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Abstract—This article presents a novel method enabling
point-of-care (POC) testing of thiocyanate concentration in
saliva. Thiocyanate is an important biological marker; its
levels are linked with diseases such as cancer and neurode-
generation. Hence, monitoring this marker frequently can
positively impact users’ lives. In the proposed setup, the goal
is a semiquantitative reading of thiocyanate concentration
from colorimetric assays in solution; the user-friendly, yet
accurate readout procedure relies on a smartphone camera
and is designed to be robust against moderate changes in
indoor lighting conditions. The readout procedure exploits
the capabilities of convolutional neural networks (CNNs) to
fully profit from a setup involving a custom color chart and
the assay vial. Thus, a data-driven strategy is adopted to deal with color distortions caused both by lighting conditions
and by postprocessing operations embedded in the smartphone camera. A neural architecture search (NAS) procedure
explicitly tuned for the problem at hand drove the design of the custom CNN architecture. The method has been tested
using a collection of real-world data and compared with existing approaches. The results presented in this article show
an increase in accuracy up to about 14% with respect to state-of-the-art methods.

Index Terms— Colorimetric test, convolutional neural networks (CNNs), neural architecture search (NAS), point-of-care
(POC), saliva, smart sensor.

I. INTRODUCTION

A BIOLOGICAL marker (biomarker) is “any substance,
structure, or process that can be measured in the body

or its products and influence or predict the incidence of out-
come or disease” [1]. Thiocyanate is an important biomarker
that strongly correlates with a person’s well-being: its levels
are linked with diseases such as certain types of cancers,
atherosclerosis, and neurodegeneration [2], [3], [4], [5], [6]
as well as with bacterial infections and tobacco smoke expo-
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sure [7], [8], [9], [10]. Monitoring this biomarker frequently
can positively impact users’ lives, but many technological
challenges have to be overcome to develop a fast and easy-
to-use point-of-care (POC) sensing device. In fact, although
thiocyanate can be sampled noninvasively from saliva, most
techniques to assess its concentration require special instru-
mentation and knowledge, raising issues about costs, assay
portability, or ambient conditions stability in the case of
instrument-free devices [11].

This article focuses on the semiquantitative reading of
thiocyanate concentration in saliva from colorimetric assays
in solution [7]. The target is to develop an automatic readout
procedure that is robust against moderate changes in indoor
lighting conditions. The adopted setup relies on a smartphone
camera and a custom color chart that appears beyond the
assay vial when the picture is grabbed in indoor settings.
Such an approach may lead to an easy-to-use POC device:
the user takes a picture of a test with the smartphone and then
automatically receives the result on the smartphone display.
It is known from the literature that smartphones can serve as
cheap and portable readout systems for POC design [12], [13],
[14], [15]; this, in turn, leads to inexpensive and fast solutions,
which can be used even by untrained users. However, the
interpretation of colorimetric test kits is challenging, even in
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Fig. 1. Same test vial captured under different ambient light conditions.
The different illumination strongly impacts the color grade and uniformity
as well as the formation of unpredictable shade patterns.

the case of commercial products [16], [17], [18]. This process
may lead to errors and low accuracy, practically limiting the
assays only to those exhibiting strong and distinguishable col-
ors [19]. Hence, the availability of reliable readout procedures
can further enhance the features of smartphones as sensing
systems.

Recent reviews [20], [21] highlight the lack of robust
solutions for the readout of colorimetric analysis in ambient
light, as severe limitations affect sensing methods based on
smartphone cameras. These issues, in turn, prevent accurate
quantitative and semiquantitative colorimetric analyses. Two
main issues should be mentioned. First, lighting conditions
impact the image captured by the camera. Second, unavoidable
low-level, postprocessing operations embedded in the smart-
phone camera further increase color distortions. Furthermore,
assays in solution represent a major problem as the shape and
the texture of the vials may produce color gradients, depending
on the angle from which the illumination hits the test vial (see
Fig. 1).

The main contribution of this article lies in a novel approach
based on convolutional neural networks (CNNs) for automated
readout of colorimetric assays in solution under ambient light
conditions. The proposed approach exploits the effectiveness
of CNNs at solving nonlinear problems to fully profit from
a setup that involves a custom color chart (Fig. 2) along
with the assay vial. Accordingly, the CNN-based model takes
advantage of the presence of reference color patches in the
captured image to manage color distortions caused both by
lighting conditions and postprocessing operations embedded
in the smartphone camera. In practice, a data-driven strategy is
adopted to bypass explicit color correction techniques, which
lack robustness.

A neural architecture search (NAS) procedure automatically
generated and evaluated a set of candidate neural network
architectures. Such an approach led to a custom CNN designed
to tackle the problem at hand: the NAS procedure was
specifically designed to select an input-aware architecture,
as the candidate networks also differed in the relative weight
assigned to each reference color included in the custom chart.

The contribution of the article can be summarized as fol-
lows.

1) An automatic readout procedure designed for smart-
phones that can assess thiocyanate levels in saliva from
an assay performed in solution in ambient light.

Fig. 2. Custom chart with five reference color patches (on the left of the
vial-shaped outline) and ten color correction patches (on the right). The
four ArUco markers can be seen on the corners.

2) A data-driven procedure to automatically generate and
evaluate neural network architectures and optimize the
input representation.

3) A NAS search space suitable for colorimetric diagnostic
tests performed in solution using smartphone cameras
and paper support in ambient light.

Experimental results on real data confirmed the reliability of
the proposed approach. The custom CNN architecture yielded
from the NAS outperformed state-of-the-art solutions targeting
similar problems [22], [23], showing up to a 14.8% increment
in accuracy on a ten-class classification problem.

II. RELATED WORKS

POC devices have recently attracted a surge in attention in
various branches of research and clinical diagnostics [24], [25],
[26]. Several types of POCs have been developed for different
applications [27], [28], [29], [30] including lab-on-a-chip [31],
lab-on-a-disk [32], microfluidic paper-based analytical [33],
[34], lateral flow devices [35], [36], and isothermal nucleic
acid amplification [37].

Smartphones can effectively support the design of smart
POC devices [12], [13], [14], [15]. More specifically, digital
cameras [20], [21] play a major role in low-cost sensing as
an alternative to spectrophotometric analysis [38], [39]. This,
however, is a challenging task mainly due to the instability of
the color captured. Existing solutions can be grouped based
on physical setup and algorithm.

In some works, enclosures and supports [40], [41] elim-
inate the detrimental effect on the color of ambient light,
using the smartphone flashlight or internal fixed lights as the
only illumination source [42], [43]. The presence of external
hardware makes these approaches less commercially appealing
than operations in ambient light.

Other methods use color correction techniques from com-
puter vision [44], [45]: the setup involves a color board placed
close to the assay. A color correction matrix (CCM) maps
each pixel to its “true” color. CCM can be obtained using
different algorithms: linear color correction, polynomial color
correction, and root-polynomial color correction. As stated in
[46] and [47], the latter provides the best and most consistent
results. However, these methods require the color board and
the test to be hit by the same, constant lighting. Moreover, the
individual colors of the board should not be saturated, which
makes them prone to user errors.
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Machine learning (ML) can learn the interaction between
light and the assay automatically from data. Most ML methods
deal with the fluctuations of ambient light by using reference
color charts, which can be put close [48], [49] or farther [22]
from the assay. These colors are similar to those appearing
in the test and are expected to be affected by light conditions
coherently. Flaucher et al. [22] used three different approaches
to compare the test and ground-truth colors: Hue value com-
parison, matching factor, and Euclidean distance, with the last
two algorithms computed in the HSV color space.

Among ML techniques, DNNs excel in image processing
[23], [50], [51]. In [23], a CNN classified albumin con-
centration values in urine from a paper-based assay using
different smartphones’ cameras, evaluating also the perfor-
mance improvement gained using the smartphones’ flash. This
method, however, does not provide any additional information
to the neural network about the lighting in which the test is
taken, with an impact on the overall accuracy.

III. METHODOLOGY

This section presents the method for semiquantitative read-
ing of thiocyanate concentration in saliva using colorimetric
assays in solution. The research achieves robustness even in
indoor ambient light conditions, where the direction, strength,
and color of the lighting may vary significantly.

The approach uses fixed reference colors put close to the
assay vial that allows the CNN to estimate the light’s proper-
ties. A NAS procedure selects automatically a suitable CNN
architecture in combination with a set of reference colors.

In the following, Section III-A presents the method, while
Section III-B introduces the NAS procedure.

A. CNN Architecture for Semiquantitative Reading of
Salivary Thiocyanate Concentration in Ambient Light

Our goal is to read the thiocyanate concentration present in
saliva, indicated as T , in (1), from a colorimetric assay in solu-
tion. The underlying hypothesis is that the assay reflectance
R is related to T [7]

T = g(R). (1)

The smartphone camera provides information about R.
In general, cameras perceive colors as a function of the
spectrum of the source of light L which strikes a certain dark
object and its surface reflectance. Given the same reflectance
for an object, a sensor perceives its color differently depending
on the spectrum of the light hitting it and its sensitivity S.
In our case, the liquid state of the assay is an issue, as the
perceived color is altered by the direction from where the light
hits the vial and by its strength (see Fig. 1).

As a result, the assay color perceived by the camera CP is

CP = f (R, L , S). (2)

Equation (2) clarifies that to properly assess R, one should
know L and S in addition to CP . Accordingly, estimating T
requires solving the inverse problem

T = g
(

f −1(CP , L , S)
)
. (3)

Fig. 3. Theoretical passages needed to retrieve the thiocyanate
concentration value from the data obtainable through a picture using
our reference color card.

However, both L and S are unknown. The present approach
tackles this issue by estimating S and L . Reference colors are
placed close to the salivary test by adopting the custom chart
of Fig. 2. The chart contains 15 color patches: ten patches
have been extracted from popular color correction charts;
the remaining five set a reference color scale for the assay
with different thiocyanate concentrations. The card contains
four ArUco markers [52] on its corners (as per Fig. 2); such
markers facilitate the alignment process and the correction
process for skewed images, reducing the impact of phone tilt
and rotation.

The overall goal is to estimate S and L by using the
15 colors {Cref,i ; i = 1, . . . , 15} captured by the camera. Fig. 3
schematizes the setup. A function h, shown in (4), estimates S
and L using the true reflectance value of the reference colors
(upper part of Fig. 3)

Ŝ, L̂ = h({Cref}). (4)

Then, L̂ and Ŝ are exploited in the solution of the inverse
problem (3)

T̂ = g
(

f −1(CP , L̂, Ŝ
))

. (5)

In the proposed approach, a CNN tackles the problem
(5) because an explicit implementation of (5) represents a
challenging task due to the multiple sources of noise. Indeed,
mathematical approaches [45], [53] may fail to accurately
model color representation. CNNs can process both the vial
and color patches solving strongly nonlinear problems dis-
cerning relevant features inside images and can cope with the
refraction and bubbles occurring inside the vial.

In practice, CNNs can learn (5) if trained properly with a
dataset collecting images of the vial along with the reference
patches. Our CNN processes a cropped image of the vial,
together with a crop of the central part of all the color
patches which are resized to the same size as the image of
the vial, as shown in Fig. 4. The figure shows the proposed
CNN meta-architecture. The network processes two inputs
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Fig. 4. CNN inputs are obtained by cropping the image. In the scheme
of the CNN, NAS Blocks and Conv2D+ Batch norm refer to the part of
the architecture obtained through the NAS procedure.

Fig. 5. Block scheme of the evolutionary algorithm used.

separately; each one passes through a convolutional layer and
batch normalization layer. Then, a concatenation layer merges
the information. The proposed structure prevents a strong bond
between the more informative image of the vial and the images
of color patches. The NAS procedure generates a single-branch
architecture that processes the information from the two input
branches. The network’s output is the classification of the
thiocyanate concentration level.

B. NAS With Input Selection
A blockwise NAS procedure selects the network archi-

tecture. Following a standard schema, three components
characterized the procedure: the search space, the search
algorithm, and the evaluation criteria.

1) Search Space: The search space Ss collects the candidate
network architectures. In the present work, a candidate archi-
tecture is a stack of building blocks made of one convolutional
layer and one batch normalization layer. The blocks embed
three different parameters: the kernel size, the number of filters
for each block, and the stride size. Together with the blocks’
parameters, the search procedure tunes the number of blocks,
the input size, and the color space used for the input images.
Eventually, the combination of color patches is integrated into
the network architecture to enhance the procedure.

2) Evaluation Criteria: The importance of each color refer-
ence is not known a priori. The NAS procedure measures it
by generating networks that differ in weights assigned to the
patches. The accuracy of the validation set drives the selection.

3) Search Algorithm: The search space is rather vast (or bet-
ter, infinite). The evolutionary algorithm of Fig. 5 implements
the exploration procedure. It generates a set of N “child”
architectures starting from a “parent” network by applying
random alterations to its structure. The alteration could change
the set of reference patches. A parent yields seven different
child networks by changing the number of blocks inside it, the
three parameters describing the blocks, the color space used
for the input images, their size, and which color patches are
used. The child with the best evaluation score becomes the new

parent, and a new “offspring” will be generated from it. This
search strategy allows a wide exploration of the search space
with a simple implementation algorithm. Other strategies could
tradeoff differently search time and quality of the solution [54],
[55], however, a recent comparison suggested that the perfor-
mance of the solution is similar for different approaches [56].

The procedure is summarized in Algorithm 1, with
the following notation: the reference color space As
contains all possible permutations of the reference
colors A; CNNP indicates the parent architecture;
CNNC(SC, AC) = Rm(CNNP(SP, AP)) denotes the child
architecture generator function; Nc is the number of
child architectures for each of the Ng generations; finally,
E(CNN,XV) is the evaluation function. After the initialization
stage, the procedure generates the first parent architecture
(line 1). For a preset number of iterations Ng , the approach
generates and train child networks (lines 4 and 6, respectively).
Then, the offspring are evaluated and the best one replaces
the parent architecture (line 8).

Algorithm 1 Evolutionary NAS With Input Selection
Dataset Training set XT = {Xi, Ai, Yi}i=1,...,n with Xi assay
image, Ai reference color images, and Yi the corre-
sponding thiocyanate concentration class. Validation set
XV = {Xi, Ai, Yi}i=1,...,m.
Pseudocode

1: 0. Init: CNNP(SP, AP) = CNNP0(SP0 , AP0)

2: for g in Ng do
3: for c in Nc do
4: 1. Mutation: CNNCc(SCc , ACc) =

5: Rm(CNNP, AP)

6: 2. Training: Train CNNCc(SCc , ACc) on XT
7: end for
8: 3. Selection: CNNP(SP, AP) =

9: argmax(E({CNNC(SC, AC)}j=1,...,Nc ,XV)

10: end for

IV. EXPERIMENTS

The section is organized as follows. Section IV-A presents
the dataset and the experimental setup. Section IV-B reviews
the experiments about the NAS procedure. Finally, Section IV-
C compares the CNN architecture selected by NAS against two
state-of-the-art methods developed to read semiquantitative
and binary colorimetric assays performed on paper.

A. Experimental Setup
The experimental setup validates the robustness against

moderate variation in lighting conditions when acquiring the
results of the colorimetric assay using a smartphone in an
indoor environment. The adopted protocol was inspired by the
setup proposed in [57] and [23].

The images were collected in a laboratory with fixed
lighting conditions (4000 K) without direct interaction with
sunlight or other lighting sources. A lamp with three different
light temperatures, corresponding to 3000, 4500, and 6000 K,
was headed toward the vial changing its orientation and height
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TABLE I
DATA SPLIT BETWEEN TRAINING, VALIDATION, AND TESTING SETS

WITH THE SMARTPHONE FLASH OFF AND ON

to mimic real-world conditions. Different orientations induced
shadow changes that distorted the color quantification process.
Illumination intensities were measured using the light sensors
equipped by the smartphone used to capture the pictures.
The base illumination was 230 lux. The smallest illumination
increment induced by the auxiliary lamp at the highest distance
and the steepest inclination was 640 lux. The largest increment
was 1725 lux. For each light condition and direction, a set
of approximately 20 images was captured while moving the
phone around to simulate an average user who could fail in
aligning the smartphone with the test tube creating interaction
with shadows produced by the vial.

Saliva from seven different healthy donors was collected
over four weeks. To simulate a wide range of nonphysiological
thiocyanate concentrations and to assess the smartphone-based
semiquantitative detection performance, saliva samples were
spiked with different biomarker concentrations, so to mimic
ten levels of thiocyanate, covering the 0–2.50-mM range
uniformly [3], [7], leading to a ten-class problem where each
class corresponded to a different concentration level.

All images were captured by a Xiaomi 11 Lite 5G NE
phone main camera. The experimental dataset contained
8.438 images, of which 4.474 were acquired with the flash
switched off and 3.964 with the flash on. Table I shows the
split between training, validation, and testing. Different sets
of images included only images of vials with saliva acquired
at different times and/or from different persons preventing
possible overfitting on irrelevant saliva characteristics (e.g.,
the presence of bubbles or cloudiness inside the vial).

B. Definition of the CNN Architecture Through NAS
Procedure

The initial parent architecture had a basic structure: the
concatenation layer was directly linked with the dense layer.
The input image size was 80 × 80 pixels, all the color patches
shared the same weights, and the adopted color space was
RGB. The kernel size, the stride size, and the number of filters
for the first convolution were set to 1, 1, and 4, respectively.
Each architecture was trained for 100 epochs with the Adam
optimizer, categorical cross-entropy loss, and a learning rate of
10−3 using early stopping on the validation set with a patience
value of 4 epochs. The number of generations Ng was 100.
For each generation, only the child which presented the lowest
validation loss was selected. Keras and TensorFlow Python
libraries supported the NAS procedure implementation.

The architecture generated from the NAS procedure had
an input size of 110 × 110 pixels in LAB color space and
two blocks after the concatenation layer. Table II presents the
architecture. Each row refers to network blocks composed of
one convolutional layer and one batch normalization layer. The

TABLE II
NET ARCHITECTURE YIELDED FROM THE NAS PROCEDURE

first column gives the input size for the corresponding block,
while the other columns refer to, respectively, the number of
filters, the kernel size, and the stride size of the convolutional
layer inside the block. The first row of Table II shows the input
of the network composed by the vial image, of size 110 ×

110 pixels, and 12 × 3 channels dedicated to the color patches.
The NAS procedure eventually selected 12 color patches out
of 15; the discarded patches are marked with red squares in
Fig. 4. This experiment confirmed the benefits of using these
additional inputs to the neural network.

In total, the architecture involved 1.928 parameters and
required 3.982.522 floating-point operations to process an
image, making it suitable for deployment on a smartphone.

C. Comparison With the State of the Art
Recent surveys confirm the lack of works targeting the

analysis of colorimetric assays in vials using a smartphone
in an unconstrained scenario [20], [21]. In fact, the literature
also lacks research targeting automatic readout for thiocyanate
quantification. However, some recent works tackled similar
problems. Two solutions for readout based on smartphone
cameras were selected as the baseline. Both methods have
been tuned to tackle the problem at hand. The methods were
then trained and tested on the exact same set of data used for
the proposed approach (as per Section IV-A).

The first baseline [23] is a CNN trained for automated
readout of paper-based test strips for urine albumin. In this
setup, the flash of the smartphone is exploited to bias the
lighting setup, thus avoiding color references. The neural
network for this method has been fed with a suitable cropped
image of the vial resized to 64 × 64 pixel to enhance the
prediction accuracy.

The second baseline [22] is a solution for smartphone-based
colorimetric analysis of urine test strips for at-home prenatal
care. The original approach uses an object detection network
to identify the positions of the test strip and a few color
reference pads. The test strip is compared with the reference
color; the concentration value is obtained by computing the
distance from the reference colors. Given that the focus of
the present article is not on detection, the correct patches
were manually extracted from the dataset; in other words, the
setup considers the ideal case where all patches are correctly
detected. The available patches in the left column of the
custom card (Fig. 2) set the reference colors. Actually, the
central (i.e., third) patch has been removed in this experiment,
as empirical evidence suggested that the baseline improved its
accuracy with such a setup. As a result, the experiment tackled
a four-class classification problem.

The outcomes of the first experiment comparing the baseline
[23] with the proposed work are presented in Table III. In this
experiment, the flash was turned off. The table gives the
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Fig. 6. Confusion matrix on the test set pictures captured with the flash off for the CNN of [23] (left) and the one presented in this article (right).

Fig. 7. Confusion matrix on the test set pictures captured with the flash on for the CNN of [23] (left) and the one presented in this article (right).

Fig. 8. Confusion matrix on the test set with the flash off (left) and on
(right) using the hue distance [22] between the vial and reference color.

TABLE III
ACCURACY COMPARISON OF THE CNN PROPOSED IN [23] AND THE

PROPOSAL, COMPUTED ON IMAGES CAPTURED WITH THE FLASH OFF

accuracy scored on the test set by, respectively, the CNN
selected with the NAS procedure and the CNN proposed
in [23]. The column Accuracy + 1 refers to the accuracy
obtained when considering acceptable that the predicted class
is at distance 1 from the true class. This metric is reasonable
since the basal level of salivary thiocyanate has a certain
level of intra- and interpersonal heterogeneity. Accordingly,
different samples, belonging to different donors could be
affected by a small bias in the original value of thiocyanate.
Overall, experimental results show that the proposed approach
outperforms the baseline.

Fig. 6 provides the confusion matrices characterizing such
an experiment. The matrix on the left side refers to the
baseline, while the matrix on the right side refers to the
proposal. Each matrix gives all the possible combinations of

TABLE IV
ACCURACY COMPARISON OF THE CNN PROPOSED IN [23] AND THE

PROPOSED CNNS, COMPUTED ON IMAGES CAPTURED WITH THE

FLASH ON

true labels (rows) and the predicted labels (columns); for each
combination, the normalized occurrences are provided. Each
box is color-coded depending on its value with a color ranging
from white, corresponding to 0, to pure red, correspond-
ing to 1. The confusion matrices suggest that the proposed
approach presented a higher accuracy, especially for elevated
thiocyanate concentrations, where the assay color produces
smaller changes in tone with respect to lower concentrations.

In the second experiment comparing the baseline [23] with
the proposed work, the flash was turned on. Table IV presents
the result; it has the same format as Table III. Both methods
enhanced their accuracy with respect to the setup with the
flash turned off, as suggested in [58] and [23] and the proposal
outperformed again the baseline. Fig. 7 shows the confusion
matrices obtained with this experiment.

Fig. 8 shows the outcomes of the experiment for the second
baseline [22], which exploits as inputs the hue distances
between the vial and four reference colors. The figure gives the
confusion matrices obtained under two different setups: flash
off (left) and flash on (right). In both cases, the baseline proved
unsatisfactory, even with a four-class classification problem.
In the setup with the flash off, the accuracy was about 39%
and worsened with the other setup (about 32%).



TACCIOLI et al.: SEMIQUANTITATIVE DETERMINATION OF THIOCYANATE IN SALIVA THROUGH COLORIMETRIC ASSAYS 29875

V. CONCLUSION

The article presented a new method for automatic semiquan-
titative reading of thiocyanate concentration in saliva through
assays performed in solution in ambient light. The approach
consisted of a convolutional neural network, which exploits
information on both the liquid sample and adjacent reference
color images. The architecture for the networks was extracted
using a NAS able to assert the importance of each reference
color. The results confirm the validity of the proposed method,
which leads to an acceptable level of accuracy.
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