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Abstract—In urban dynamic environment, most of the
existing works on LiDAR simultaneous localization and map-
ping (SLAM) are based on static scene assumption and are
greatly affected by dynamic obstacles. In order to solve this
problem, this article is based on fast LiDAR odometry and
mapping (F-LOAM) and adopts the FA-RANSAC algorithm,
improved ScanContext algorithm, and global optimization to
propose a robust and fast LiDAR odometry and mapping
(RF-LOAM). First, the region-growing algorithm is used to
cluster the fan-shaped grids. Then, we propose the FA-RANSAC algorlthm based on feature information and adaptive
threshold for dynamic object removal and extract the static edge and planar feature points for the first distortion
compensation. Afterward, the estimated pose is calculated by the static feature points and is used to perform the second
distortion compensation. Then, the height difference and adaptive distance threshold are used to improve the accuracy of
ScanContext, and the efficiency of ScanContext is improved by deleting the loop closure historical matching frames and
simplifying the feature matching. Finally, global optimization is used for keyframe. The experimental tests are carried out
on the KITTI datasets, Urbanloco datasets, and our Extracted dataset. The results show that compared with the state-of-
the-art SLAM methods, our method can not only accurately complete dynamic object removal and loop closure detection
but also achieve more robust and faster localization and mapping in urban dynamic scenes.

Index Terms— Autonomous vehicle, global optimization, LiDAR odometry, loop closure detection, simultaneous

localization and mapping (SLAM).

[. INTRODUCTION

IMULTANEOUS localization and mapping (SLAM) has
been a key technology in autonomous driving [1], [2].
Especially in the case of poor GPS signal or unknown dynamic
scenes, this technology plays a vital role in autonomous driv-
ing. According to the type of sensor, the existing SLAM meth-
ods are mainly divided into based on LiDAR [3], [4], based
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on camera [5], and based on millimeter-wave radar [6], [7].
At present, two methods based on LiDAR (2-D and 3-D) [8],
[9], [10] and camera (monocular, stereo, and RGB-D) [11],
[12], [13] are the most common. Due to the fact that the cam-
era is greatly affected by light and cannot be used all day long,
this article adopts the more accurate and robust LIDAR in mea-
surement for SLAM research of urban dynamic environment.

Although existing works on LiDAR SLAM have achieved
good performance in public dataset evaluation, there are still
some limitations in practical applications. The first limitation
is poorly robustness from static to dynamic environment. For
example, Hess et al. [14] have high accuracy in indoor or
static outdoor environment, but the localization accuracy drops
a lot in urban dynamic scenes. The second limitation is that
it is difficult to balance computational cost and precision.
For example, the low-drift and real-time LiDAR odometry
and mapping (LOAM) [15] has high accuracy, but distortion
compensation and mapping are computationally expensive.
Moreover, although the fast LOAM (F-LOAM) [16] reduces
time consumption as lightweight LIDAR SLAM, it lacks loop
closure detection, resulting in large cumulative errors, and has
low precision in urban dynamic scenes.

Therefore, this article proposes a robust and fast LiDAR
SLAM method for dynamic urban scenes based on F-LOAM.
The main framework of this proposed method is shown
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Fig. 1. Full pipeline block diagram of the proposed method.

in Fig. 1. First, the point clouds are divided into fan-shaped
grids and the region growth is used to achieve object seg-
mentation. Second, the FA-RANSAC algorithm is proposed to
quickly remove dynamic obstacles based on feature informa-
tion and adaptive threshold and obtain more accurate initial
pose. Then, the static feature points are extracted for pose
estimation. Afterward, height difference and adaptive distance
are used to improve the loop closure detection accuracy of
ScanContext, and simplifying feature matching and deleting
loop historical matching frames are used to improve the loop
closure detection efficiency of ScanContext. Finally, localiza-
tion and mapping can be realized quickly and accurately by
global optimization.

This article is organized as follows. The current state of
SLAM approaches related to LiDAR is shown in Section II.
Section III introduces the proposed method, including point
cloud processing, LiDAR odometry, loop closure detection,
and global optimization. Section IV shows the experimental
results and analysis with details, followed by the conclusion
in Section V.

[I. RELATED WORK

The important part of LiDAR SLAM is the matching
between the consecutive frames. According to the existing
works, it can be mainly divided into raw point cloud matching
and feature point pairs matching [16].

For raw point cloud matching, the iterative closest
points (ICP) [17] and its derivative methods are the most
typical methods [18], [19], [20]. Their core idea is mainly
to find the nearest point and iteratively minimize the dis-
tance residual to obtain the final estimated pose. Although
these methods can achieve good localization in static scenes
with high initial accuracy, it takes a long time. In addition,
dynamic points can easily interfere with static point pair
registration, leading to results falling into local optimization
in a dynamic environment. Another common method for raw
point cloud matching is the normal distribution transformation
(NDT) [21] and its derivative methods [22], [23]. Their
core idea is mainly to calculate the local normal distribu-
tion in each grid and iteratively minimize the probability
residual to obtain the final estimated pose. Although these
methods have been widely used in point cloud registra-
tion, its accuracy and time consumption are affected by the
grid size.

For the feature point pairs matching, LOAM [15] and
its derivative methods [24], [25], [26] are the most typical
methods. Their core idea is mainly to gain feature points and
iteratively minimize feature distance to achieve state estima-
tion. Although feature points are used for iterative calculation
to improve the efficiency and avoid the feature loss caused by
grid, dynamic feature points can affect the construction of error
functions when in dynamic scenes. The more dynamic objects,
the worse the performance of these methods. Therefore, they
are difficult to achieve accurate state estimation in dynamic
scenes.

In recent years, there has also been some research on
deep learning matching. Velas et al. [27] projected LiDAR
points to the 2-D plane and adopted three channels to encode
information. Then, the convolution and full connection layers
are used for the pose regression. It shows better performance
when only estimating the translation, but its performance is
poor when estimating the 6-DOF pose. Li and Wang [28]
proposed a network DMLO to generate feature point pairs with
high confidence. Then, SVD is used to obtain the estimated
pose. Although it can get the 6-DOF pose, dynamic objects
can easily interfere with feature point pairs and affect local-
ization accuracy in urban scenes. Wang et al. [29] proposed
a network PWCLO-Net to estimate and refine the pose based
on pyramid, warping, and cost volume structure. Although it
can show superior performance on KITTI datasets, it is not
robust in some dynamic scenes and its generalization ability
is poor.

Most of the above LIDAR SLAM technologies are based
on static scenes. However, we are faced with more dynamic
scenes in our real life [30]. Therefore, some scholars have also
carried out some research on how to remove dynamic objects
and improve the robustness of localization in dynamic scenes.
Most of them adopt detection and tracking methods to remove
dynamic objects [31], [32]. Although these methods can real-
ize localization in dynamic scenes, their real-time performance
is difficult to meet the requirements. Then, some scholars try
to study some dynamic object removal methods that do not
depend on the above technologies. Kim and Kim [33] pro-
posed the Removert method to retain static points from falsely
removed points. However, it cannot filter out the dynamic
points correctly when occlusion occurs. Lim et al. [34] pro-
posed a static map building method ERASOR based on
region-wise ground plane fitting. It relies on the ground
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Fig. 2. Fan-shaped grid model.

fitting to remove dynamic points above the ground. Therefore,
it shows poor performance in some slope scenarios. Due to the
fact that works [33] and [34] are implemented offline that can-
not be run online, Yang and Wang [35] proposed a fast LIDAR
SLAM algorithm based on RANSAC. Although it can achieve
an online registration effect, it shows poor performance when
there are many dynamic objects. Wang et al. [36] proposed
a multilayer RANSAC (ML-RANSAC) algorithm. Based on
the segmentation of point cloud, it uses iterative associated
object matching to achieve registration and removes dynamic
objects at the same time. This method can be used in more
complex scenes and large initial errors, but it uses the poor
robustness of single matching point and has a large number
of iterations.

The above methods have some issues with computational
cost or localization accuracy in an urban dynamic environment.
Therefore, we propose the RF-LOAM method that is efficient
and fits well to urban dynamic scenes by combining the
FA-RANSAC algorithm and improved ScanContext algorithm.

1. METHODOLOGY
The entire framework of the proposed method in this article
consists of four modules: point cloud processing, LiDAR
odometry, loop closure detection, and global optimization.
In this section, the four modules will be elaborated in detail.

A. Point Cloud Processing

1) Point Cloud Rasterization: In this article, HDL-64 LiDAR
is used for SLAM research. Due to the rotation characteristics
of the LiDAR, the density of point clouds will decrease
with increasing distance. In order to better realize object
segmentation and facilitate the subsequent loop closure feature
extraction, we adopt the fan-shaped grid, which is more con-
sistent with the distribution of point cloud to cluster objects.
The index is calculated according to (1) and (2) within the
range of [2, 40] m around the LiDAR, and the fan-shaped
grid model is constructed, as shown in Fig. 2

. di - ds
= T
0;

s;i = T 2
where d; and 6; denote the linear distance and angle from the
point i to the origin of the LiDAR coordinate, respectively,
and 7, and T, denote the ray resolution and circumferential
resolution (7, = 0.4 and T; = 0.75°), respectively.
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Fig. 3. Schematic of dynamic selection. (a) Feature point selection in
sectors. (b) Robustness description when yaw angle changes.

2) Object Segmentation: After fan-shaped rasterization,
in order to cluster objects quickly and accurately, we adopt a
region growth algorithm to achieve object segmentation. The
specific process is given as follows.

First, the height difference Ah of each fan-shaped grid is
calculated, and the seed grids are selected by height difference
threshold Ta;, (Tap = 0.3 m) and point cloud number threshold
Top (Top = 5).

Then, the untraversed seed grids of eight neighborhoods
around the current seed grid are judged, and the neighborhood
seed grids with the maximum height close to the maximum
height of the current seed grid are added to the same object list.
Next, the untraversed grid in the list is repeated 8 neighbor-
hood searches until there is no untraversed grid in the object
list, and the single object segmentation is ended.

Finally, after traversing all untraversed grids in turn, all
object segmentation can be completed.

3) FA-RANSAC Remove Dynamic Objects: Most of the
existing methods judge dynamic objects by detection and
tracking, which often takes a long time. However, we do not
need to obtain the accurate object speed in SLAM and just
need to know whether it is moving. Therefore, this article
skips the detection and tracking process and proposes an
FA-RANSAC algorithm to quickly remove dynamic objects
based on feature information and adaptive threshold.

a) Dynamically select feature points: After the object seg-
mentation is completed, we obtain a rectangular box of object
through convex polygon according to the method in [37].
Considering that the distance from object to the LiDAR
changes continuously in a realistic scene, the rectangular box
of object will also change, resulting in the fluctuation of the
barycentre. At this time, the ML-RANSAC algorithm [36] with
single point matching has poor accuracy. Therefore, this article
uses the scanning characteristics of the LiDAR to divide the
area around the LiDAR into four sectors and proposes a more
robust feature point selection method, as shown in Fig. 3(a).
When the object is located in the front or rear sector of
the LiDAR, it will retain a relatively complete width feature,
as shown in the green points in Fig. 3(a). When the object is
located in the left or right sectors of the LiDAR, it will retain
a relatively complete length feature. Therefore, by judging the
area where the barycentre of the object is located, the stable
red border points are selected as feature points to match with
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that of the historical frame, so as to improve the robustness
and accuracy of dynamic object removal. Even if the object D,
changes in yaw angle from frame k — 5 to frame k and its rela-
tively stable length feature also changes as shown in Fig. 3(b),
interior point calculation in Section III-A3c can still select
relatively stable feature point pair P ;_s5 and P ; from feature
points for judging interior points. Therefore, changes in yaw
angle do not affect the dynamic object removal.

b) Query corresponding points based on multiple features:
The transform between two frames usually involves six param-
eters. Therefore, at least two sets of corresponding points
are required to obtain the corresponding transform matrix.
In order to get the transform matrix through a small num-
ber of iterations for removing dynamic objects, we compare
current frame m with the frame m — 5 and propose a fast
and accurate corresponding points search method by multiple
features.

First, two objects O; and O, with proper distance [38] are
randomly selected from current frame m, and their barycen-
tres are p, and p,. Then, the prediction pose of current
frame m 1is calculated by the pose of the last frame m — 1
and transformed between two consecutive frames m — 1
and m — 2.

Second, considering that the integrity of point cloud features
in length and width directions is different, we adaptively adjust
the weights of length and width according to the barycentre
of object in the current frame m and calculate the shape
deviation between the object in the current frame m and the
object in frame m — 5, as shown in (3) and (4). Then, the
weighted distance D between the object in current frame m
and the object in frame m — 5 is calculated by combining
the barycentre deviation D,, the shape deviation D, and
the number deviation of point cloud D,, as shown in the
following:

Pn_x Pn y
a=—tr g, = P )
Pox+ Py Poxt Puy
ln _l n =
Dy=ax —n bl g S0l
max(l,, ;) max(wy, w;)
D; = Dy x W, + Dy x Wy + D, x W, (5)

where p, , and p, , denote the barycenter value of the
object n in the current frame; a; and a,, denote the weights
of length and width, respectively; [, and w, denote the length
and width of rectangular box of the object n in the current
frame m, respectively; /, and w, denote the length and width
of rectangular box of the object ¢ in frame m — 5, respectively;
and W,, W, and W, denote the weights corresponding to the
variations Dg, Dy, and D,, respectively.

Next, the Npin (Nmin = 5) objects with the minimum
weighted distance to O; are extracted from frame m-5, and
their barycentres are used as candidate point set M; of O;.
In the same way, the candidate point set M, of O, is
obtained.

Finally, g, ; is selected from M;, and the points that
meet (6) are selected from M,;, as shown in Fig. 4. Then, the
corresponding relationship pair set R; between g, ; and ¢, ;
can be obtained. Next, all points in M, are traversed in turn,
and the corresponding relationship pair set R; is accumulated

ne

@ represents barycentre of object
[ 2 in the current frame m

® represents barycentre of object
in the frame m-5

Fig. 4. Schematic of corresponding point query.

to obtain all relationship pairs set R; , between ¢, and ¢,,
as shown in the following equation:

R, = {(ql_h Q) ’ [Ip1—p2l — I —q2il| <&, g GMz}
(6)

Niin
Ri>=> R. ™
i=1
c) Adaptive filter interior points and set termination condition:
Due to the fast scanning frequency of LiDAR, the similarity
of point clouds between adjacent frames is relatively high.
Therefore, the average distance and the optimal interior ratio
of the previous frame can be used to guide current frame
matching. Among them, when judging the inner and outer
points, the current distance needs to be calculated in two
situations. If the object in previous frame is judged to be
moving by the FA-RANSAC algorithm at previous time, the
current distance refers to the maximum distance between
two pairs of feature points after transform of each iteration.
Otherwise, the current distance refers to the minimum distance
between two pairs of feature points. Also, the interior rate
refers to the ratio of object pairs with distance less than the
distance threshold to all object pairs. The specific process is
given as follows.

First, the distance d; of the optimal matching interior
pairs of previous frame is introduced. After that, the average
distance d; of previous frame is adaptively calculated by (8)
as the distance threshold of current frame to filter the interior
points of current frame

dy =2 d (®)

where N denotes the number of the interior points in the
previous frame and A denotes the interior point factor.

Then, in order to avoid a large number of sampling times
and reduce dispensable time consumption, we adaptively set
the prediction interior ratio r. (termination condition) of cur-
rent frame through the optimal interior ratio r; of previous
frame, so as to obtain the optimal transform matrix that meets
r. after a small number of iterations

ro = ur, 9)

where o denotes the interior ratio factor.
d) FA-RANSAC removes dynamic objects: Based on the
above contents, the FA-RANSAC algorithm is proposed.
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The algorithm framework is shown in Algorithm 1, and the
specific process is given as follows.

Algorithm 1 FA-RANSAC
1. intput: objects A for current frame m; objects B for frame
m-5; empty feature list Fa, Fg; random sampling times S;
the optimal interior ratio ry, the average distance d,, for
last frame

2. output: MoV, Rpest, Thests Thest
3. Fa = Get_ feature_points(A),
Fg = Get_feature_points(B);
4. Ca = Get_barycenter(A), Cg = Get_barycenter(B);
5. d=A x dp, T = X 1p;
6. fori=0to S do
7.  (pl, p2) = Random_sample(Cy,);
8. Ml = Weighted_Search(pl, Cg, Rupests Tbest), M2 =

Weighted_Search(p2, Cg, Rpests Thest);
9. Rj 2 = Query_based_on_features(M1, M2);
10. Rt, Tl» I, M[ = RANSAC (RL2’ FA, FB’ d),
11. if (r < ry) then
12, Tpest = Tty Rpest = Ry Toest = T, Mov = M, break;
13.  else if (rpest < 1) then
14. Thest = Tts Rpest = Ry, Toest = Tty Mov = My;
15. end if
16. end for

First, the dynamic selection of feature points in
Section III-A3a is used to obtain multiple stable feature
points of objects in current frames m and m — 5.

Second, two objects with proper distance are randomly
selected from the current frame. Then, all relationship pairs
set between the selected two objects in the current frame
and the objects in frame m — 5 is obtained according to the
corresponding point query method in Section III-A3b.

Next, the transform matrix is calculated by the feature
points matching of selected objects under each corresponding
relationship. Then, the current distance is calculated based on
the two pairs of feature points in the transformed object, and
the adaptive distance threshold obtained in Section III-A3c
is used to filter the interior points and get the interior rate
corresponding to each transform matrix. Considering that the
number of static objects in a frame is usually greater than
that of dynamic objects, the transform matrix with the highest
interior rate is finally selected as the RANSAC registration
result of this sampling.

Finally, the sampling and registration steps are repeated until
the interior rate is higher than the adaptive interior rate thresh-
old obtained in Section III-A3c or the number of sampling
reaches the fixed value. At this time, the transform matrix
with the highest interior rate is retained, and the corresponding
exterior points will be directly removed as dynamic objects.

4) Feature Extraction: After removing dynamic objects,
there are still a large number of point clouds per frame. If these
point clouds are directly processed, it will take a long time.
Therefore, in order to improve the matching efficiency, this
article extracts the planar features set S; and edge features
set E; based on local point smoothness according to the
method in [16]. Then, the optimal transform matrix obtained

by the FA-RANSAC algorithm is used as the initial transform
matrix, and S; and E; are transformed from the current
LiDAR coordinate to the global coordinate for preliminary
distortion compensation according to the method in [16].

B. LiDAR Odometry

1) Pose Estimation: The core idea of pose estimation is
to match the current undistorted planar features set Sy and
edge features set Ey with the global keyframe feature submap
in Section III-B2. For each planar feature point pg of Sy
and edge feature point pp of Ew, the planar feature points
closest to ps are first selected from global planar feature
submap by KD-trees. Similarly, the edge feature points closest
to pg are also selected. Then, the line and plane are estimated
by collecting nearby points from the edge and planar feature
submap. Next, the weighted distance [16] of the point-to-edge
and point-to-planar is calculated. After that, the Gauss—Newton
method is used to minimize the weighted distance sum of the
current undistorted features, and the current estimated pose
is obtained by iterative optimization until it converges. For
details of the above steps, please refer to [16].

2) Keyframe Submap Update: First, translation and rotation
are calculated between the current frame pose obtained by
pose estimation and the previous keyframe pose. If translation
and rotation are less than their corresponding thresholds,
the current frame is not considered as a keyframe and is
skipped directly. Otherwise, the current frame is considered
as a keyframe. The distortion compensation is performed
on current planar features and edge features according to
the method in [16]. Then, the recomputed undistorted edge
features and planar features will be updated to global keyframe
edge submap and planar submap, respectively, and simultane-
ously passed into the global optimization to build the pose
graph.

C. Loop Closure Detection

The ScanContext algorithm [39] can achieve loop closure
detection, but there are many problems, such as difficulty
in distinguishing between bumpy roads, false loop closure
detection of far-away similar scenes, and long time-consuming
of candidate frame search and matching. Based on the
above problems, we improve the ScanContext algorithm to
achieve faster and more accurate loop closure detection after
removing dynamic objects. Specifically, the robustness of
scene recognition is improved by using the height difference.
Then, an adaptive distance threshold is used to filter invalid
similar candidate frames. Finally, the efficiency of candi-
date frame matching and search is improved by optimizing
distance calculation and deleting loop historical matching
frames.

1) Create Descriptors: Considering the deceleration zones
and slopes on urban roads, and the small inclination of
installation, it is difficult to judge the same bumpy roads
only by the maximum height. Therefore, after dynamic object
removal, the height difference Ah in each grid is selected as
the value in the feature matrix of the ScanContext algorithm.

In order to avoid repeated division of the fan-shaped grid
as much as possible and quickly obtain the descriptors of
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Fig. 5. Schematic of fan-shaped grid merge.

the current keyframe, we combine 480 x 95 grids used
for segmentation in Section III-A2 and the grids marked as
dynamic objects in Section III-A3 to quickly build a new
Ns x N, feature extraction grid model. Since N; is 60 and N,
is 19 in this article, it is only needed to enclose five original
red fan-shaped grids in the ray direction and eight original red
fan-shaped grids in the circumferential direction into a new
black fan-shaped grid, as shown in Fig. 5. Then, the height
difference of the original nondynamic object grids in the new
black fan-shaped grid is compared in turn, as shown in (10).
Next, the maximum height difference of the new fan-shaped
grid is used as its feature value. Finally, the feature matrix of
the current keyframe is obtained as descriptors by iterating all
the new fan-shaped grids

Ah = max ( (10)

ke{l,2....40} & k¢Mov

Ahy k)

where Ah,, ; denotes the height difference of original non-
dynamic object grid k in the new fan-shaped grid and
Mov denotes the grids set marked as dynamic objects
in Section III-A3.

2) Get Candidate Frames: After the feature matrix of cur-
rent frame is obtained, the traditional ScanContext algorithm
adopts a fixed distance threshold to determine the candidate
frames, which is easy to cause false loop closure detections of
far-away similar scenes. Therefore, we introduce an adaptive
distance threshold to accurately select the candidate frames.
Specifically, we first calculate the norm of each row vector of
the feature matrix to obtain a rotation-insensitive description
vector according to the method in [39]. Then, the vector
deviation defined in [39] is used to find out N,, (N,, = 10)
initial candidate frames with the smallest deviation from the
historical keyframes more than ten frames apart from the
current frame. Next, since each loop closure optimization will
greatly reduce the cumulative error, we design a distance
threshold dy that changes synchronously with the cumulative
error to further filter out the false loop closure detections,
as shown in (11) and (12). Finally, the candidate frames of
the current frame are accurately obtained.

kcur - klast_loop
40

d = \/Tca.n,x2+'1"ccuz}n,y2+Tcan _22

cur cur

dr =15+ (11)

12)

where ke and kjag_100p denote the number of current frame and

last loop frame in all keyframes, respectively; 73" denotes the

transform matrix between the current frame and the candidate

Feature Matrix
Feature Matrix

=19 * 6

Feature Vector

(a) (b)

Fig. 6. Simplified model of feature matrix. (a) ScanContext algorithm.
(b) Proposed method.

Combination of Column Vectors

frame; and d denotes the linear distance between the current
frame and the candidate frame.

3) Fast Loop Closure Detection of Candidate Frames: After
obtaining the candidate frames, in order to finally con-
firm whether the vehicle enters loop closure, the traditional
ScanContext algorithm [39] regards the feature matrix as a
combination of column vectors as shown in Fig. 6(a), and the
feature matrix is translated to judge the similarity. This method
needs to calculate the cosine value of column vectors 60 times
per translation, which takes a long time. Therefore, in order to
reduce the complexity of similarity calculation of the feature
matrix, we improve the method of translation column vectors
in [39] and use the column vector norm to simplify the feature
matrix for the translation similarity judgment. The details are
given as follows.

First, the column vector norms of current frame and can-
didate frames are calculated, and their feature matrix is
simplified into a single feature vector, as shown in Fig. 6(b).
Then, the selected candidate frame feature vector k is con-
tinuously translated and its distance from the current frame
feature vector is calculated according to the method in [39].
Among them, the vector cosine value is only calculated once
per translation and the distance of the feature matrix can be
obtained quickly and accurately. Next, the minimum distance
value is selected from all translations as the distance between k
and the current frame feature vector. Finally, according to this
translation method, all candidate frames are calculated in turn.
The minimum distance value is selected from them to compare
with the distance threshold, and the loop closure detection can
be completed.

4) Optimize Candidate Frames Search: To avoid the prob-
lem that the accumulation of historical data leads to an increase
of time spent on searching candidate frames, this article
further improves the method in [39]. After the current frame
enters loop closure, the history loop closure frame is cleared
continuously. Our method can ensure that the number of
historical frames remains stable with the continuous increase
of point cloud and the search speed of candidate frames is
improved.

D. Global Optimization

After the loop closure detection of current keyframe, we use
the global optimization algorithm commonly used in SLAM
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to further eliminate the cumulative error, specifically including
pose graph construction and pose graph optimization.

1) Pose Graph Construction: First, the module receives the
pose of current keyframe in the global coordinate from the
LiDAR odometry. Then, the pose can be added as a node
in pose graph to complete the pose graph construction, and
the feature set of current keyframe can be viewed as a
measurement of this node.

2) Pose Graph Optimization: If the current keyframe does
not enter loop closure after the construction of the pose graph,
the following steps will be skipped directly. Otherwise, the
feature submap of loop closure frame is constructed from
feature set of its neighbors in pose graph. Then, the transform
between the current frame and the loop closure frame is
calculated according to the method in Section III-B1. Next,
the transform is added as the edge corresponding to current
pose node and loop closure pose node to pose graph. At this
time, due to the deviation between the current pose obtained
by loop closure and the current pose obtained by odometry,
the L-M algorithm in [24] is used to optimize the global pose
of pose graph. Finally, the optimized poses update the poses of
submap in odometry and the poses of loop closure historical
frames.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. Experimental Setup

1) Datasets: To validate the proposed method, we eval-
uate RF-LOAM on the KITTI datasets [40], Urbanloco
datasets [41], and urban dynamic dataset collected by our-
selves.

KITTTI datasets are recorded by an HDL-64 LiDAR, a set
of RTK-GPS/IMU device, and a binocular camera. Its trajec-
tories are long enough to test outdoor localization methods.
Urbanloco datasets are recorded by an HDL-32E LiDAR,
a set of GPS/IMU device, and six 360° view cameras.
It contains a large number of dynamic objects. In order to
test the localization and loop closure detection effect of our
method in urban scenes, we select three sequence urban data
with the highest loop closure repetition rate: 00, 05, and 08
(08 only contains the reverse loops and 00 and 05 only contain
loop events with the same direction) from KITTI datasets
and two sequence urban data: CA_20190828155828 (CA-1)
and CA_20190828190411 (CA-2) with more dynamic objects
from Urbanloco datasets for experiments.

Extracted urban dataset is recorded by unmanned ground
vehicle (UGV). HDL-64 LiDAR is installed on top of the
UGY, as shown in Fig. 7(a). This dataset obtained in dynamic
urban environment contains a large number of pedestrians and
vehicles about 5.2 km, as shown in Fig. 7(b). From the local
typical pictures of Fig. 7(b), it can be seen that the dataset
includes a traffic congested road, a cross road, a loop closure
road, an urgent bumpy road, and a similar road for better
validation algorithms.

2) Implementation Details: All tests are performed in C++
based on the robot operating system (ROS) and run on a
computer with i7-8700 CPU, 16-GB RAM, and Ubuntu 18.04.
Then, RF-LOAM uses the detailed constant parameters shown
in Table I, according to [42] and practical experience.

Fig. 7.
map.

Extracted urban dataset. (a) Collection platform. (b) Satellite

TABLE |
DETAILED CONSTANT PARAMETERS USED IN RF-LOAM
Parameter Wy /48 w, A u
Value 0.5 0.3 02 13 1.2

B. Performance Evaluation

1) KITTI Datasets: The point cloud maps built by our
method under the specified KITTI datasets are shown
in Fig. 8(a-1)—(c-1). We can see that our method can accu-
rately build point cloud map. Then, the typical local dynamic
scenes are selected from KITTTI datasets for analysis, as shown
in Fig. 8(a-3)—(c-3). From Fig. 8(a-2) to (c-2), it can be
seen that our method can successfully remove these dynamic
objects and achieve accurate dynamic scene construction.

In order to further illustrate the advantages of our method,
RF-LOAM is compared with the state-of-the-art SLAM
methods, such as optimized-SC-F-LOAM, LeGO-LOAM,
F-LOAM, A-LOAM, PWCLO-Net, and ML-RANSAC.
In addition, to show the benefits of dynamic object removal
before scan matching, we extract point cloud processing and
odometry of our method as Our-Front for further comparison
in Section IV-C. Then, average translation error (ATE) and
average rotation error (ARE) are used as the evaluation met-
rics, which are defined by KITTI datasets [40]. The results
are shown in Table II and the comparison of the typical
trajectories is shown in Fig. 8(d)—(f). It can be seen that our
method outperforms the compared methods, and the trajectory
of our method is closest to ground truth with the smallest error
under these KITTI datasets. Due to the lack of loop closure
detection in A-LOAM and F-LOAM and the interference
of dynamic objects, the average error is relatively large,
as shown in Table II. In this article, we adopt the FA-RANSAC
algorithm to quickly remove dynamic objects. Thus, the local-
ization accuracy of Our-Front is higher than that of A-LOAM
and F-LOAM. Also, due to the fact that it uses multiple feature
point matching, Our-Front is also better than ML-RANSAC
with single point matching. However, PWCLO-Net cannot
rely on geometry correspondence and achieve better LiDAR
odometry performance through large-scale training than Our-
Front. LeGO-LOAM and optimized-SC-F-LOAM have loop
closure detection, so their cumulative errors are also smaller
than those of Our-Front. However, the improved scan context
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(d) (e)

F-LOAM MLRANSAC

PVCLO-Net

F-LOAM

()

Fig. 8. Sample results on KITTI datasets. The left sides of (a)—(c) show the mapping results of our method on KITTI datasets sequence 00, 05,
and 08, and the right sides of (a)—(c) show the image and submap of local dynamic scene. (d)—(f) Comparison of trajectories on the specified KITTI

datasets.
TABLE I
RESULTS ON THE SPECIFIED KITTI DATASETS IN DIFFERENT ALGORITHMS
LeGO-LOAM  Optimized-S
Datasets A-LOAM  F-LOAM PWCLO-Net ML-RANSAC  Our-Front O
atasets (With ICP) C-F-LOAM € ur-rron urs
00 1.01 0.92 0.80 0.76 0.85 0.89 0.84 0.72
ATE (%) 05 0.68 0.63 0.51 0.44 0.46 0.58 0.54 0.39
08 1.56 1.54 1.23 1.12 1.36 145 1.38 0.97
00 0.45 0.42 0.38 0.29 0.40 0.44 0.39 0.25
ARE 05 0.41 0.39 0.33 0.26 0.29 0.38 0.35 0.18
(deg/100m)
08 0.58 0.57 0.52 0.44 0.52 0.56 0.54 0.36

is used for fast and accurate loop closure detection in dynamic
scenes. Therefore, after global optimization, our method can
be more accurate than other compared methods. It can achieve
0.69% ATE and 0.27°/100 m ARE over three sequences.

2) Urbanloco Datasets: To better evaluate the SLAM per-
formance of our method in an urban dynamic environment,
we implement RF-LOAM and the state-of-the-art SLAM
methods on Urbanloco datasets. It can be seen that the
dynamic objects in Urbanloco datasets are significantly more
than those in KITTI datasets from the right of Fig. 9(a) and (b).
However, our method can still remove these dynamic objects
and build accurate dynamic point cloud maps as shown in the
left and middle of Fig. 9(a) and (b).

Then, mean translation error (MTE) and mean rotation
error (MRE) are used as the evaluation metrics, which
are defined by Urbanloco datasets [41]. The results and
comparison of typical trajectories are shown in Table III
and Fig. 9(c) and (d), respectively. It can be seen that due
to the more complex dynamic scenes of Urbanloco datasets
than those of KITTI datasets, the errors have significantly
increased. However, our method can still achieve the best
SLAM performance. The results are consistent with the
results on KITTI datasets, but our method has more obvi-
ous advantages. Compared with LeGO-LOAM (with ICP)

and optimized-SC-F-LOAM, our method improves trajectory
accuracy by 31.2% and 24.8%, respectively. After dynamic
object removal, the advantage of Our-Front is also more
obvious compared to A-LOAM, F-LOAM, and ML-RANSAC
in complex dynamic scene, as shown in Table III. In addition,
the density of point clouds collected by HDL-32E LiDAR
is relatively sparse and the scenes are more complex in the
Urbanloco datasets. Therefore, after using these point clouds
to train PWCLO-Net, the trajectory error is relatively large
and its accuracy is not as good as that of Our-Front.

3) Extracted Urban Dataset: To further demonstrate the
superiority of our method in practical dynamic environment,
we select the Extracted urban dataset for testing, which is col-
lected in urbanized scenes with many dynamic objects. Some
typical pictures of the urban dataset are shown in Fig. 7(b),
and the mapping results of our method are shown in Fig. 10.
We can see that our method can accurately build point cloud
map.

Then, the ATE and ARE are used as the evaluation
metrics. The results of the compared methods are shown
in Table IV, and the comparison of typical trajectories is
shown in Fig. 11. Due to the fact that the urban environ-
ment is more complex than KITTI, our method has more
obvious advantages and the results are similar to the results
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(6)

Ground Truth
Optimized-SC-F-LOAM
RF-LOAM

PWCLO-Net
ML-RANSAC

F-LOAM

=== Ground Truth
300 Optimized-SC-F-LOAM
RF-LOAM
PWCLO-Net
ML-RANSAC
F-LOAM

Fig. 9. Sample results on Urbanloco datasets. The left sides of (a) and (b) show the mapping results of our method on Urbanloco datasets
sequence CA-1 and CA-2, the middle of (a) and (b) shows the submap of local dynamic scene, and the right sides of (a) and (b) show the image of
local dynamic scene. (c) and (d) Comparison of trajectories on the specified Urbanloco datasets.

TABLE IlI
RESULTS ON THE SPECIFIED URBANLOCO DATASETS IN DIFFERENT ALGORITHMS
LeGO-LOAM Optimized-
Datasets A-LOAM  F-LOAM (with ICP) SC-F-LOAM PWCLO-Net ML-RANSAC Our-Front Ours
MTE (m) CA-1 93.98 85.44 41.80 32.76 56.83 61.89 52.84 22.72
CA-2 223 20.63 14.51 13.94 16.24 17.17 15.57 10.32
MRE (deg) CA-1 3.87 3.62 2.98 2.69 3.47 3.44 3.17 1.95
CA-2 5.57 5.49 3.52 3.44 4.81 4.96 4.54 2.86
TABLE IV
RESULTS ON THE EXTRACTED URBAN DATASET IN DIFFERENT ALGORITHMS
LeGO-LOAM Optimized-
A-LOAM F-LOAM PWCLO-Net ML-RANSAC Our-Front (0]
(WithICP)  SC-F-LOAM ¢ ur-kron urs
ATE (%) 15.26 12.84 7.72 2.84 8.87 10.89 8.24 1.38
ARE (deg/100m 2.38 1.94 1.47 0.94 1.61 1.86 1.54 0.62
40
300
,,,,,,,,,,,,,,,,,,,,, ‘ A
00 [ |8
I E
100 -
£ —= . =
0 B —
100 = - 7 -== Ground Truth
| | — Optimized-SC-F-LOAM
===l RF-LOAM
200 y ; i —— PWCLO-Net
bl D! ML-RANSAC
50 i C { F-LOAM
Fig. 10. Example of our method on extracted urban dataset. o 20 w0 600 400 1000 1200 s

x(m)

Fig. 11. Comparison of trajectories on extracted urban dataset.

on Urbanloco datasets. Our method adopts the FA-RANSAC

algorithm to remove dynamic objects. Therefore, Our-Front
has better accuracy than A-LOAM and F-LOAM, as shown
in Table IV. Considering that PWCLO-Net trained on KITTI

datasets has insufficient generalization ability in our Extracted
urban dataset and the robustness of ML-RANSAC using
single point matching in complex scene is limited, Our-Front
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TABLE V
REMOVAL RATE OF DYNAMIC OBJECT POINTS

Algorithms Datasets Removal Rate (%)
CA-1 78.6
Removert CA-2 85.3
Extracted 80.5
CA-1 83.4
ERASOR CA-2 923
Extracted 87.9
CA-1 77.2
ML-RANSAC CA-2 88.7
Extracted 81.3
CA-1 81.8
Our-Front CA-2 93.3
Extracted 85.1

performs also better than PWCLO-Net and ML-RANSAC.
LeGO-LOAM and optimized-SC-F-LOAM have loop closure
detection that helps reduce cumulative errors, so their tra-
jectory errors are smaller than those of Our-Front. However,
they are disturbed by dynamic objects and bumpy roads,
resulting in unstable loop closure detection and larger fluc-
tuation of trajectory error. We improve the feature extraction
and adaptive distance threshold of ScanContext algorithm to
accurately detect loop closures in bumps and similar roads.
Although there are still errors between our trajectory and
ground truth, the trajectory obtained by our method is closest
to ground truth, and our method has the best SLAM perfor-
mance compared with the other methods. Compared with the
optimized-SC-F-LOAM, our method reduces ATE and ARE
by 48% and 33%, respectively, as shown in Table IV.

C. Ablation Study

In order to analyze the effectiveness of each module,
we remove or change components of our method to do ablation
studies.

1) Impact of Dynamic Object Removal: In this study, the
removal rate proposed in [43] is first used to evaluate the
effectiveness of dynamic object removal. We compare Our-
Front with the state-of-the-art methods, namely, Removert,
ERASOR, and ML-RANSAC, and adopt Urbanloco datasets
and Extracted urban dataset with many dynamic objects for
testing. The results are shown in Table V. The removal rate of
Removert dramatically decreases in these dynamic scenes due
to the visibility issues. ML-RANSAC adopts a single match-
ing point, which can easily cause dynamic object omission.
Our-Front uses multiple points matching to quickly remove
dynamic objects and can achieve comparable performance to
that of ERASOR that is not limited by the points existing in the
invalid range of visibility. Note that Removert and ERASOR
are offline in which a prebuilt map is needed. However, Our-
Front can remove dynamic points online.

Then, to further clarify the impact of dynamic objects on
front odometry, we compare Our-Front with the other odom-
etry methods (ML-RANSAC, A-LOAM, and F-LOAM) and
obtain the corresponding trajectory error from Tables II to IV
for analysis. It can be seen that Our-Front has better local-
ization accuracy than those of the other odometry methods
after dynamic object removal. For example, the traffic con-
gestion Scene 1 and cross road Scene 2 are selected from

TABLE VI
RELATIVE LOOP RATE ON THE ALL DATASETS

Datasets IMSC RM-IMSC Relative Loop Rate (%
D)
KITTI 847 862 98.3
Urbanloco 284 292 97.2
Extracted 628 642 97.8

TABLE VII
ABLATION STUDY OF LOOP CLOSURE ON THE EXTRACTED DATASET

Algorithms ATE (% ARE (deg/100m)
)
OF-ICP 6.63 1.37
OF-OPSC 2.64 0.81
Ours 1.38 0.62

our Extracted dataset for the detailed explanation. There are a
large number of dynamic vehicles and pedestrian, as shown
in Figs. 12(a) and 13(a). Due to the fact that A-LOAM
and F-LOAM are disturbed by dynamic objects, there are
a large number of ghost tracks in the local map, as shown
in Figs. 12(d) and (e) and 13(d) and (e), and the localization
has also a large deviation, as shown in Table IV. Specifically,
it can be seen that the boundary overlap effects are poor from
regions A and B in Fig. 12(d) and (e). Although ML-RANSAC
has reduced the ghost tracks by removing dynamic objects,
single matching point easily causes dynamic object omission
in complex dynamic scenes. Our-Front uses a more robust
FA-RANSAC algorithm to remove dynamic objects to get
an accurate static map, as shown in Figs. 12(b) and 13(b).
Therefore, the trajectory error of Our-Front is relatively small
and the boundary overlap effects obtained by Our-Front are
better as shown in regions A and B in Fig. 12(b). In summary,
Our-Front can improve the SLAM performance in dynamic
environments by removing dynamic objects.

2) Impact of Improved ScanContext: In this study, the effec-
tiveness of feature matrix similarity is first evaluated. For this
purpose, the improved ScanContext method is referred to as
IMSC, and we remove the column norm simplification step
from IMSC as RM-IMSC. Then, we count the number of
the loop closure frames obtained by RM-IMSC and IMSC
and calculate the relative loop rate. The results are shown
in Table VI. It can be seen that, after simplifying feature
matrix, we can achieve loop closure detection performance
comparable to that of RM-IMSC. Therefore, when calculating
the similarity score of the feature matrix, column norms are
used instead of column vectors, and this simplification method
does not result in the loss of column vector information.

To further clarify the overall performance of our
improved ScanContext method, we combine Our-Front with
optimized-SC as OF-OPSC and add ICP to Our-Front as
OF-ICP (Our-Front only provides poses and raw point clouds
are used by optimized-SC and ICP for loop closure detection
and mapping). Next, our method is tested on our Extracted
dataset compared with these methods, and the trajectory error
is shown in Table VII. It can be seen that our improved
ScanContext outperforms optimized-SC and ICP in dynamic
scenes. Then, the typical scenes are selected from our
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Companson of the mapping results in Scene 1.
e) Local mapping by A- LOAM

) Raw data. (

Fig. 12.
(d) Local mapping by F-LOAM. (

) Local mapping by Our-Front. (c) Local mapping by ML-RANSAC.

) Raw data. (

Fig. 183. Companson of the mapping results in Scene 2.
(d) Local mapping by F-LOAM. (e) Local mapping by A- LOAM

Fig. 14. Leaving and returned point cloud in Scene 3.
scene. (b) Returned scene.

a) Leaving

Fig. 15.  Comparison of the mapping results in Scene 3. (a) Local
mapping by RF-LOAM. (b) Local mapping by OF-OPSC. (c) Local
mapping by OF-ICP.

Extracted dataset for detailed analysis, such as loop closure
road Scene 3, bumpy road Scene 4, and similar road Scene 5.

First, for loop closure road Scene 3, the point clouds during
the vehicle leaves and returns Scene 3 are shown in Fig. 14.
The static points are represented by red, and the dynamic
points detected by our method are represented by purple. Due
to the fact that OF-OPSC and OF-ICP use raw point clouds
for loop closure detection, there are many ghost tracks in the
local map, as shown in Fig. 15(b) and (c). Next, due to the
significant differences in loop closure features of the leaving
and returned frames affected by dynamic objects, OF-OPSC is
difficult to detect loop closure. Therefore, the trajectory error is
relatively large, as shown in Table VII, and the local map over-
lap effects is poor, as shown in regions A and B in Fig. 15(b).
Then, due to the fact that OF-ICP performs loop closure

) Local mapping by Our-Front. (c) Local mapping by ML-RANSAC.

Fig. 16. Comparison of the mapping results in Scene 4. (a) Local
mapping by RF-LOAM. (b) Local mapping by OF-OPSC.

detection based on radius, it is difficult to accurately detect
loop closure when the odometry error is large. Therefore, the
trajectory error is very large in Table VII, and the leaving and
returned frames cannot match well, as shown in Fig. 15(c).
Our method uses FA-RANSAC to remove dynamic objects,
so there are only static points in the local map as shown
in Fig. 15(a), and loop closure features of the leaving and
returned frames are similar to accurately achieve loop closure
detection. Therefore, after global optimization, the trajectory
error obtained by our method is smallest in Table VII, and the
local map overlap effects is better, as shown in regions A and B
in Fig. 15(a).

After that, for bumpy road Scene 4, there is a relatively
steep slope and deceleration zone on the road. When the
vehicle turns quickly and passes through Scene 4, the pose
change of the LiDAR coordinate will cause the height of
point cloud in the same scene to change accordingly. At this
time, OF-OPSC uses maximum height as features, making it
difficult to accurately detect loop closure. In addition, due to
pedestrian interference, the trajectory error is relatively large,
as shown in Table VII, and the local map overlap effects are
poor as shown in regions A—C in Fig. 16(b). However, our
method improves the ScanContext algorithm by using height
difference as features to solve the problem of height changes
caused by bumpy road and can accurately detect loop closure.
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TABLE VIII
RUNTIMES ON THE ALL DATASETS IN DIFFERENT ALGORITHMS
LeGO-LOAM Optimized-
Datasets  A-LOAM  F-LOAM  ~ W' op  qoproam  PWCLO-Net  ML-RANSAC  Ours
poi KITTI 21.6 3.5 6.8 35 10.1 3.6 15.6
oint Utbanloco  16.4 238 54 2.6 7.4 29 14.1
Processing (ms)
Extracted 224 3.9 7.6 3.8 10.3 4.1 21.6
od KITTI 122.9 62.1 53.8 517 52.6 58.4 47.4
ometry Urbanloco 98.3 50.9 46.2 438 4.5 48.9 322
Mapping (ms)
Extracted 125.2 63.4 56.8 534 54.4 61.2 40.3
Loop Global KITTI / / 163.3 79.3 / / 60.2
Optimization Urbanloco / / 158.6 75.6 / / 58.1
(ms) Extracted / / 2123 942 / / 72.6
D. Runtime

Fig. 17. Raw data of similar roads Scene 5.

Fig. 18.
mapping by RF-LOAM. (b) Local mapping by OF-OPSC.

Comparison of the mapping results in Scene 5. (a) Local

Therefore, the trajectory error of our method can be well
corrected by global optimization as shown in Table VII,
and the local map overlap effects are better as shown in
regions A—C in Fig. 16(a).

Finally, for similar roads in Scene 5, there are two frame
point clouds that are far away but have similar scene structures
as shown in red and white points in Fig. 17. Therefore, the
feature matrixes of two frame point clouds are similar. At this
time, OF-OPSC cannot filter out the false loop frame that
is far away using adaptive distance threshold that increases
with the number of keyframes. Also, considering that the two
frame scenes are similar and only a small part of the point
clouds coincide, it is difficult to obtain accurate loop closure
constraint for global optimization. Thus, the trajectory error
is large as shown in Table VII, and the local map overlap
effects are poor as shown in regions A and B in Fig. 18(b).
Our method adaptively increases the distance threshold from

In practical applications, real-time performance is a crucial
indicator to evaluate SLAM systems. We test the runtime of
different methods on all datasets, and the results are shown
in Table VIII. It can be seen that Our-Front is the fastest
among these odometry methods without loop closure detec-
tion, and our method is also the fastest among these SLAM
methods with loop closure detection. Then, Our-Front can
quickly obtain odometry pose through initial pose provided
by FA-RANSAC. Therefore, the runtime of Our-Front is
less than that of F-LOAM with one-time match, end-to-end
PWCLO-Net, and lightweight ML-RANSAC. A-LOAM takes
the longer time because the iteration number of mapping is
large. LeGO-LOAM and optimized-SC-F-LOAM take more
time than A-LOAM because they both have loop closure
detection. In our method, when the height difference of
fan-shaped grids is used for object segmentation, these grids
are also used for loop closure feature extraction that can reduce
runtime. Then, the search efficiency is improved by deleting
historical matching frames and the matching computation is
simplified by improving feature matching. Therefore, although
our method adds the steps of segmentation and registration
that increases runtime for point cloud processing, our method
reduces the runtime by 12% compared with Optimized-SC-F-
LOAM, as shown in Table VIII.

V. CONCLUSION
In this article, the RF-LOAM LiDAR SLAM algorithm
is proposed by adding lightweight segmentation, registration,
and improved ScanContext algorithm based on F-LOAM. The
innovations of our method are mainly reflected in the following
three points.

1) Skipping traditional process of object detection and track-
ing, a new FA-RANSAC algorithm is proposed based
on object segmentation to quickly and accurately remove
dynamic objects as outliers.

the minimum value after each global optimization, which 2) Based on the ScanContext algorithm, the height differ-
makes the distance threshold and trajectory error change ence and adaptive distance threshold are used to improve
synchronously. Thus, our method can accurately remove false the loop closure detection accuracy, and the loop closure
loop closure detection of similar scenes that are far away detection efficiency is improved by deleting the loop
and avoid global optimization errors. Therefore, the trajectory closure historical matching frames and simplifying the
error is smaller as shown in Table VII, and the local map feature matching.

overlap effects are better as shown in regions A and B 3) The FA-RANSAC and the improved ScanContext

in Fig. 18(a).

algorithm are unified into the F-LOAM framework with
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the minimum cost, and the LiDAR SLAM is implemented
quickly and accurately in the urban dynamic environment.

Under KITTI datasets, Urbanloco datasets, and Extracted
urban dataset, our method is validated. The experimental
results show that our method can effectively overcome the
interference of dynamic objects and accurately realize loop
closure detection. The average trajectory error of our method is
smaller than those in other compared algorithms in all datasets.
Considering that there are more dynamic objects in Urbanloco
datasets and Extracted urban dataset, our method has more
obvious advantages and stronger robustness in these datasets.
For the runtime, our method improves the candidate frame
search and feature matching of ScanContext algorithm so
that its runtime is shortest among these SLAM methods with
loop closure detection, which meets the real-time requirement.
Therefore, our method can provide both robust and fast SLAM
for UGV and is competitive among state-of-the-art algorithms.

However, there are still some shortcomings in this method.
For example, when UGV travels to scenes with single features,
the accuracy of odometry and loop closure detection is poor.
Next, we will try to introduce the intensity of point clouds
or fuse the RGB of images to build map for better SLMA
performance.
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