sampling rate proportional

Fig. 2. Illustration of the two COT methods: (a) tachometer pulses,
(b) shaft phase, (c) raw signal, and (d) angular-domain signal. (Note
that there are two methods to complete COT, i.e., the procedures of the
two methods are (a)→(b)→(c)→(d) and (a)→(c)→(d), respectively.)

Fig. 3. (a) and (b) Frequency spectrum and the order spectrum of an
inner race fault bearing envelope signal.

to the rotating speed. In this procedure, two pieces of equip-
ment are necessary, i.e., a ratio synthesizer and an antialiasing
tracking filter [16], [66]. Because HOT is implemented by
hardware circuits, it is time-saving and can be accomplished
online, but it also has inherent drawbacks. First, the sampling
rate and the cutoff frequency are adjusted dynamically during
data collection so that data acquisition is subject to latency
and error, especially when the speed fluctuates rapidly [67].
Second, additional hardware components are needed, which
increases the complexity and costs.

2) Computed Order Tracking: For COT, the signal and the
tachometer pulse are recoded at the same sampling frequency,
and then, the vibration signal is resampled at constant angular
increments using software [16]. The principle of COT is
simple and can be seen in Fig. 2.

One example is conducted to illustrate the effectiveness of
COT, as shown in Fig. 3. The vibration signals are collected
from the test rig in Fig. 4. Fig. 3(a) shows the envelope
spectrum of one inner race fault bearing signal, in which no
prominent peaks appear. However, in the order spectrum of the
envelope signal, as demonstrated in Fig. 3(b), the modulation
rotating frequency (Or), FCF (Oinner), sidebands (Oinner ± Or),
and their corresponding harmonics appear clearly.

To realize compound bearing fault diagnosis, Tang et al. [68]
proposed a virtual multichannel signal-based COT method in
which the vibration signal was first resampled and then decom-
posed by variational mode decomposition (VMD) to produce



29972 IEEE SENSORS JOURNAL, VOL. 23, NO. 24, 15 DECEMBER 2023

Fig. 4. Rolling bearing fault test rig.

virtual multichannel signals. Finally, constrained independent
component analysis (ICA) and an fast Fourier transform (FFT)
were adopted to generate the order spectra. In addition, Yang
et al. [69] utilized COT to obtain the signal in the angular
domain and then applied stochastic resonance to enhance
the weak bearing vibration. Song et al. [57] used COT to
reveal the orders and the resonance frequencies, and then,
the Vold–Kalman filter and VMD/variational mode extraction
(VME) were adopted to realize the vibration source separation.
Wang et al. [70] used COT to obtain the angular bearing
signals and then proposed a novel indicator to determine
the optimal frequency band. The indicator was constructed
by fusing kurtosis, spectral negative entropy, and correlation
coefficient via different weights and then combined with a 1/3
binary tree structure to select the frequency band. Zhang et al.
[71] proposed an adaptive order-band energy ratio approach
for planetary gearbox fault diagnosis, in which the COT
was utilized to achieve the order spectrum, and then, the
order-band energy ratio was calculated as an indicator. Finally,
the obtained indicators were fed into a machine learning
classifier to achieve automatic recognition.

Another challenge in COT-based fault diagnosis is to
remove the deterministic interference components in weak
fault diagnosis. For example, in bearing fault diagnosis, the
weak fault vibration is usually overwhelmed by the gear mesh-
ing vibration [46], [47], [63]. When the speed is time-varying,
the GMF and the sidebands around it cannot be removed,
so the common scheme is to separate them in the angular
domain. A whole benchmark method was provided in [47] as
follows. First, the vibration signal was resampled, and then,
time synchronous averaging (TSA) or discrete/random signal
separation (DRS) was adopted to remove the deterministic
components. Second, minimum entropy deconvolution (MED)
was used to improve the impulse of fault shocks, and the
bandpass filter was then applied to identify the optimal fre-
quency band. Finally, the angular-domain signal was obtained
again through resampling, and then, the order spectrum was
calculated to reveal the weak bearing FCF.

Based on the methods summarized above, it can be
concluded that COT-based spectrum analysis methods are usu-
ally combined with advanced denoising algorithms or signal
decomposition methods to realize fault diagnosis. However,
it should be noted that the resonance frequency is determined
by the whole mechanical system and is independent of the
rotating speed [54], but, when the signal is resampled, the
resonance frequency is also changed. Therefore, although
the characteristic frequencies are converted into constant fre-
quencies in the angular domain, denoising methods whose

Fig. 5. (a) TFR obtained by STFT and (b) extracted frequency.

mechanisms rely on the resonance frequency are not applicable
or their performance degrades, such as spectral kurtosis [72]
and MED [73], [74]. It should be mentioned that a larger
degree of the shaft phase function means higher accuracy, but
it will entail massive equations of higher degrees and will
result in more computation time. When the speed fluctuates
complexly, the small degree will cause higher interpolation
errors. Therefore, the degree of the shaft phase function should
be designed according to the real speed variation complexity
of the monitored equipment.

3) Tacholess Order Tracking: Although COT has been
widely used and investigated, its application still requires
hardware, e.g., a tachometer/encoder, to collect the speed
pulses, which not only brings additional cost but also creates
difficulties in installation. Therefore, TOT, which refers to OT
implemented by an IF obtained from the signal itself, has
attracted much attention recently. The applications of TOT are
listed in Table I.

There are several ways to extract the IF, such as TFR-based
peak search methods, phase demodulation, and atom matching.
Among them, TFR-based methods are the most common, and
how to extract an accurate IF from the TFR and implement
OT is a hot topic. An example is conducted to illustrate
TFR-based frequency estimation. Fig. 5 shows the envelope
TFR of an outer race fault bearing signal collected from the
test rig in Fig. 4. Researchers have paid much attention to
extracting more accurate IFs, and the developed techniques
mainly improve accuracy through the following two aspects.

The first is to generate a TFR with clearer time–frequency
ridges, which is usually implemented by using signal prepro-
cessing methods to deal with the vibration signal or by using
more advanced TFA methods. Vibration signals are usually
multicomponent and usually contain heavy noise, so some
researchers have focused on signal preprocessing methods
to separate the interest component. In [75], the raw signals
were decomposed by correlated ensemble empirical mode
decomposition (CEEMD), and then, from one component, the
instantaneous rotating frequency (IRF) was detected. Finally,
time-spectral kurtosis (TSK) was used to select one com-
ponent, and the component was resampled. Jiang et al. [61]
utilized spectrum AM (SAM) to separate the frequency com-
ponents, and entropy was used to evaluate the TFRs of
different weights to identify the optimal weight. Finally, the IF
was detected from the TFR of the modified signal, and the raw
signal was resampled by the IF for bearing fault diagnosis.

The time–frequency ridges in the TFRs obtained by the
traditional TFA methods are always affected or even over-
whelmed by noise, so highlighting these ridges using advanced
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TABLE I
LIST OF REFERENCES ON IF ESTIMATION METHODS FOR TOT

TFA methods is also an effective way to better estimate
the frequency [76]. Wu et al. [59] proposed a nonlinear
compensating demodulation transform (NCDT) in which the
interest harmonic component was demodulated and filtered
so that the weak rotating frequency could be extracted from
the result TFR of the rolling bearing vibration signal more
accurately. In [60], the generalized linear CT (GLCT) was
adopted to obtain a fine TFR, and the parameters of GLCT
were analyzed. Kumar et al. [76] extracted the IF from
the Fourier synchrosqueezed transform (FSST)-based TFR in
which the IF was sharpened, and then, an improved VMD
approach was applied to deal with the angular-domain signal.
Zhao and Niu [77] proposed an iterative adaptive crucial
mode decomposition (IACMD) to estimate the IF, and then,
an enhanced order spectrum analysis method was proposed
for planetary gearbox fault diagnosis, in which the weighted

kurtosis index was designed to determine the intrinsic mode
functions (IMFs). Zhang et al. [58] proposed a time-varying
sinusoidal mode extraction (TVSME) method for the current
signal analysis of the induction motor by using generalized
demodulation for accurate IF extraction, and then, the current
signals were resampled by the IF. Yang et al. [78] utilized
the general parameterized time–frequency transform (GPTFT)
and peak search method to detect the IF, and then, the
vibration data were resampled by IF. Then, an autogram was
utilized to select the resonance frequency band based on
angular-domain data, and the square envelope spectrum was
obtained to identify the fault locations of bearings. Finally,
the energy ratio of FCF to its neighborhood was calculated
via the square envelope spectrum, termed the neighborhood
power density ratio (NPDR) index to quantify the fault
degree.
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The second technique is to first apply common TFA
techniques to the collected signal, and then, postprocessing
methods are developed to estimate the IF [79], [80], [82],
[83], [85], [94]. In [86], a TFR was first obtained by STFT,
and then, a maximum tracking procedure was proposed for
frequency estimation in which a probabilistic approach was
developed to infer the actual frequency. In [87], an energy
centrobaric correction method-based frequency search method
and an improved Viterbi algorithm were proposed, which can
adaptively optimize the IF profile and improve the accuracy.
In [64], fast path optimization was used to optimize the profile
of the IF, by which the IFCF, the IRF, and their harmonic
components can be extracted from the TFR achieved via
applying STFT to bearing signals.

In addition to TFR-based methods, phase demodulation is
also effective in IF estimation [48], [88], [89], [95]. This
method was first proposed in [48], in which a harmonic
component of GMF was extracted based on phase demod-
ulation, and the time-domain data were resampled by the
IRF calculated by the extracted IF. It is obvious that it
cannot be used in applications with wide speed variations
because the target harmonic component cannot be effectively
separated from the multicomponent signal by a bandpass
filter. Urbanek et al. [90] proposed a two-step operation for
frequency detection, in which one rough IF was first extracted
from the TFR and used to resample the signal. Then, this
component was separated, and the accuracy IF was obtained
by phase demodulation. Through the two steps, the IF can
be extracted from the signal under large speed fluctuation
conditions. Peeters et al. [91] extended the phase demodulation
to the frequency estimation of multiple components, which
was implemented by weighting the harmonic phases in time
so that the effect of the low signal-to-noise ratio (SNR)
harmonics was prevented. The IRF was finally calculated
via the extracted frequency to resample the vibration signal.
Zhang et al. [93] utilized enhanced symplectic geometry mode
decomposition (ESGMD) to decompose the signal, and the
interference components were filtered out with the help of
a surrogate data test. The IRF was extracted and used to
resample the bearing signal for fault identification.

The comparisons of TFR- and phase demodulation-based
methods are listed in Table II. No matter for TFR-based
methods or phase demodulation-based methods, with the help
of advanced signal processing methods and postprocessing
methods, one IF can be easily extracted from the TFRs.
However, for most of those methods, one target time-varying
time–frequency ridge must be selected manually before extrac-
tion. The order spectra will be different when the resampling
operation is implemented by referring to different IFs, which
means that those methods cannot be extended to online fault
detection. It is expected that more adaptive IF estimation
methods will be investigated to meet the requirements of
online fault diagnosis.

The comparisons of HOT, COT, and TOT are listed in
Table III. It is found that, for real applications, the methods
should be selected based on the actual requirements and
conditions. For example, if real-time condition monitoring
is required, HOT and COT are two good choices, but one

Fig. 6. Spectral correlation map of a planetary gearbox signal.

Fig. 7. Wind turbine drive train test rig.

appropriate installation location should be prepared. For the
condition that there are not available locations to install
the hardware, TOT methods are the best choice, but more
adaptive methods should be further investigated for online fault
diagnosis.

B. CSC-Based Methods
CSC has been proven to be effective in revealing the periotic

pattern of a signal, and it is implemented by calculating the
double Fourier transform of the covariance function [49],
[96]. Compared with envelope analysis, CSC can reveal the
periodicities of second-order cyclostationarity, such as bearing
signals with stronger noise.

Through CSC, the periodic patterns are presented in the
bivariable map of spectrum frequency and cyclic frequency,
as shown in Fig. 6. The signal is measured from the plane-
tary gearbox, including a fault sun gear, as demonstrated in
Figs. 7 and 8. The former could pinpoint the carrier frequency,
while the periodic characteristic frequency harmonics are
revealed from the cyclic frequency direction. The spectral axis
can be integrated to form an improved envelope spectrum
(IES) or enhanced envelope spectrum (EES) [97].

However, the above methods can only be applied to signals
under constant speed conditions. Abboud et al. [50], [51]
further extended the CSC to cyclononstationary signals, which
was implemented by applying spectrum correlation or spec-
trum coherence to the angular-domain signal. By this theory,
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TABLE II
LIST OF COMPARISONS OF DIFFERENT IF DETECTION METHODS

TABLE III
LIST OF COMPARISONS OF HOT, COT, AND TOT

Mauricio et al. [6] developed a novel tool for band selection
called the IES via feature optimization-gram (IESFOgram),
which was applied to the bearing fault diagnosis under vari-
able speeds. Schmidt et al. [98] utilized the order-frequency
spectrum and angle-frequency spectrum to construct several
band selection methods for the fault diagnosis of bearings and
gears under time-varying speeds.

Compared with envelope/order spectrum analysis, spec-
trum/order analysis based on CSC can better reveal periotic
patterns from cyclostationary/cyclononstationary signals, but
the computation is more complex, which leads to much
computation time, especially when analyzing signals collected
at high sampling rates, such as Safran engine data [52].
Therefore, the investigation of faster methods may promote
their applications.

C. Generalized Demodulation-Based Methods
Generalized demodulation is also an effective technique to

deal with nonstationary signals, by which the time-variant
trajectory of an IF can be converted into a linear path in
TFR [20]. Different from the resampling technique, an interest
time-varying IF can be selected as a target to be converted
into a constant, and the other frequency components are still
variable, which means that, for multicomponent signals, the
interest fault-related components can be highlighted in the
demodulation spectrum. An example in [62] is presented
to illustrate the principle of generalized demodulation. The
rotating speed fr (t) of a fault bearing signal is measured from
the test rig shown in Fig. 4; a phase function pr (t) is shown in
Fig. 9(a); and the IRF fr (t), IFCF f (t), and their harmonics
are also time-varying, as shown in Fig. 9(b). Guided by
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Fig. 8. (a) Planetary gearbox. (b) Fault sun gear.

Fig. 9. (a) IRF and its phase function. (b) TFR of the vibration signal.
(c) TFR of the demodulation signal [phase function Cpr(t)]. (d) TFR of
the demodulation signal [phase function 2Cpr(t)].

proper phase functions calculated by pr (t), the IFCF and its
second harmonic are converted into constant ones, as shown
in Fig. 9(c) and (d), respectively. It is introduced into the fault
diagnosis of rotating machinery under time-varying speeds for
TFA [99]. Feng et al. [100] and Feng and Chen [101] further
extended it to the TFA of multicomponent planetary gearbox
signals. The generalized demodulation-related TFA methods
are detailed in Section III-B.

Recently, researchers have also investigated generalized
demodulation in spectrum analysis for rotating machinery fault
diagnosis [56], [102], and most of them focused on how to
construct phase functions. In [65], the time-varying bearing
IFCF was extracted, and the phase functions of IFs were
obtained by multiplying the extracted IFCF with constant
increments. The advantage of this method is that only one
IF is needed, and the others are estimated by the IF with no
prior knowledge. In [103], the phase function was calculated
by the rotating speed collected by a tachometer. OT converts
the time-varying frequencies into fixed constant values. For
example, if the signal is resampled by referring to the IRF,
the time-variant rotating frequency will be transformed into
the order of 1, and the other components will be transformed
into multiples of 1, which are determined by the relationship
of the frequencies with the rotating frequency. However,

the time-varying frequencies are converted into their starting
frequencies by generalized demodulation, which means that,
if the rotating speeds of different signals vary with different
profiles, and even if the health condition of the monitored
part is the same, the demodulation spectrum will be different.
Therefore, flexible generalized demodulation was proposed
in [62]. By introducing a base frequency, the time-varying
rotating frequency was converted into the base frequency,
and the other frequencies with the same physical meanings
were converted into the same base frequency-related constant
values.

Generalized demodulation has its own unique merits in
nonstationary signal spectrum analysis, but the limitations can-
not be neglected. In the demodulation operation, the interest
frequencies can be selected, which is beneficial for the demod-
ulation of those frequencies and prevents the interference of
fault-irrelevant frequency components, but the other potential
fault characteristic frequencies that are not selected are still
time-varying. If a monitored machine has a complex structure
and there are many parts to be monitored, the phase functions
corresponding to all target frequencies caused by all parts
should be calculated in advance, which is unrealistic. There-
fore, generalized demodulation-based methods are suitable for
machinery with simple structures or machinery with few parts
prone to faults.

D. Other Methods
To the best of our knowledge, most spectrum analysis-based

diagnosis methods for machinery under time-varying speeds
rely on resampling techniques, CSC, or generalized demodu-
lation, and there are only a few other approaches. In [104],
one IF was first detected from a signal of a fault gear, and
then, the fractional Fourier transform (FrFT) was applied to
demodulate the meshing frequency and its sidebands. In [105],
the envelope TFR of the rolling bearing signal was first
obtained, and then, the TFR was reconstructed based on one
extracted IF so that the 1-D demodulation spectrum could be
calculated by integrating the TFR over the time axis. However,
those methods have inherent drawbacks. For example, FrFT-
based methods are only applicable when the rotating frequency
varies linearly, and TFR reconstruction-based methods are
subject to the time–frequency resolution.

E. Comparisons
The advantages and disadvantages of OT-, CSC-, and gen-

eralized demodulation-based spectrum analysis methods are
listed in Table IV. It should be noted that each method has
its inherent disadvantages and advantages. Therefore, in real
applications, we should select one appropriate method accord-
ing to specific requirements. For example, if the monitored
machine is complex, but only one part is prone to faults, it is
better to choose generalized demodulation because the phase
functions of fault-related components of the monitored part
can be easily calculated. If the machine is complex and all
parts are evenly prone to faults, generalized demodulation is
not a good choice because it is hard to calculate all phase
functions, while OT may be more suitable. CSC is subject to
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TABLE IV
LIST OF COMPARISONS OF DIFFERENT SPECTRUM ANALYSIS METHODS

a high computation burden, but it is robust to noise. Therefore,
for early fault diagnosis, CSC seems more appropriate.

III. TFA METHODS

TFA is also one popular method for machinery fault diag-
nosis under time-varying speeds. Recently, various advanced
TFA methods have been investigated for the fault diagnosis of
machinery under time-varying speeds. The researchers at the
universities such as the University of Science and Technology
Beijing [106], [107], [108], [109], [110], [111], Shanghai
Jiao Tong University [112], [113], [114], [115], [116], Xi’an
Jiaotong University [117], [118], [119], [120], the Beijing
University of Chemical Technology [121], [122], [123], the
University of Jinan [124], [125], [126], [127], Tsinghua Uni-
versity [25], [128], [129], [130], and the Beijing University
of Technology [131], [132], [133], [134] have made great
contributions to this field.

A. Traditional TFA Methods
Traditional TFA methods include linear methods, such as

STFT [21] and continuous WT (CWT) [22], and bilinear/
quadradic methods, such as WVD [23]. The applications of
linear TFA methods in fault diagnosis are subject to low
time–frequency resolution because of the Heisenberg uncertain
principle. A vibration signal of the planetary gearbox with a

Fig. 10. (a) and (b) Envelope TFRs of the vibration signal collected from
a planetary gearbox with a fault sun gear obtained by STFT and CWT,
respectively.

fault sun gear collected from the tested rig in Fig. 7 is analyzed
as an example. As shown in Fig. 10(a) and (b), IFCF fsun, IRF
fr , and their harmonics are not clear in the TFRs obtained by
STFT and CWT due to the poor time–frequency resolution.
Bilinear/quadradic TFA methods have higher resolutions, but,
when dealing with multicomponent signals, they are often
subject to cross-term interference, so they are rarely used in
fault diagnosis.

Nevertheless, they still play an irreplaceable role in fault
diagnosis under time-varying speeds. On the one hand, they
are regarded as the most common tool to generate TFRs used
for IF extraction, which can be found in Table I. On the other
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TABLE V
LIST OF REFERENCES ON THE PPTFA-BASED FAULT DIAGNOSIS METHODS

hand, they are the basis of postprocessing TFA (PPTFA) meth-
ods, i.e., various advanced TFA methods have been developed
based on those traditional TFA methods.

B. PPTFA Methods
To enhance the time–frequency resolution, various PPTFA

techniques have been investigated and widely utilized in
the fault diagnosis of rotating machinery under time-varying
speeds [135], [136], [137]. They enhance the quality of TFRs
by suppressing the interference terms and improving the
time–frequency energy concentration. The signals of rotating
machinery are usually multicomponent, and some components
are very close to each other, such as the GMF and the various
sidebands around it in planetary gearbox vibration signals [25],
[138]. It is difficult to reveal those components clearly and
then realize fault diagnosis. Therefore, some PPTFA meth-
ods specifically suitable for AM and frequency modulation

(AM–FM) signal analysis have been investigated. In this
section, we mainly review the traditional PPTFA methods
and the PPTFA methods proposed specifically for the TFA
of rotating machinery. The relevant publications on PPTFA
methods are listed in Table V, where “target IFs” refers to
the frequency components on which the diagnosis decision is
based, i.e., the frequency components that are expected to be
revealed.

The idea of reassignment was first proposed by
Kodera et al. [139], and then, Anger and Flandrin [140]
proposed time–frequency reassignment, which was
implemented by reallocating the time–frequency energy of the
TFR obtained via common TFA algorithms to the center of
gravity. Daubechies et al. [141] and Oberlin et al. [142] further
developed the synchrosqueezing transform (SST) based on
the WT and the STFT, respectively, which reassign the TFR
in the frequency domain. These methods lie the foundation
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of PPTFA methods, and researchers have introduced them to
machinery fault diagnosis. In addition, some PPTFA methods
that are more suitable for vibration signal analysis have
been proposed according to the modulation characteristics of
vibration signals [143], [144].

Feng et al. [106] applied ConceFT [145] to bearing envelope
signals, and the IFCF and its harmonics were pinpointed
clearly in the TFRs. They further validated that the TFA
method had higher resolution compared with the WT, SST, and
MMSST in analyzing bearing signals. Hu et al. [112] proposed
a high-order synchrosqueezing WT (HSWT) for fault diagno-
sis of planetary gearboxes, in which the chirp rate operators
and the high-order group delay were adopted to estimate the
IF. Yu et al. [124] proposed a multisynchrosqueezing trans-
form (MSST) for fault diagnosis of machinery under strongly
time-varying speeds, which utilized an iterative procedure to
condense the blurry energy based on STFT, and because the
STFT was operated only once in the iterative operation, the
computation burden was released. Yuan et al. [146] proposed
a multilifting SST (MLST) for the fault diagnosis of rotating
machinery under fast-varying rotating speeds, in which a
multisqueeze second-order lifting operator was designed for
estimating the IFs more accurately, and the deviation of
time–frequency energy was corrected by a correction operator.
Yang et al. [117] proposed an amplitude-independent crack
identification method (AICIM) for shaft crack fault diagno-
sis, in which amplitude-independent IF was first extracted
by matching time–frequency theory, and then, the energy
of TFR along the trajectory of the IF was concentrated.
Li et al. [147] developed an oscillatory time–frequency con-
centration (OTFC) method, in which a tunable Q factor WT
(TQWT) was adopted to decompose the signals into low- and
high-oscillatory components. The former was regarded as the
target component and then was concentrated by multitaper
synchrosqueezing. Liu et al. [121] developed an adaptive
time-reassigned SST (ATSST), in which the Renyi entropy
was utilized to obtain the variable optimal window width of
time-reassigned SST. Tu et al. [115] developed generalized
horizontal SST, in which a high-order Taylor expansion-
based group delay was proposed as the synchrosqueezing
operator. Zhou et al. [118] developed a second-order iter-
ative time-rearrangement SST, in which the approximation
order was increased and multiple iterations were conducted
to gain better time–frequency readability. These methods have
achieved great improvement. However, when dealing with
multicomponent signals under time-varying speeds whose IFs
are very close to each other or when there exist cross-term
interferences, those methods are still subject to some degree
of time–frequency blurs.

The vibration signals of rotating machinery are usually
composed of rotating frequency harmonics, which makes it
possible to improve the time–frequency resolution by using
this characteristic. For example, in terms of bearing vibration
signals, the useful frequencies are the FCF, the rotating fre-
quency, and their harmonics; for planetary gearbox signals,
the GMF and the sidebands around it are essential for fault
detection. According to the characteristic, the IFs can be
extracted first from the TFRs obtained by the common TFA

techniques, or the target IFs can be estimated by the rotating
frequency obtained by the tachometer; then, they are utilized
to enhance the resolution.

Based on the IF, in [148], generalized demodulation was
used to convert the target GMF into a constant, and then,
the WT was utilized on the demodulation signal. Because
the target frequency was converted into a constant, the
resolution was improved. Finally, the TFR was restored
by a time-scale domain restoration process. In [107], the
IFs were estimated, and then, iterative generalized demod-
ulation was applied to convert the time-varying harmonic
components around the GMF of the planetary gearbox into
constant components. Those constant ones were separated by
proper bandpass filters, and the traditional TFA methods were
applied to them. Finally, the TFRs were reconstructed so
that the time-varying profiles of those IFs could be restored.
In [149], an improved MSST (IMSST) was used to detect
the IF of bearing signals, and then, the phase functions
of generalized demodulation were calculated by the IF and
fault characteristic coefficient. Then, the empirical Fourier
transform (ETF) was used to separate the demodulated com-
ponents, and the final high-quality TFR was obtained by
an adaptive time–frequency method. According to this prin-
ciple, the iterative generalized time–frequency reassignment
[108], the iterative generalized SST [100], the general-
ized stepwise demodulation transform and synchrosqueezing
[150], the adaptive demodulation synchroextracting transform
[131], the demodulated high-order SST [113], and the adap-
tive iterative generalized demodulation-based time–frequency
transform [101] were proposed, and their purpose was to
further enhance the time–frequency resolution or make the
procedure more adaptive. This kind of TFA method highly
improves the resolution, and most of them are validated to
reveal the time-varying close-spaced sidebands around the
GMF of the planetary gearbox.

Improving the time–frequency resolution by signal process-
ing methods is also common and effective in fault diagnosis.
The signals of rotating machinery are usually multicomponent
and contaminated by noise and interference components. If the
multicomponent signals are decomposed into monocompo-
nents by signal decomposition methods, e.g., the Vold–Kalman
filter [109], local mean decomposition (LMD) [152], and
single-mode function decomposition (SMFD) [153], the back-
ground noise and the interference components are filtered
before the TFA, and it is easier to identify the frequency com-
ponents. Recently, signal decomposition-based TFA methods
have been widely investigated and have contributed greatly to
the machinery fault diagnosis.

In [110], the Vold–Kalman filter was used to separate
multicomponent signals into monocomponents, and the TFRs
of those components were obtained. Finally, the TFR of
a raw signal was obtained by reconstructing the TFRs of
monocomponents. In [114], the variational nonlinear chirp
mode decomposition (VNCMD) method was proposed, which
was utilized as a filter bank to separate the multicompo-
nent signal to remove the background noise and interference
components. Furthermore, in [116], variational nonlinear com-
ponent decomposition was proposed for planetary gearbox
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TABLE VI
LIST OF COMPARISONS OF DIFFERENT PPTFA METHODS

fault diagnosis, which was more adaptive owing to a novel
frequency estimation method. In [111], angular resampling and
adaptive mode decomposition were combined to decompose
the signal into monocomponents, and then, reverse resam-
pling and the TFR reconstruction methods were adopted to
recover the initial IFs. In [151], a two-level adaptive chirp
mode decomposition (ACMD) was developed for wheel flat
fault diagnosis. For the method, ACMD was first utilized to
decompose the raw signals, and then, the Gini index was used
to select a component containing fault information. Finally,
ACMD was applied to the selected component to reveal the
wheel flat FCF.

The comparisons of different PPTFA methods are listed
in Table VI. The PPTFA methods have improved the
time–frequency resolution to a great extent, and especially
for generalized demodulation- and signal decomposition-based
methods, they have been validated to be effective in analyzing
signals whose frequencies are very close and vary fast, but
the limitations are also obvious. First, the application of those
methods is time-consuming. Usually, downsampling is applied
to save time, but, for signals with high resonance frequency
or with fault characteristic frequencies that are high due to
the mechanical structure and the high rotating frequency, the
data must be measured at a higher sampling rate to capture
the resonance frequency and the characteristic frequencies.
Second, most PPTFA methods rely on IFs extracted from
TFRs, which are usually obtained manually. Therefore, reduc-
ing the complexity and improving the adaptability may make

it possible to extend these methods to online fault diagnosis
of rotating machinery.

C. CT-Based TFA Methods
CT-based TFA methods are also effective in the fault

diagnosis of rotating machinery under time-varying speeds
[128], [154], [155]. The basic principle of a CT is to match the
analyzed signal with a designed special basis. When the chirp
kernel is the same as the IF of the signal, a TFR with a better
energy concentration is obtained. However, the traditional CT
only performs better for signals with a linear IF, which does
not meet the requirements of real mechanical applications.
To avoid this limitation, Peng et al. [156] developed a poly-
nomial CT (PCT) method, which used a polynomial function
instead of the traditional linear chirp kernel and can better
approximate nonlinear IFs.

To improve the performance in multicomponent signal
analysis, Yu and Zhou [125] proposed a general linear CT
(GLCT) method, which generated the final TFR by fus-
ing a series of TFRs obtained by the linear CT with a
set of different chirp rates. Guan et al. [157] developed
a velocity synchronous linear CT (VSLCT), which corre-
lated the chirplet with the velocity of the rotating shaft and
exhibited high time–frequency resolution. Researchers have
also combined CT-based TFA methods with postprocessing
methods to further improve readability [122], [123]. For
example, Zhu et al. [119] proposed a multisynchrosqueezing
CT (MSSCT), which combined the MSST with a CT and



LIU et al.: ROTATING MACHINERY FAULT DIAGNOSIS UNDER TIME-VARYING SPEEDS: A REVIEW 29981

can produce a more accurate IF estimator to correct the
time–frequency energy deviation. Owing to the merits of the
synchroextracting transform (SET) [126], a few improved
versions of the CT have been proposed, such as the synchroex-
tracting CT (SECT) [120], general SECT (GSECT) [158],
velocity synchronous chirplet extracting transform (VSCET)
[159], the combination of the PCT and SET [160], syn-
chroextracting frequency synchronous CT (SEFSCT) [161],
and multiple squeezing based on velocity synchronous CT
(MSVSCT) [162]. The main idea of these methods is that
the time–frequency information around the IFs is retained, and
the smeared time–frequency energy is removed to enhance the
energy concentration and readability.

Researchers have paid much attention to CT-based TFA
methods for fault diagnosis. Most of them focused on con-
structing a chirplet basis to better approximate nonlinear
IFs, designing an IF estimator to more accurately estimate
IFs and utilizing postprocessing methods to improve the
time–frequency energy concentration. Compared with PPTFA
methods, CT-based TFA methods are more adaptive, but it is
still challenging to achieve an ideal TFR for vibration signals
with cross-interference components and with IFs whose trajec-
tories are very close, such as the vibration signals of planetary
gearboxes under low-speed conditions.

D. Other Methods
To the best of our knowledge, some other TFA methods,

such as improved WTs, sparse time–frequency representations
[163], [164], [165], and time–frequency manifolds [166],
[167], have also been investigated recently, and they have
made great contributions to fault detection. However, they
are mainly proposed for transient fault feature extraction. For
example, the impulses caused by bearing faults are usually
overwhelmed by noise, but they can be revealed by these
TFA methods. In the time–frequency plane, the impulses
exhibit higher magnitudes, so their appearance indicates the
existence of a fault, and the intervals of those impulses can
be used to infer the fault location. They are usually not used
in revealing time-varying characteristic frequencies for fault
diagnosis under time-varying speeds.

IV. INTELLIGENT FAULT DIAGNOSIS METHODS

Intelligent fault diagnosis aims to automatically recognize
health conditions through an appropriate model. Recently,
machine learning methods have attracted much more atten-
tion, and some advanced methods for the fault recognition
of rotating machinery under variable speed conditions have
been investigated. According to their realizations, they are
divided into artificial feature extraction- and deep learning-
enabled techniques. In terms of the research teams, unlike the
spectrum analysis- and TFA-based methods, the publications
on this topic are not concentrated. In this review paper, Xi’an
Jiaotong University has published several papers [168], [169],
[170], [171], [172], [173], [174], and the others such as
Chongqing University [175], Beihang University [176], [177],
and Yanshan University [178], [179] published less than three
papers. However, most of the papers on this topic have been

Fig. 11. (a) and (b) Waveforms of the fault bearing signals under
constant and time-varying speeds, respectively. (c) and (d) Kurtosis
values corresponding to (a) and (b), respectively.

published in the past three years. It is predicted that the number
of intelligent fault diagnosis methods for time-varying speeds
will grow rapidly considering the wide range of researchers,
the popularity of intelligent methods, and the significance of
fault diagnosis under time-varying speeds.

A. Artificial Feature Extraction-Enabled Methods
Artificial feature extraction-enabled methods refer to the

joint application of signal processing methods and classifiers
to implement automatic fault recognition. For fault diagno-
sis under constant speeds, the common time-domain [180],
frequency-domain [181], and time–frequency-domain [182],
[183] features are usually effective and can be easily extracted.
However, when the speed varies, the corresponding features
also change with the speed variations. The signals of a
fault bearing under constant speed and variable speed are
demonstrated to illustrate this effect, and the waveforms are
displayed in Fig. 11(a) and (b), respectively. The amplitude
of the waveform changes with the speed variation. The most
common feature kurtosis values combined with the speeds of
the two signals are also presented in Fig. 11(c) and (d), which
confirms the effect of speed variation on the features.

To implement intelligent fault diagnosis under variable
speeds, researchers have proposed more effective features
through signal processing methods. Zhou et al. [184] cal-
culated the time- and frequency-domain features of angular-
domain data and then fed them into a modified self-organizing
map (SOM). To eliminate the interference of speed fluc-
tuations, the resampling technique was adopted. However,
only the periodicity of the impulses was recovered, and the
magnitudes of the amplitudes were still affected by the speed.
In [185], EMD was utilized to decompose the angular-domain
signal, and then, the multiscale entropy features of the selected
IMFs were fed into a decision tree (DT) classifier for fault clas-
sification. Furthermore, in [30], the Vold–Kalman filter was
used to remove the fault-unrelated components, and the refined
composite multiscale fuzzy entropy (RCMFE) features were
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selected and fed into logistic regression for fault recognition.
Those methods mainly rely on resampling to remove the effect
of speed variation. In [62], flexible generalized demodulation
was proposed to produce a demodulation frequency domain,
and the features related to characteristic frequency harmonics
were extracted for fault recognition. In [186], the persistence
spectra of the vibration signals were calculated, which were
claimed to be more independent of the rotating speed, and
then, a multiscale structural similarity index was applied to
differentiate the health conditions.

The above review shows that feature extraction via signal
processing methods combined with appropriate classifiers can
effectively decrease the need for human labor. However,
limitations and challenges still exist. Most feature extraction
methods rely on resampling techniques, but they can only
restore the periodicity of fault-related impulses, and the effect
of rotating speeds on the amplitude of a waveform cannot be
removed. In addition, the artificial feature extraction operation
still relies on expert knowledge and does not totally eliminate
the need for human labor.

B. Deep Learning-Enabled Methods
Deep learning-enabled diagnosis means that the effective

features are learned from the raw signals or the signals through
simple preprocessing, such as transforming 1-D data to a
2-D TFR, automatically by deep neural networks, such as
deep autoencoders [187], deep belief networks [188], and
CNNs [189], [190], [191]. Recently, some researchers have
attempted to construct deep diagnosis models to implement
fault recognition under time-varying speeds. According to the
implementation of those methods, they are divided into signal
preprocessing-based methods, improved CNN-based methods,
and other methods.

1) Signal Preprocessing-Based Methods: Signal
preprocessing-based methods refer to signals that are
processed in advance to remove/weaken the effect of speed
variation, and then, the processed signals are analyzed by
common deep learning methods. In [192], the vibration
data of bearings were resampled, and then, a 1-D CNN
was utilized to learn the features from the angular-domain
signals. In [193], the vibration signals were demodulated
by generalized demodulation, and then, the features were
learned by a CNN. In [194], the order spectra of the collected
signals were obtained, and an adaptive normalized CNN
was adopted to mine the features via the order spectra for
planetary gearbox fault recognition. In [195], the signals
of the planetary gearbox were resampled, and then, the
angular-domain signals were mapped into 2-D images by
recurrence plot (RP) analysis. Finally, the features were
learned from the images and classified by a CNN. In [196],
the Fourier SST (FSST) and OT were applied to achieve the
angular-domain data, and then, a CNN was applied to the
WT-based TFR for bearing fault recognition.

The above methods aim to utilize signal processing methods
to weaken the interference of speed variation, and then, deep
learning methods are adopted to realize fault recognition.
However, as mentioned before, most methods can only restore
the periodicity of fault shocks, and the effect on the amplitude

of the waveform is not removed. Even in commonly used
TFRs, the amplitudes of the resonance frequency band or
characteristic frequency harmonics are different under time-
varying speeds. Therefore, although the signal processing
methods have improved the performance, the performance of
this scheme cannot totally recover the effectiveness of deep
learning methods.

2) Improved CNN-Based Methods: A typical CNN consists
of convolutional layers, pooling layers, and fully connected
layers [190]. Because of their excellent feature extraction
ability, CNNs have been widely applied in machinery fault
recognition [197], [198]. To extend a CNN to time-varying
speed conditions, some improved versions of CNNs have been
investigated.

In [199], a novel intraclass and interclass constraint (IIC)
integrated with an adaptive activation function was combined
with a CNN, which can adapt the data with class fluctuation
owing to the feature mapping constraint ability of IIC and
the good nonlinear mapping ability of the adaptive activation
function, and the improved CNN was validated to be effective
in gearbox fault diagnosis under variable speeds. In [200],
a nuisance attribute projection (NAP) was performed on the
loss function of a CNN, which was used to project the feature
to another space to weaken the interference attribute and,
thus, remove the effect of the speed condition. In [201], the
CWT was utilized to the vibration data of bearings to achieve
2-D TFRs, and because the distributions of frequency compo-
nents in the TFRs changed following the variation in speeds,
a Pythagorean spatial pyramid pooling (PSPP) layer was added
to a CNN, which was validated to be able to analyze TFRs
with scalograms of different sizes. In [31], a multiscale kernel
algorithm and a residual learning method were introduced into
a CNN, which was proven to be able to capture the features
from raw signals and be more robust to condition variation.
In [168], a cascade CNN with progressive optimization was
proposed. For the method, a dilated convolution operation that
can capture different sizes of respective fields was conducted
to extract the features of different scales caused by speed vari-
ation, and the cascade structure and progressive optimization
were performed to improve the feature mining ability.

In the literature review, it is concluded that researchers
mainly focused on two aspects to extend common CNNs
to time-varying speed conditions. First, new methods are
introduced to CNN to address the scale variation caused
by speed fluctuations. Second, new modules are added to
the CNN to make the models more effective in mining the
condition-irrelevant features.

3) Other Methods: In addition to the signal
preprocessing-based methods and the improved CNN-
based methods, there are some other deep learning-enabled
methods to be reviewed in this part.

In [169], a subspace network with shared representation
learning (SNSR) method was proposed, in which shared
representation learning was designed to promote the learning
ability of domain irrelevant features. In [177], the samples
were segmented, and the time-domain feature dimensions of
those segments were calculated as the input. Then, a deep bidi-
rectional long short-term memory (DB-LSTM) was applied to
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implement fault recognition. In [170], a multibranch redun-
dant adversarial network (RedundantNet) was developed for
bearing fault recognition under variable speeds, in which a
generator was designed to obtain various signals with different
speeds and the training data were expanded. In [202], a parallel
adversarial learning inference (PALI) model was proposed,
in which the encoder and the decoder were trained by a par-
allel adversarial game to enhance the feature learning ability.
Liang et al. [179] developed a deep residual deformable subdo-
main adaptation framework for wind turbine fault recognition
under variable speeds. The deformable convolution module
was used to enhance the traditional residual network, and
the local maximum mean discrepancy (LMMD) was used
to remove the feature distribution discrepancy of samples
under different speed conditions. Yuan et al. [203] proposed
a speed-adaptive graph convolutional network (SAGCN) for
wheelset bearing fault diagnosis, in which the vibration data
and encoder data were fed into convolutional layers, respec-
tively, the global average pooling was used to fuse the two
channel features, and the graph neural network was finally
utilized to further learn the features for fault recognition
of the bearings under time-varying speeds. Shi et al. [171]
developed a reliable feature-assisted contrastive generaliza-
tion net (RFACGN), in which a contrastive framework was
used to remove domain distribution discrepancy, and more
importantly, a feature-assisted multibranch module was devel-
oped to guide the model to extract more fault information.
Zhao and Shen [204] proposed a mutual-assistance net-
work for semisupervised domain generalization fault diagnosis
(SemiDGFD), in which labeled and unlabeled source domain
data were used to release the burden of labeling source
domain data, pseudolabels were assigned to unlabeled data,
and the entropy-based module was applied to enhance the
quality of pseudolabeled data. Lei et al. [173] proposed a prior
knowledge-embedded metatransfer learning (PKEMTL) model
for few-shot fault diagnosis of machinery under time-varying
speeds. This method employed a metric-based metalearning
framework to implement cross-domain learning, and COT was
used to provide the prior knowledge for data augmentation.

The comparisons of artificial feature extraction-enabled
and deep learning-enabled methods are listed in Table VII.
Deep learning-enabled methods can learn the features directly
from the collected signals or preprocessing signals and, thus,
decrease the need for human labor and expert knowledge.
However, compared with the research on fault recognition
under constant speeds, there are far fewer investigations on
time-varying speeds, and the recognition rates need further
improvement. In addition, signals under time-varying speeds
exhibit strong nonstationary characteristics and variabilities,
which adds the difficulties in capturing useful features for fault
recognition. Therefore, how to construct a diagnosis model
with limited data and improve model generalization should be
given more attention.

V. RESEARCH PROSPECT

Although much progress has been made in the fault diag-
nosis of rotating machinery under time-varying speeds, there
is still a large potential for improvement and optimization,

especially for actual applications. Accordingly, some research
prospects are suggested in the following.

A. More Adaptive IF Estimation Method
Much attention has been given to IF estimation for TOT and

generalized demodulation, but the target IF usually needs to be
selected manually before extraction. After obtaining the IF, the
IRF is calculated according to the known proportional relation-
ship. Although spectrum smearing can be avoided according
to one arbitrary IF proportional to the rotating frequency,
different IFs will result in different spectra. As a result, it is
necessary to pay more attention to adaptive IF extraction to
facilitate actual applications. Incorporating the prior knowl-
edge on the physical systems and probability knowledge into
the TFR- and phase demodulation-based IF estimation may
provide us with a solution to realizing adaptive IF extraction
so that the TOT and tacholess generalized demodulation can
be extended to online fault recognition.

B. Bearing Fault Extraction of Complex Machinery
Most spectrum analysis methods for bearing fault diag-

nosis focus on machinery with a simple structure. In real
applications, bearings are usually mounted in more complex
machinery, such as planetary gearboxes. The weak bearing
fault feature is usually overwhelmed by interference com-
ponents. In addition, time-varying speeds will cause more
complex modulation characteristics and further add difficulties
for fault detection. Therefore, weak bearing fault feature
extraction from complex machinery under time-varying speeds
is highly needed.

C. Adaptive PPTFA Methods
PPTFA methods have many advantages, such as high res-

olution, and are even free from interference components, but
good TFRs are always generated by various postprocessing
methods combined with manual visual observation of the tra-
ditional TFRs, which means that, for common engineers, it is
difficult to implement. As such, research on more automatic
multicomponent IF extraction methods may help to improve
the adaptability of PPTFA methods. Rather than improving the
time–frequency resolution by the algorithm itself, the unique
modulation characteristics of rotating machinery, such as the
proportional relationship of different frequency components,
may be helpful. For example, if the information of IRF is
embedded into the TFA algorithms, some parameters of bases
can be determined with the IRF as prior knowledge.

D. Health Indicator Construction for Time-Varying Speed
Condition

Health indicator plays a vital role in fault detection, degrada-
tion assessment, and prognosis. Various health indicators, such
as root mean square (rms) and kurtosis, have been constructed
and proved to be effective for the stationary conditions,
as reviewed in [38] and [39], but they are not applicable for
time-varying conditions, as shown in Fig. 11. To the best of
our knowledge, few publications focus on the time-varying
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TABLE VII
LIST OF COMPARISONS OF DIFFERENT INTELLIGENT METHODS

speeds. Although the most popular resample operation can
restore the periodicity of signals, the effect on amplitudes
of fault shocks is not removed. In addition, the resample
operation will cause a variance in resonance frequency. It is
suggested that more attention should be paid to constructing
health indicators that are insensitive to speed variations to
achieve health condition monitoring based on a simple index
more effectively in real-time-varying speed conditions.

E. Deep Speed-Irrelevant Diagnosis Models
Compared with artificial feature extraction-enabled meth-

ods, deep learning-enabled methods can better take advantage
of massive historical data and apply it to machinery health
conditions, which is vital for the implementation of smart
manufacturing. However, there are still few relevant studies
on time-varying speeds, and the recognition accuracy needs
further improvement to meet the requirements of actual indus-
trial applications. Therefore, deep speed-irrelevant diagnosis
models may be a very interesting and meaningful research
direction. CNN is one popular method in deep learning-based
fault diagnosis methods under time-varying methods. Nowa-
days, the transformer has gradually received more attention
and has become popular [205], [206]. It has demonstrated
great potential in global information mining. The amplitudes
of fault shocks are affected greatly by rotating speeds, but the
AM characteristics of vibration signals caused by different
faults that exhibit for a long time will be quite different.
Theoretically, the transformer may be suitable for the fault
diagnosis of machinery under time-varying rotating speeds.

F. Multisensory Models
The collected signals under time-varying speeds exhibit

strong nonstationary characteristics and variability; compared

with those under constant speeds, much more data are required
to optimize the diagnosis models. However, a large volume
of effective data is not always available in practical appli-
cations. Therefore, it is necessary and effective to develop
multisensory diagnosis models for fault diagnosis under time-
varying speeds. As a new emerging powerful network, graph
neural network performs well in capturing the relationships
among data by the nodes and edge weights [207], [208], so it
could capture the interaction among sensors and, by combining
domain adaptation technique, may provide good results in
multisensory recognition models.

G. Model Generalization Ability
The diagnosis models proposed for both constant speeds and

time-varying speeds are only tested in this way, in which the
data used for training and testing are from the same dataset,
i.e., for a health condition, the data used for training and testing
are from the same mechanical part and the same installation.
In real applications, the faulty mechanical parts are used to
train the model, but the monitored part is typically newly
installed. As Liu et al. [53] reported, the average accuracy of
CNN in dealing with the bearing data under the joint effect of
rotating speeds and installation factors is only about 50%. It is
necessary to pay more attention to the investigation of model
generalization to narrow the gap between theoretical research
and real applications. Model interpretation helps us understand
how the models make decisions [209], [210] and provides us
with the potential to identify whether the decisions are made
based on fault information or other interference factors.

VI. CONCLUSION

In this article, a comprehensive review of rotating machinery
fault diagnosis under time-varying speeds is conducted. The
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relevant studies are divided into three categories, i.e., spec-
trum analysis-based methods, TFA methods, and intelligent
fault diagnosis methods. The advantages and challenges of
these three types of methods in actual applications are also
discussed. Finally, we provided several open topics for future
research. Despite the promising results reported thus far,
there are still some limitations to extending those methods
to some challenging applications. Accordingly, we will pay
more attention to solving these challenges. We hope that this
review can provide relevant researchers with a preliminary
understanding of recently published works.
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