
30522 IEEE SENSORS JOURNAL, VOL. 23, NO. 24, 15 DECEMBER 2023

Demystifying Usability of Open-Source
Computational Offloading Simulators:

Performance Evaluation Campaign
Daria Alekseeva , Student Member, IEEE, Aleksandr Ometov , Senior Member, IEEE,

and Elena Simona Lohan , Senior Member, IEEE

Abstract—Along with analysis and practical implementation, simulations play a key
role in wireless networks and computational offloading research for several reasons.
First, the simulations provide the ability to easily obtain the data for a complex
system’s model evaluation. Second, simulated data provide a controlled environment
for experimentation, allowing models and algorithms to be tested for robustness
and identifying potential limitations before deploying them in real-world applications.
Choosing the most appropriate tool for simulation might be challenging and depends
on several factors, such as the main purpose, complexity of data, researcher skills,
community support, and available budget. As of the time of the present analysis,
several system-level open-source tools for modeling computational offloading also cover
the systems’ communications side, such as CloudSim, CloudSim Plus, IoTSim-Edge,
EdgeCloudSim, iFogSim2, PureEdgeSim, and YAFS. This work presents an evaluation
of those based on the unique features and performance results of intensive workload-
and delay-tolerant scenarios: XR with an extremely high data rate and workload; remote
monitoring with a low data rate with moderate delays and workload requirements; and
data streaming as a general human traffic with a relatively high bit rate but moderate workload. The work concludes that
CloudSim provides a reliable environment for virtualization on the host resources, while YAFS shows minimal hardware
usage, while IoTSim-Edge, PureEdgeSim, and EdgeCloudSim have fewer implemented features.

Index Terms— Cloud computing, edge computing, fog computing, modeling, simulation.

I. INTRODUCTION

THE rapid growth of network services has forced the
creation of new methods to offload the computations

and data. The architecture of the Internet of Things (IoT)-
driven scenarios, e.g., smart home and health monitoring,
consists of the entities to sink and process data [1], [2]. The
idea to utilize the resources of remote computers improved
info-communication technologies, allowing one to store and

Manuscript received 4 August 2023; accepted 26 August 2023.
Date of publication 13 September 2023; date of current version
14 December 2023. The work of Daria Alekseeva was supported in part
by the Doctoral Training Network in ELectronics, Telecommunications
and Automation (DELTA), in part by the Pekka Ahonen Fund,
and in part by the Doctoral Grant of the Information Technology
and Communications Science Faculty at Tampere University. The
associate editor coordinating the review of this article and approving
it for publication was Prof. Qiliang Li. (Corresponding author:
Daria Alekseeva.)

The authors are with the Faculty of Information Technology and
Communication Sciences, Tampere University, 33720 Tampere, Finland
(e-mail: daria.alekseeva@tuni.fi).

Digital Object Identifier 10.1109/JSEN.2023.3310669

process large amounts of data without wasting own machine’s
resources.

Historically, Mobile Cloud Computing (MCC) implies the
computational offloading from mobile devices to cloud servers
via the communication link [3]. This paradigm allows to use
an enormous computing and storage capacity. Even though
datacenters have high performance, they also consume a lot
of power, which can cause global problems. The distance
to the nearest datacenter greatly impacts the latency. As of
February 2023, there are only 24 datacenters in Finland,
where 18 are located in the capital region [4]. The connection
time from northern Finland to the nearest Cloud server might
be counted by several seconds. In contrast, some delay-
sensitive applications would require orders of magnitude
less [5].

Shifting the offloading to the edge of the network aims to
assist in resolving the latency issue. An edge is a server near
the gateways that can process data with lower communication
latency than in the cloud because of its proximity to the user.
Like edge, fog computing is another paradigm that processes

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-6517-2143
https://orcid.org/0000-0003-3412-1639
https://orcid.org/0000-0003-1718-6924


ALEKSEEVA et al.: DEMYSTIFYING USABILITY OF OPEN-SOURCE COMPUTATIONAL OFFLOADING SIMULATORS 30523

big tasks not far from the user with minimum delay [6].
Nowadays, there are more than six emerging paradigms for
optimal processing data in remote servers, such as mobile
edge, cloud computing, and fog computing, that have their
own advantages according to the particular use case and its
requirements [7]. The growing attention to the computing
paradigms correlates with the growing number of emerging
toolkits for computing paradigms simulations since actual
implementations of testbeds appear to be close to impossible.
There is a wide range of tools for validating, generating,
transmitting, and offloading data, as shown in Fig. 1. The left
pillar represents the nature of the environment, the central part
of figure shows the tool’s name, and the right part represents
the research topics for which the tool was used. In 2022,
MATLAB became the most popular tool among researchers
applying it from wireless connections and IoT to offload
scenarios due to its mathematical nature and significant base of
toolboxes. Python-based Integrated Development Environment
(IDE) gained the most popularity for modeling over the
years because of its implementation simplicity and high
availability of resources. Network Simulator 3 (ns-3) is a
widely used network simulator that is keeping popularity over
the years. Recently developed tools are gaining popularity in
various research fields, e.g., satellite networks and connected
vehicles.

The practical reason for simulations is the allowance to test
the robustness of new models and algorithms without using
real-world data, which might be challenging to obtain, and
to identify potential issues and limitations before deploying
them in real-world applications. Choosing the right tool for
data simulation depends on several factors. The first and
principal is the purpose of the simulation and what kind of
data you need to obtain. Tools might have unique features
suitable for specific scenarios only. Another factor is the user’s
skills and his/her preferences in the programming language,
Operating System (OS) or Graphical User Interface (GUI).
Last but not least is the amount of dedicated budget for
purchasing.

The main contribution of this work is the evaluation
of the existing open-source simulators used for model-
ing cloud, fog, and edge computing scenarios from the
systems’ communications side based on implemented and
unique features and their performance. We analyzed the
simulators used in the computational offloading, Mobile
Edge Computing (MEC), and MCC. The work includes
the evaluation of the following tools: CloudSim, CloudSim
Plus, IoTSim-Edge, EdgeCloudSim, iFogSim2, PureEdgeSim,
and YAFS.

Notably, not all tools shown in Fig. 1 under com-
puting/offloading research topics were included in the
comparison. MATLAB is a matrix programming language
suited for analytic model validation by conducting extensive
simulations. It has applicability in any engineering research
and does not specialize in computing simulations; therefore,
it was not included in this overview. OMNeT++ Discrete Event
Simulator (OMNeT++) and ns-3 are also widely used network
simulators among researchers. ns-3 is not suitable for the
IoT simulation at the edge level since it does not support

the scheduling and application composition features, while
OMNeT++ does not support edge communication protocols.
Therefore, they were not included either. GreenCloud is a
packet-level simulation tool, which can measure the energy
consumption of datacenter components. This simulator only
focuses on the calculation of energy consumption to ensure
energy-aware placement [8].

The rest of this article is organized as follows. Section II
contains the introduction to the computing paradigms, the
review of related works, the list of criteria, and the
simulators’ descriptions. Section III presents their perfor-
mance comparison. This article ends with a discussion and
recommendations.

II. FEATURES EVALUATION

This section introduces the fog–edge–cloud computing
paradigms based on [7] and delves deeper into the
literature review of works that compare tools. Then,
it presents the developed set of metrics and the simulator’s
description.

A. Background on Computational Continuum
In 2011, the National Institute of Standards and Technology

(NIST), USA, published an official paper providing a
comprehensive definition of cloud computing. According to
NIST, cloud computing is characterized as “a model for
enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management
effort or service provider interaction” [9]. Cloud computing is
a powerful datacenter comprising several interconnected nodes
through high-speed channels. The cloud architecture consists
of two hierarchical levels: the end user and the datacenter (user
cloud). A stable connection to the Internet is a key requirement
for cloud service providers. Their primary goal is to allocate
the appropriate node to complete the user’s task computation
while ensuring data security.

The cloud architecture’s physical layer includes servers,
network equipment, and storage devices. The lowest layer
of the cloud consists of physical infrastructure drivers and
cloud drivers, facilitating communication with hardware and
other external clouds. The core of the cloud OS encompasses
a Virtual Machine (VM) manager, network manager, storage
manager, and other relevant components [10]. The top layer
of the OS features various management tools, such as
administrator tools, service managers, schedulers, and cloud
interfaces. Clients connect to the server through this cloud
interface.

The initial computing paradigm aimed to forward data to the
cloud for analysis. In addition, cloud computing has enabled
big data analysis, accessibility from multiple platforms, and
fast computational speed due to its high computational
power. However, the proliferation of wearables, sensors,
and IoT devices has posed more stringent requirements
in terms of mobility support, geodistribution, location



30524 IEEE SENSORS JOURNAL, VOL. 23, NO. 24, 15 DECEMBER 2023

Fig. 1. Most used environments in the telecommunication, computer science, and engineering area as of 2023.

awareness, and latency. Consequently, new paradigms, such
as edge and fog computing, have emerged, aiming to
reduce the distance between end devices and the central
server.

Fog computing is a distributed computing infrastructure
that brings computational capabilities closer to the user while
retaining cloud-like features. This approach allows for data
storage and processing with lower latency, better location
awareness, and higher Quality of Service (QoS) for real-time
applications [11]. On the other hand, edge computing locates
the datacenter at the actual network edge providing computing
offloading, data storage, and data processing services [12].
These paradigms share similarities but disagree regarding
processing location and types of used hardware [13]. Fog
and edge computing aims to bring data processing nodes
closer to the user, but the key difference lies in the role of
the first node in the network. Edge devices are positioned
as the first node, while fog nodes’ proximity depends on
the availability of servers. The hardware in edge computing
may include lower end devices, whereas fog computing
relies solely on server-based hardware. Edge computing
provides computation on the end network servers, while
fog computing processes data at the Local Area Network
(LAN) level.

In summary, cloud computing was precisely defined
by NIST in 2011 as a model for ubiquitous access to
configurable computing resources. Since then, computing
paradigms have evolved, leading to the emergence of fog
and edge computing. These new paradigms focus on reducing
latency and proximity between users and servers, see Fig. 2,

Fig. 2. Most common task offloading models. (a) Cloud computing.
(b) Edge computing. (c) Fog computing.

presenting new opportunities and challenges for Information
and Communication Technology (ICT), especially in the
medical domain [7].

B. Related Works
A comparative evaluation of simulators is necessary to

demonstrate the superiority of a particular tool in a specific
scenario becoming a subject of many works.

Aljabry and Al-Suhail [14] introduced a brief survey on
network simulators for Vehicular ad hoc Network (VANET).
The authors reviewed many popular simulators but provided no
simulation results or performance evaluation. Kang et al. [15]
presented a comprehensive survey on network simulators



ALEKSEEVA et al.: DEMYSTIFYING USABILITY OF OPEN-SOURCE COMPUTATIONAL OFFLOADING SIMULATORS 30525

Fig. 3. Diversity of simulation tools for offloading scenarios and their applicability according to different abstraction levels.

for Airborne ad hoc Network (AANET) or Flying ad hoc
Network (FANET) and Underwater Sensor Network (UWSN).
Patel et al. [16] presented a comparative study on network
simulators. The conclusion showed that OMNeT++ and
Network Simulator 2 (ns-2) were the most appropriate network
simulators for large-scale network simulators. The promising
tool ns-3 was gaining popularity as an easy-to-use tool for
simulating wireless networks. Anyway, the work did not
provide any performance comparison between the simulators.
The same comment applies to work by Toor and Jain [17],
where they presented a survey on open-source network
simulators, e.g., ns-2, ns-3, J-Sim, OMNeT++, OPNET,
QualNet, and MATLAB. Bakni and Moreno [18] proposed
an evaluation approach to describe the network simulator’s
behavior, capacity, and performance. Bakni et al. [19] applied
the proposed approach for the Cisco Packet Trace network
simulator and extended their work by applying the evaluation
approach to several additional Wireless Sensor Network
(WSN) modeling tools.

Sundani et al. [20] provided a comparison on WSN
simulators based on key features, limitations, scalability,
Central Processing Unit (CPU), and memory usage on
more than ten simulators. Weingartner et al. [21] pro-
posed a methodology for performance evaluation, which
provides the comparison between network simulators. How-
ever, the information in the work is partly outdated
already. Sarkar and Halim [22] provided the comparison
based on the deployment mode, type, supported protocols,
and network impairments. A strong contribution of this
work was the presented comparison and the provided
recommendations.

Simulators specialized in computational offloading have
gained popularity recently and started to develop rapidly.
Kunde and Mann [23] worked on theoretical and practical
comparison of fog computing simulators, e.g., iFogSim,
MyFogSim, and YAFS, showing the impact on simulation run
time and other parameters. Fakhfakh et al. [24] analyzed the

most popular simulators for cloud computing and compared
them based on the supported modules (energy, mobility, and
so on). Qu et al. [25] presented a new simulation platform
for edge computing with distributed learning and blockchain
models and introduced a comprehensive literature review
on the existing cloud and edge simulators, focusing on
the lack of the federated learning concept implementation.
Unfortunately, this simulator is not available in open
source.

C. Set of Criteria and Methodology
There is no standardized method to evaluate the simulator,

but the proposed set of criteria exists in the literature [18].
Following the authors’ example, we present our criteria for
the simulator’s evaluation. At any rate, the purpose of the
simulation might differ from work to work. That is why we
leave it to the readers to decide which tool is the best for
them, based on the preferred programming language, OS, and
the research aims.

1) Open Access: This criterion shows the code available
in open access, which means that it is online and free
of charge.

2) Programming Language: This characteristic highlights
the programming language used for writing scripts and
modules.

3) User Interface: Simulating tools can have a GUI to
provide a user-friendly environment.

4) Documentation Availability: This criterion represents the
availability of the related documentation: manuals, tutorials,
videos, presentations, setup instructions, and so on.

5) Ease of Setup: This characteristic shows the experience
of the tool’s initial configuration.

6) Ease of Use: This characteristic shows the experience of
the tool’s usage. It could vary from easy to hard.

7) Scalability: This characteristic shows how scalable the
tool is. The number of nodes in IoT scenarios could be
more than 100, so it is critical to answer whether the tool



30526 IEEE SENSORS JOURNAL, VOL. 23, NO. 24, 15 DECEMBER 2023

allows scaling easily on such a number. We assume that the
simulator is scalable if it allows to connect up to 100 end
devices.

8) Supported Features: This characteristic represents the
tool’s key features in the implemented modules, e.g., mobility,
orchestration, or networking.

Sections II-D and II-E introduce the investigated simulators.
Since simulators work in the different abstraction levels, see
Fig. 3, the tools were divided into two groups and introduced
in separate subsections. The first subsection emphasizes the
tools for simulating virtual cloud environments. They show
the service availability, energy consumption, allocation of
tasks, etc. The first group includes the following tools:
CloudSim, EdgeCloudSim, IoTSim-Edge, and CloudSim Plus.
The second subsection introduces the second group of tools
that work with the network architecture. It describes the system
from the user to processing server. They show task response
time, which combines server processing time and delivery time
and provides the choice of data processing location. This group
includes iFogSim2, PureEdgeSim, and YAFS. Table I provides
a comparable analysis of mentioned tools.

D. Simulators Focused on Computing Infrastructure and
Application Services

1) CloudSim: The simulator was developed by the Cloud
Computing and Distributed Systems (CLOUDS) Laboratory
at the University of Melbourne, Melbourne, VIC, Australia,
in 2009. The primary idea of this project was to develop a
toolkit for modeling and simulating recently emerged cloud
computing infrastructure and their services [30]. CloudSim
is an open-source simulator assisted with documentation and
installation guides.

The simulation environment contains the following entities:
a host, i.e., simulated hardware, VM, and datacenter; cloudlets,
i.e., tasks, services from the user, and broker. The entity broker
is responsible for negotiating between the user (cloudlet) and
the cloud provider (datacenter) and allocating the resources
there. The output results show the status of the cloudlet
proceeding, start time and end time, processing time, and
id of the datacenter and the VM where the cloudlet was
sent. Cloudlet is defined by the following properties: length,
file size, and output size. VM, the real cloud-based VMs,
is defined by Million Instructions per Second (MIPS), image
size (Mb), Random Access Memory (RAM) (Mb), bandwidth,
and several CPU.

CloudSim supports virtualization, i.e., the creation of multi-
ple VM on the physical server (host). Furthermore, it supports
VM migration, which means that it allows simulation of
the movements from one physical host to another. In real
practice, this feature will enable us to adaptively allocate
the workload on the servers for better system performance
or to maintain the failed server without user interruption.
Among the key features, CloudSim supports cloud datacenter
network topology, which includes the wireless and physical
interconnection of datacenter components, such as storage,
computing entities, servers, and switches.

2) CloudSim Plus: CloudSim Plus is a new Java-based
framework for modeling a cloud computing environment first

released in 2016. Based on CloudSim but working as an
independent project, CloudSim Plus improved its performance
and simplified its usage by reducing the amount of duplicated
code and restructuring the modules and packages [31]. The
tool has a related project, CloudSim Plus, which is an open-
source simulator with lots of available documentation on
its webpage, white paper, and discussions on the Google
forum. The online documentation is one of the most detailed
explanations of the implemented features.

The CloudSim Plus project is similar to CloudSim but has
improved structure, reducing the complexity of the scripts.
The simulator consists of the physical layer, which includes
servers, the logical layer, i.e., the datacenter network topology,
and the virtualization layer, used for creating VM. The
modules support the VM migration and vertical/horizontal VM
scaling. It uses the same entities—hosts, datacenter, cloudlets,
and broker, responsible for communication between the user
and the datacenter.

3) EdgeCloudSim: It is an open-source tool for edge-
specific modeling based on CloudSim and was developed in
2017. The main uniqueness of this project is that it considers
both computational and networking resources compared to its
predecessor CloudSim. The project’s scripts can be run on
Linux-based systems, including Mac OS via the preferable
IDE for compilation [32].

The tool inherited CloudSim module for VM allocation
in the datacenter and other computing features. Nevertheless,
EdgeCloudSim includes unique features for edge computing
architecture described further. The edge orchestrator module
is responsible for making critical decisions on allocating or
terminating the VM on the available resources and offloading
tasks to the cloud or edge server to increase the overall system
performance. The networking module is responsible for LAN
or Wireless Local Area Network (WLAN) communication
delay for both directions Uplink (UL) and Downlink (DL).
EdgeCloudSim supports mobility, so the devices’ locations
and, consequently, the delay are updated according to this
module.

Running the simulation requires defining the application,
edge device, and configuration parameters. To avoid the
overloaded script, the mentioned parameters are stored in
three separate files named accordingly. The application file
contains information about application data size, battery
level, usage distribution on the devices, active and idle
duration, and so on. The configuration file sets the cloud
and simulation parameters, such as the number of mobile
devices, orchestration policy, and architecture. It is possible
to set the computing capabilities to mobile devices or use
them as sensors without a processing unit. The edge device file
includes edge datacenter parameters. It defines the number and
location of the edge server, computing and storage capabilities,
and the number of VMs deployed on it. The number of edge
servers is scaled—the tool allows linking more than ten servers
and deploying multiple VMs on each of them. Still, the specific
of such structure needs to define each server separately and,
thus, not user-friendly.

EdgeCloudSim benefits in investigating the Quality of
Experience (QoE) for the edge-based computing scenarios.



ALEKSEEVA et al.: DEMYSTIFYING USABILITY OF OPEN-SOURCE COMPUTATIONAL OFFLOADING SIMULATORS 30527

TABLE I
MAIN SIMULATORS CHARACTERISTICS

The supported modules simulate scalable scenarios and
provide information on package delivery in the dedicated
server.

4) IoTSim-Edge: This tool was developed in 2019 and
is based on CloudSim project. It is focused on IoT-driven
offloading scenarios such as planning the capacity of Road-
Side Unit (RSU) for the intelligent transportation system or
sensor deployment in the smart building scenario [8].

The archive file is available in GitHub and complemented
with the user manual. Unfortunately, the file was not updated
for a long time, and no recent file is available. The project
built under Maven contains the pom.xml, but the old versions
and missing dependencies could fail the Maven build process.

The IotSim-Edge simulator consists of the following
entities Edgelet, i.e., a generated task from the IoT sensor;
MicroElements (MEL), i.e., an abstract component of the
application that represents the services in the form of
microservice; edge devices, i.e., a laptop, smartphone, or other
devices that host MEL; edge datacenter, i.e., the core edge
infrastructure; and EdgeBroker, which allocate users’ requests
with accordance to their requirements. After setting the
required parameters (MIPS, RAM, battery capacity, location,
and so on), the simulator allocates MEL for edgelets and
outputs their execution time. The simulator supports such
features as energy consumption, mobility, and networking.

E. Simulators Focused on Network Architecture and
Resource Allocation

1) YAFS: It is a SimPy-based highly configurable simulator
designed on a complex network theory for analysis of fog-
driven computing scenarios developed in 2019. It allows the
creation of a scalable, dynamic network and simulates the
request in it [33].

The installation guide and project documentation are
available in the open source on the official webpage.

Installation is roughly simple. If it fails to find the matching
“YAFS,” the distribution must upload manually to the Python
home file. Up-to-date documentation, user guides, referred
papers, and solutions to solve Python errors are available
online.

Execution requires defining the network and application.
Network topology is modeled as a graph that contains
computing capacity and bandwidth information for each node
and data rate and propagation information for each link. The
communication time, i.e., latency, is calculated as the ratio
between message size and set bandwidth plus the propagation
speed. The service time is the time that is needed to process
the packet.

The network architecture is presented as an orgraph with
the forest of trees topology. A node represents a cloud server
connected to the proxy server linked to a set of gateways. Each
gateway could be linked to the defined set of mobile devices,
including sensors and actuators. There is no separate entity
for them; sensors and actuators are mobile devices with no
computing capacity that generate or consume data and connect
to the main mobile device. The application is set as a group
of modules that can generate or process a packet. Modules
could be deployed on the cloud server or in the group of edge
servers, depending on the orchestration policy.

One of the advantages of YAFS is a highly configurable and
flexible architecture that allows running a scalable network
in terms of the number of nodes and modules. It supports
virtualization, microservices, and other features easily defined
as logical relationships by customized configurations.

2) iFogSim2: It is a tool to simulate the fog computing
environment developed upon the CloudSim and measures
the impact of resource management techniques in network
congestion, latency, cost, and energy consumption [34]. It was
updated in 2021 and inherited features from the old version
(iFogSim). The rising number of IoT large-scale scenarios



30528 IEEE SENSORS JOURNAL, VOL. 23, NO. 24, 15 DECEMBER 2023

TABLE II
QUALITATIVE APPLICATION REQUIREMENTS COMPARISON

turns iFogSim2 into a high-potential tool for simulating the
fog-driven use cases and deploying them with minimum
costs. It is an open-source simulator available from GitHub.
There are guidelines available on the GitHub page. Also,
the CloudSim tutorial page contains several guidances of
iFogSim2 Project Structure for beginners as it is one of
CloudSim’s related projects.

The simulation entities consist of FogDevice, representing
the actual fog computing resource; fog broker, responsible
for the task distribution; and sensor class, i.e., cameras and
temperature sensors. The output file shows the execution time
of the proposed topology and energy consumption on each
node (device and server). The topology allows the creation of
nodes in different layers.

The iFogSim2 shortcomings are partly solved in the
extension MobFogSim, whose primary purpose is to simulate
the mobility in the IoT gateways and cloud datacenters. In turn,
MobFogSim limits the scope of creating clusters in edge/fog
computing environments and lacks documentation.

3) PureEdgeSim: It is an open-source simulator for
studying dynamic and highly heterogeneous networks based
on CloudSim Plus. It was developed in 2018 for deploying
edge, fog, and cloud scenarios. It allows the connection of
thousand of devices and supports their mobility with the
location manager.

Many research papers are available in open source as well
as the official GitHub pages containing the setup instructions
and step-by-step video with examples. The main simulation
file takes the parameters of cloud and edge servers and mobile
devices stored in the .hml files. Simulation configuration
consists of simulation time, device count, orchestration
algorithms, and other parameters that could be changed
according to the scenario. It allows for collecting the energy
consumption, task execution time, and task success rate.

III. SIMULATORS PERFORMANCE COMPARISON

The performance evaluation is a numerical characteristic
for comparison of the scripts. The script performance highly
depends on the programming language, used libraries, project
architecture, and other parameters. Even though all projects are
evaluated together in this work, it is important to mention that
the evaluated tools differ in the initial aim and their structure,
and it is better to take in mind the difference between the
following two groups that were already introduced earlier—
tools that are major for virtualization or task allocation in
the servers/datacenter and those that are focused on packet’s
arriving time and describe the network architecture. The first

group includes CloudSim, IoTSim-Edge, and EdgeCloudSim,
while the second group includes PureEdgeSim and YAFS.
CloudSim Plus and iFogSim2 was not included in the
performance evaluation due to compilation problem.

A. Test Scenarios
As one of the motivations, emerging resource-hungry appli-

cations should meet rigorous communication requirements
set by the standardization bodies. In contrast to traditional
light use cases, e.g., remote sensing or monitoring, 3GPP
TR 26.928 “Extended Reality (XR) in 5G” considers the
media delivery bitrate >1 Gb/s to provide a sufficient media
quality and low latency, mentioning the need for potential
standardization [28], see Table II. The end-to-end latency
for the XR environment, referred to as immersive motion-
to-photon, including rendering and decoding, states around
20 ms or less [29] for a smooth user experience. Nonetheless,
the online video stream, 3GPP TR 26.925 “Typical traffic
characteristics of media services on 3GPP networks,” refers
to the 150-ms max packet delay budget that the user will
barely notice. Today, the recommended bitrate for Full HD
video lies between 3 and 12 Mb/s, while for the 4K UHD,
5–25 Mb/s [27], which is smaller than the XR.

Following the standardized recommendations, we further
focus on the three scenarios taken as examples of intensive
workload and delay-tolerant scenarios to make the test
scenarios closer to real-life implementation. They also include
the standards of different modalities, static or moving, based
if the user is moving or not while delivering/accepting the
service.

XR scenario corresponding to remote Augmented Reality
(AR)-assisted telesurgery is a used example of extremely high
data rate with intensive workload and static modality, detailed
in Table III, based on the standardization summary [35].
AR applications process the video data generated by the
laparoscope, or 3-D ultrasound probe, equipped with a
small camera, and process it on a server (private server,
edge, or cloud), according to 3GPP. The laparoscope and
robotic medical instruments (trocars, graspers, and scissors)
are inserted through tiny incisions in the patient’s body.
Since all organs function during the operation, the video is
transmitted to the console monitor with ultrasmall delays to
prevent healthy tissues’ perforation. The telesurgery scenario
assumes that the patient and the operating doctor are physically
located on different continents operating remotely. In that
case, the IEEE standard defines the performance requirements



ALEKSEEVA et al.: DEMYSTIFYING USABILITY OF OPEN-SOURCE COMPUTATIONAL OFFLOADING SIMULATORS 30529

TABLE III
QOS METRICS COMPOSED WITH [26], [36], AND [37]

for multicast video traffic for medical applications via Public
Land Mobile Network (PLMN) [36]. The 3-D ultrasound
probe augments the main anatomical image with the 3-D
volume data, producing a data stream above 1 Gb/s. The
AR image from a 3-D ultrasound probe requires a precise
robotic instrument’s location in the patient’s body. The images
are exchanged in a total of 240 images/s over cellular
communication.

The monitoring scenario numerically corresponds to cardiac
telemetry, i.e., a low data rate with moderate delays and
workload requirements, and moving modality, detailed in
Table III. A wireless wearable telemetry device includes body
sensors, e.g., ECG, respiratory rate, and SpO2, which provides
24/7 monitoring of the patient’s health. Due to the on-body
way of wearing, the device must be small and energy-efficient.
Cardiac telemetry devices require to keep devices alive for at
least a month without recharging. From the performance side,
it requires a highly reliable, always-on connection with the
hospital to process the patient analytics and raise the alarm
in an emergency. The number of devices varies on the patient
location: up to 1000 wearables/km2 in the hospital area or
about ten devices per km2 in suburban areas [26].

The streaming scenario is an example of general human
traffic with a relatively fast bit rate but moderate payload,
as detailed in Table III. The application aims to provide access
to the user’s favorite online show in Full HD to watch from a
mobile device. User location could be static or moving with
the user, e.g., if the user is sitting in the train, the speed could
reach up to 500 km/h. The packet size is 500 B, and the end-
to-end delay requirement is set as 150 ms [37]. The number
of devices varies up to 500 active devices in city areas.

To sum up, all three scenarios differ regarding payload
and required bit rate. The intense XR scenario, i.e., AR-
assisted surgery, requires transmissions of the uncompressed
captured images 256 × 256 × 256 voxels 24 bits 10 frames/s
that is 4 Gb/s. Monitoring scenario, i.e., cardiac monitoring,
measures data with a frequency of up to 1000 samples/s, thus
requiring up to 500 kbps bit rate. Streaming scenario, i.e.,
online video streaming, transmits compressed images from/to
the user device. Full HD video resolution 1920 × 1080 24 bits
60 frames/s and H.264 gives up to 9 Mb/s. The recommended
performance metrics of the use cases are presented in Table III.

B. Overall System Model
The system contains 80 sensors/actuators implemented

in the IoT device for the AR telesurgery scenario and
1000 sensors as wearables devices for cardiac monitoring. The

TABLE IV
SIMULATION PARAMETERS FOR SCENARIOS IN TABLE II

devices are wirelessly connected to the gateways, which can
offload data to the edge or cloud datacenter over a 5G network.
The datacenter allocates resources for VM or MEL to process
cloudlet or edgelet, which refers to the application workload.

Assume that the channel bandwidth for mobile devices over
cellular network is 1 MHz where the system bandwidth of
20 MHz and 20 users are simultaneously connected [38]. The
transformation of channel bandwidth (Hz) to bit rate (bps)
depends on many factors, including the chosen technology,
coding rate, and modulation. Let us say that the average
20 MHz is approximately 100 Mb/s; consequently, 1 MHz
is 5 Mb/s. The proxy server is connected to the datacenter via
optical fiber, which can reach 1 Gb/s.

The processor speed, usually measured in MIPS, represents
the number of million instructions (MIs) required in one cycle,
where by “instruction” means a specific hardware operation
to process the task. Specification of the widely used ARM
platform in the embedded IoT states that ARM Cortex-M4
has 100-MHz processor frequency and 128-kB RAM; ARM
Cortex-M3 has 72 MHz and 20 kB RAM [39]. Cortex-
M3 and M4 cores achieve 1.25 MIPS/MHz [40], which is
approximately 125 MIPS at 100 MHz [41]. Compared to the
datacenter capacity, the server processor, e.g., Intel Xeon [42],
has 38.5-MB cache and 2.50-GHz processor frequency with
up to 28 cores built to process up to 100 000 MIPS [43].



30530 IEEE SENSORS JOURNAL, VOL. 23, NO. 24, 15 DECEMBER 2023

Fig. 4. CPU and RAM performance for XR scenario.

The reference simulation for Group 1 models the allo-
cation of the received tasks (cloudlets) and VMs in the
datacenter that was generated with the required size and
task frequency. Other simulation parameters are presented
in Table IV [44].

All simulations were conducted on Ubuntu OS deployed
via the VirtualBox with dedicated four CPUs and 12 GB of
memory. Simulation scripts were launched in the terminal via
a bash script. The bash script runs the process after a slight
delay (5 s), fixating the start and end time of the running and
measuring the CPU utilization and memory every 1 s via -ts
Linux command. The exception was made for IoTSim-Edge—
due to the Maven compilation issues launched via the cmd line,
the script was run in Eclipse. The results were collected the
same way—measuring the CPU utilization and memory every
1 s via -ts Linux command by process name. CloudSim Plus
and iFogSim2 did not participate in the performance evaluation
due to compilation failure.

C. Evaluation Results
The main aim of this section was to understand how much

hardware resources are utilized while executing the script, but
not explain the behavior of their performance, as those are
implementation-specific and could not be affected. Assuming
that simulators received the same scenario according to their
capabilities, we compare each of them regarding CPU, RAM
usage, and the simulation execution time.

1) Maximum CPU and RAM Values: Table V presents the
maximum CPU and RAM values of each simulator. The
built-in Python simulator YAFS showed the best (minimum)
usage in CPU and memory for XR scenario (see Fig. 4).
It is explained by the nature of languages and their different
methods [45]. However, it showed the worst results for
monitoring and streaming scenarios in Figs. 5 and 6. The last
two scenarios had relatively smaller workloads but applied
devices on a bigger scale. The simulator’s peculiarity is that
it creates the link for each sensor/device. Thus, a growing

Fig. 5. CPU and RAM performance for monitoring scenario.

Fig. 6. CPU and RAM performance for streaming scenario.

number of devices will add to their network graph complexity
and reflect on the hardware usage. The same happened with the
EdgeCloudSim; even though it works in the virtual abstraction,
it still requires specifying the links for the sensor nodes (see
Fig. 3), thus the growth of the hardware load. CloudSim
showed the opposite, and its CPU and RAM usage stayed the
biggest during XR scenario, as the biggest simulated workload
was applied.

IoTSim-Edge showed the best (minimum) CPU usage and
worst (maximum) RAM usage from Group 1 for all scenarios.
Figs. 4–6 show that the IoTSim-Edge slope rises sharply
during processor and softly during memory load’s peaks.
The longest raise corresponds to the highest CPU or RAM.
CloudSim was the best in terms of RAM usage from Group 1.
PureEdgeSim showed the worst RAM usage from Group 2 for
all scenarios and the worst CPU usage for XR and streaming
scenarios. YAFS was the best in terms of RAM usage from
Group 2.



ALEKSEEVA et al.: DEMYSTIFYING USABILITY OF OPEN-SOURCE COMPUTATIONAL OFFLOADING SIMULATORS 30531

TABLE V
HW RESOURCE USAGE RESULTS

Fig. 7. CPU and RAM cumm. load for XR scenario.

Fig. 8. CPU and RAM cumm. load for monitoring scenario.

2) Load Over Time: Absolute values are sometimes
not enough to estimate the processor and memory load.
Dedicating many resources could increase the processing

Fig. 9. CPU and RAM cumm. load for streaming scenario.

speed but overload the processor in the case of extended
use. We integrated data over time to evaluate the tool’s
performance, where the higher values represent the most load.

Fig. 7 presents the cumulative normalized processor and
memory load for XR scenario, Fig. 8 presents the cumulative
normalized processor and memory load for monitoring
scenario, and Fig. 9 presents the cumulative normalized
processor and memory load for streaming scenario. YAFS
and CloudSim showed that the RAM curves have a slow
elevation over time, but the CloudSim CPU curve increased
rapidly. EdgeCloudSim showed a slow peak of the CPU
curve over time but a sharp curve of RAM usage. Summing
up, the results conclude that the different ways of code
implementation influence the CPU and RAM usage on the
hardware.

3) Simulation Run Time: The results about tool’s run-time
behavior could be derived from Table V. IoTSim-Edge made
the fastest run from Group 1 in all scenarios. Python-based
YAFS from Group 2 worked very fast during the XR scenario
and was overloaded with the increased graph complexity
during monitoring and streaming scenarios, where the best
result was showed by PureEdgeSim.



30532 IEEE SENSORS JOURNAL, VOL. 23, NO. 24, 15 DECEMBER 2023

TABLE VI
SUMMARY OF SIMULATORS ADVANTAGES AND DISADVANTAGES

IV. CONCLUSION AND DISCUSSION

Developing a good simulation tool for modeling networks
is considered as a valuable contribution to academic work.
On one hand, most of the existing reliable network simulators
do not consider cloud entities, such as datacenter, host, VM,
or broker. On the other hand, computational simulators do
not count network delays and mobility highlighting the need
for Edge- and Fog-specific simulators forced by emerging
computing paradigms.

CloudSim was one of the first open-source simulators,
which implemented avant-garde technologies. It has been a
validated and trusted tool for many years. Fortunately for
humanity and unfortunately for the developers, technologies
change fast, but this tool lacks upcoming modules. Notwith-
standing the mentioned limitations, CloudSim inspired other
independent projects that used it as a base project for more
improved simulators, i.e., CloudSim Plus. In turn, CloudSim
Plus inherited many entities and features CloudSim, but the
reengineered project improved the performance and deployed
new modern features, i.e., event listener, VM migration, and
parallel computing. Developers advanced the scripts made
them more human readable to improve the usability.

EdgeCloudSim is an easy-to-set-up and easy-in-use tool,
which simulates the task execution in various edge scenarios
(edge cloud and mobile edge) and supports orchestration and

networking models. A significant disadvantage of this tool
is lack of energy model and task migration. IoTSim-Edge
suits primarily if the research evaluates IoT devices and their
interaction with edge devices. Despite its more user-friendly
appearance, it lacks essential features such as virtualization
and orchestration.

PureEdgeSim and iFogSim2 are focused on offloading to
the edge. iFogSim2 allows to simulate complex IoT scenarios
considering the delays between sensors and IoT device.
It allows to connect the servers into N -tier hierarchy and
allows to specifies the delays between them. The tool allows
to model latency-sensitive applications and, thus, suits to the
AR-assisted surgery simulations. In contrast, PureEdgeSim
comprises a range of orchestration architectures, including
mist computing, i.e., offloading on mobile devices, mist edge,
mist cloud, and edge cloud, which is applicable to telemetry
scenarios in the medical domain. The implemented energy
model shows the energy consumption and task failures due
to battery run out.

YAFS is a perspective project, which provides full support
for the user in the open source. It plans to implement
geolocalization and other features to the existing ones and
solve the Python compatibility issues; hence, some limitations
might be irrelevant in the near future. Project YAFS works on
implantation modern features for fog computing architecture,



ALEKSEEVA et al.: DEMYSTIFYING USABILITY OF OPEN-SOURCE COMPUTATIONAL OFFLOADING SIMULATORS 30533

and it allows to model VR scenarios; thus, it is suitable for
VR-assisted remote medical scenarios as well.

Summarizing the above, there are many tools available in
the open source designed for modeling cloud, fog, and edge
computing scenarios. Each of them has its limitations and
advantages that could suit the research specific aim. Table VI
summarizes the simulation tools investigated in this work.
Choosing the best simulator for the research questions could
take some time, so this article aims to help in minimizing
this time overviewing the most popular tools for modeling the
offloading scenarios for medical applications.

REFERENCES
[1] Y. Cheng, H. Zhao, and W. Xia, “Energy-aware offloading and power

optimization in full-duplex mobile Edge computing-enabled cellular
IoT networks,” IEEE Sensors J., vol. 22, no. 24, pp. 24607–24618,
Dec. 2022.

[2] R. Yadav et al., “Smart healthcare: RL-based task offloading scheme
for Edge-enable sensor networks,” IEEE Sensors J., vol. 21, no. 22,
pp. 24910–24918, Nov. 2021.

[3] J. Liu, S. Guo, Q. Wang, C. Pan, and L. Yang, “Optimal multi-user
offloading with resources allocation in mobile Edge Cloud computing,”
Comput. Netw., vol. 221, Feb. 2023, Art. no. 109522.

[4] Finland Data Centers. Accessed: Dec. 22, 2022. [Online]. Available:
https://www.datacentermap.com/finland/

[5] C. Yi, J. Cai, and Z. Su, “A multi-user mobile computation
offloading and transmission scheduling mechanism for delay-sensitive
applications,” IEEE Trans. Mobile Comput., vol. 19, no. 1, pp. 29–43,
Jan. 2020.

[6] N. Mäkitalo et al., “Action-oriented programming model: Collective
executions and interactions in the Fog,” J. Syst. Softw., vol. 157,
Nov. 2019, Art. no. 110391.

[7] D. Alekseeva, A. Ometov, O. Arponen, and E. S. Lohan, “The future of
computing paradigms for medical and emergency applications,” Comput.
Sci. Rev., vol. 45, Aug. 2022, Art. no. 100494.

[8] D. N. Jha et al., “IoTSim-Edge: A simulation framework for modeling
the behaviour of IoT and Edge computing environments,” 2019,
arXiv:1910.03026.

[9] P. Mel et al., “The NIST definition of Cloud computing,” Comput.
Secur. Division, Inf. Technol. Lab., Nat. Inst. Standards Technol.,
Gaithersburg, MD, USA, Tech. Rep. NIST Special Publication 800-145,
2011. [Online]. Available: http://faculty.winthrop.edu/domanm/csci411/
Handouts/NIST.pdf

[10] Y. Lin, L. Shao, Z. Zhu, Q. Wang, and R. K. Sabhikhi, “Wireless network
Cloud: Architecture and system requirements,” IBM J. Res. Develop.,
vol. 54, no. 1, pp. 4:1–4:12, Jan. 2010.

[11] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the Internet of Things,” in Proc. 1st Ed., MCC Workshop Mobile
Cloud Comput., Aug. 2012, pp. 13–16.

[12] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu,
“Edge computing in Industrial Internet of Things: Architecture, advances
and challenges,” IEEE Commun. Surveys Tuts., vol. 22, no. 4,
pp. 2462–2488, 4th Quart., 2020.

[13] V. Prokhorenko and M. A. Babar, “Architectural resilience in Cloud, Fog
and Edge systems: A survey,” IEEE Access, vol. 8, pp. 28078–28095,
2020.

[14] I. A. Aljabry and G. A. Al-Suhail, “A survey on network simulators for
vehicular ad-hoc networks (VANETS),” Int. J. Comput. Appl., vol. 174,
no. 11, pp. 1–9, Jan. 2021.

[15] S. Kang, M. Aldwairi, and K.-I. Kim, “A survey on network simulators
in three-dimensional wireless ad hoc and sensor networks,” Int. J. Dis-
trib. Sensor Netw., vol. 12, no. 9, Sep. 2016, Art. no. 155014771666474.

[16] R. L. Patel, M. J. Pathak, and A. J. Nayak, “Survey on network
simulators,” Int. J. Comput. Appl., vol. 182, no. 21, pp. 23–30, Oct. 2018.

[17] A. S. Toor and A. K. Jain, “A survey on wireless network simulators,”
Bull. Electr. Eng. Informat., vol. 6, no. 1, pp. 62–69, Mar. 2017.

[18] M. Bakni and M. Moreno, “An approach to evaluate network simulators:
An experience with packet tracer,” Revista Venezolana de Computación,
vol. 5, pp. 29–36, Jan. 2018.

[19] M. Bakni, L. M. M. Chacón, Y. Cardinale, G. Terrasson, and
O. Curea, “WSN simulators evaluation: An approach focusing on energy
awareness,” 2020, arXiv:2002.06246.

[20] H. Sundani, H. Li, V. Devabhaktuni, M. Alam, and P. Bhattacharya,
“Wireless sensor network simulators a survey and comparisons,” Int. J.
Comput. Netw., vol. 2, no. 5, pp. 249–265, 2011.

[21] E. Weingartner, H. vom Lehn, and K. Wehrle, “A performance
comparison of recent network simulators,” in Proc. IEEE Int. Conf.
Commun., Jun. 2009, pp. 1–5.

[22] N. I. Sarkar and S. A. Halim, “A review of simulation of
telecommunication networks: Simulators, classification, comparison,
methodologies, and recommendations,” J. Sel. Areas Telecom. (JSAT),
vol. 2, no. 3, pp. 10–17, 2011.

[23] C. Kunde and Z. Á. Mann, “Comparison of simulators for Fog
computing,” in Proc. 35th Annu. ACM Symp. Appl. Comput., Mar. 2020,
pp. 1792–1795.

[24] F. Fakhfakh, H. H. Kacem, and A. H. Kacem, “Simulation tools for
Cloud computing: A survey and comparative study,” in Proc. IEEE/ACIS
16th Int. Conf. Comput. Inf. Sci. (ICIS), May 2017, pp. 221–226.

[25] G. Qu, N. Cui, H. Wu, R. Li, and Y. Ding, “ChainFL: A simulation
platform for joint Federated Learning and blockchain in Edge/Cloud
computing environments,” IEEE Trans. Ind. Informat., vol. 18, no. 5,
pp. 3572–3581, May 2022.

[26] Study on Communication Services for Critical Medical Applications,
Standard 3GPP TR 22.826 V17.2.0, Rel. 17, Mar. 2021.

[27] Typical Traffic Characteristics of Media Services on 3GPP Networks,
Standard 3GPP TR 26.925 V17.1.0, Rel. 17, Mar. 2022.

[28] Extended Reality (XR) in 5G, Standard 3GPP
TR 26.928 V18.0.0, Rel. 18, Mar. 2023.

[29] Virtual Reality (VR) Media Services over 3GPP, Standard 3GPP TR
26.918 V17.0.0, Rel. 17, Apr. 2022.

[30] R. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “CloudSim: A toolkit for modeling and simulation of
Cloud computing environments and evaluation of resource provi-
sioning algorithms,” Softw., Pract. Exp., vol. 41, no. 1, pp. 23–50,
Aug. 2011.

[31] M. C. S. Filho, R. L. Oliveira, C. C. Monteiro, P. R. M. Inacio,
and M. M. Freire, “CloudSim plus: A Cloud computing simulation
framework pursuing software engineering principles for improved
modularity, extensibility and correctness,” in Proc. IFIP/IEEE Symp.
Integr. Netw. Service Manage. (IM), May 2017, pp. 400–406.

[32] C. Sonmez, A. Ozgovde, and C. Ersoy, “EdgeCloudSim: An
environment for performance evaluation of Edge computing systems,”
Trans. Emerg. Telecommun. Technol., vol. 29, no. 11, Nov. 2018,
Art. no. e3493.

[33] I. Lera, C. Guerrero, and C. Juiz, “YAFS: A simulator for IoT
scenarios in Fog computing,” IEEE Access, vol. 7, pp. 91745–91758,
2019.

[34] R. Mahmud, S. Pallewatta, M. Goudarzi, and R. Buyya, “IFogSim2: An
extended iFogSim simulator for mobility, clustering, and microservice
management in Edge and Fog computing environments,” J. Syst. Softw.,
vol. 190, Aug. 2022, Art. no. 111351.

[35] D. Alekseeva, A. Ometov, and E. S. Lohan, “Towards the advanced
data processing for medical applications using task offloading strategy,”
in Proc. 18th Int. Conf. Wireless Mobile Comput., Netw. Commun.
(WiMob), Oct. 2022, pp. 51–56.

[36] Service Requirements for Cyber-Physical Control Applications in
Vertical Domains, Standard 3GPP TS 22.104 V18.0.0, Rel. 18,
Mar. 2021.

[37] A. L. H. Chow, H. Yang, C. H. Xia, M. Kim, Z. Liu, and H. Lei,
“EMS: Encoded multipath streaming for real-time live streaming
applications,” in Proc. 17th IEEE Int. Conf. Netw. Protocols, Oct. 2009,
pp. 233–243.

[38] W. B. Qaim, A. Ometov, C. Campolo, A. Molinaro, E. S. Lohan,
and J. Nurmi, “Understanding the performance of task offloading
for wearables in a two-tier Edge architecture,” in Proc. 13th Int.
Congr. Ultra Modern Telecommun. Control Syst. Workshops (ICUMT),
Oct. 2021, pp. 1–9.

[39] Cortex-M3. Accessed: Jul. 24, 2023. [Online]. Available: https://
developer.arm.com/Processors/Cortex-M3

[40] Arm Cortex-M4. Accessed: Jul. 24, 2023. [Online]. Available:
https://www.st.com/content/st_com/en/arm-32-bit-microcontrollers/arm-
cortex-m4.html

[41] Instructions Per Secondl. Accessed: Jul. 24, 2023. [Online]. Available:
https://en.wikipedia.org/wiki/Instructions_per_second

[42] Intel Xeon Platinum 8180 Processor. Accessed: Jul. 24, 2023.
[Online]. Available: https://ark.intel.com/content/www/us/en/ark/
products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-
50-ghz.html



30534 IEEE SENSORS JOURNAL, VOL. 23, NO. 24, 15 DECEMBER 2023

[43] Export Compliance Metrics for Intel Microprocessors. Accessed:
Jul. 24, 2023. [Online]. Available: https://www.intel.com/content/
www/us/en/support/articles/000005755/processors.html

[44] E. Barbierato, M. Gribaudo, M. Iacono, and A. Jakóbik, “Exploiting
CloudSim in a multiformalism modeling approach for Cloud based
systems,” Simul. Model. Pract. Theory, vol. 93, pp. 133–147, May 2019.

[45] S. A. Abdulkareem and A. J. Abboud, “Evaluating Python, C++,
Javascript and Java programming languages based on software
complexity calculator (Halstead Metrics),” IOP Conf. Ser., Mater. Sci.
Eng., vol. 1076, no. 1, Feb. 2021, Art. no. 012046.

Daria Alekseeva (Student Member, IEEE)
received the B.Sc. and M.Sc. degrees from
the Saint Petersburg State University of
Telecommunications (SUT), Saint Petersburg,
Russia, in 2017 and 2019, respectively.
She is currently pursuing the Ph.D. degree
with Tampere University (TAU), Tampere,
Finland. Her research interests include wireless
communications, network security, computing
paradigms, and neural network technologies.

Aleksandr Ometov (Senior Member, IEEE)
received the M.Sc. and D.Sc. (Tech.) degrees
from the Tampere University of Technology
(TUT), Tampere, Finland, in 2016 and 2018,
respectively. His research interests include
wireless communications, information security,
computing paradigms, and wearable applica-
tions.

Elena Simona Lohan (Senior Member, IEEE)
received the M.Sc. degree from the Polytechnic
University of Bucharest, Bucharest, Romania,
in 1997, the D.E.A. degree (French equivalent
of master) from École Polytechnique, Paris,
France, in 1998, and the Ph.D. degree from
the Tampere University of Technology (TUT),
Tampere, Finland, in 2003. She is currently a
Professor with the Electrical Engineering Unit,
Tampere University (TAU), Tampere. Her current
research interests include wireless location tech-

niques, wearable computing, and privacy-aware positioning solutions.


