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Abstract—Eddy current tomography (ECT) is a very well
established electromagnetic nondestructive evaluation (NDE)
method for the imaging of conducting and possibly mag-
netic materials. It relies on the capability of low-frequency
electromagnetic fields to penetrate conducting materials. The
underlying physical principle is electromagnetic induction,
where the displacement current in Maxwell equations is
neglected (magnetoquasistatic (MQS) limit). From a general
perspective, ECT is an inverse problem, which poses serious
challenges due to its inherent nonlinearity. This contribu-
tion introduces a transfer function for time-domain ECT, and
proves that it satisfies the monotonicity principle (MP). This
is relevant because MPs have been recognized as a key
concept in developing real-time imaging methods and algorithms. The transfer function introduced in this contribution
represents the input-output relationship for the forced response when the system is driven by an exponentially decaying
current. Specifically, it corresponds to the Laplace transform of the system, evaluated on the real negative semiaxes.
Finally, we describe the imaging method based on the MP, and we provide extensive 3-D numerical results in a realistic
scenario, to demonstrate the effectiveness of the method.

Index Terms— Eddy current tomography (ECT), imaging, inverse problems, monotonicity principles (MPs).

I. INTRODUCTION

TOMOGRAPHY, or imaging, attempts to reconstruct the
spatial distribution of material properties inside a spec-

imen under testing, from externally measurable quantities.
Usually, the measurement system applies excitation signals to
the specimen to produce a measurable response.

Hard-field tomography, where the energy waves emitted
from the source travel along straight lines regardless the
material properties, as in the case of X-ray computed tomog-
raphy (CT), magnetic resonance imaging (MRI), and positron
emission tomography (PET), a well established and tractable
inverse problem. The circumstance that the field lines are
straight lines makes the imaging problem a linear problem,
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although ill-posed. On the contrary, in soft-field tomography,
the shape of the field lines depends on the local value of
the material properties, making the inverse problem nonlinear.
In the case of eddy current tomography (ECT), the shape of
the field lines of the induced electric current density strongly
depends on the electrical conductivity and on the magnetic
permeability, making it a nonlinear and strongly ill-posed
inverse problem.

An operator satisfying the monotonicity principle (MP) pro-
vides a monotone relationships between the material properties
and the measurable quantity. Although the first appearance of
MP in the context of inverse problems dates back to 1990, in a
work by Gisser et al. [1], it was in 2002 that Tamburrino and
Rubinacci [2] recognized MP useful for solving inverse prob-
lems, in the application of electrical resistance tomography.

What makes tomography based on MP attractive, is that
it is noniterative. MP methods and related algorithms are
suitable for real-time imaging, can be easily parallelized,
and can be implemented in low-power edge computation
devices/platforms.

The approach based on the MP is among the few known
noniterative methods suitable for soft-field imaging. In this
class of imaging methods, Colton and Kirsch [3] introduced
the first noniterative imaging algorithm, the linear sampling
method (LSM), Kirsch [4] proposed the factorization method
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(FM), Ikehata [5] proposed the enclosure method (EM) [6]
and A. J. Devaney applied the well-known signal processing
algorithm MUltiple SIgnal Classification (MUSIC) as an imag-
ing method. Noniterative imaging methods have been mainly
applied for solving the inverse obstacle problem, where one
aims to reconstruct the shape of an anomaly in a known
background material.

MP and related imaging algorithms have several desirable
features. First, they are applicable without approximations
even for real-world settings, in which the measurement sys-
tems are made by a finite number of sensors. This is not
always the case in other methods, which are valid only when
an infinite number of measurements is available. Second,
under proper assumptions, it can be proved that a MP based
method (MPM) provides upper and lower bounds for the
unknown quantity [2], even in the presence of noise [7], [8].
Third, despite the fact that MPM was originally proved for
stationary problems governed by an elliptic partial differential
equation (PDE) see [1], [2], [9], [10] for electrical resistance,
capacitance, and inductance tomography), they have been
extended to a large variety of problems governed by different
PDEs, such as: parabolic PDEs (see [11], [12], [13], [14],
[15], [16] for ECT in several settings), hyperbolic PDEs (see
[17] for microwave tomography, [18] for acoustic tomography,
and [19] for optical tomography), nonlinear elliptic PDEs
(see [20] for nonlinear electrical resistance tomography and
[21] for nonlinear magnetic inductance tomography), and
fractional Schrödinger equation [22], appearing in inverse
problems when the domain under imaging is “probed” via an
anomalous diffusion process more complex than the standard
Brownian motion, modeled by the classical Laplacian. Fourth,
MPM gives an exact reconstruction of the outer boundary
of the unknown anomalous region, in the ideal setting of
complete knowledge of the boundary measurement operator
and noise free data [23]. MPM has also been applied to
completely different contexts such as the homogenization of
heterogeneous materials [24].

The first step in MP methods is to formulate a problem-
specific operator, mapping the unknown quantity into the
measured data, that satisfies the MP (see Section IV for
details). In the magnetoquasistatic (MQS) regime and fre-
quency domain operations, proper MP operators have been
found for the small skin-depth [12], [25], [26] and large
skin-depth approximations [11]. It is worth noting that the
measured data in these two approximate regimes for the
underlying parabolic PDE, is expressed by an elliptic PDE.
This constitutes a potential drawback because it is known that
the achievable spatial resolution increases, when moving from
elliptic (static) to parabolic (quasi-static) to hyperbolic (wave
propagation) phenomena. Therefore, with both small and large
skin depth cases, this approach does not utilize the benefits
of underlying physics of parabolic systems. One approach to
overcome this drawback is to use measurements of a sequence
of the time constants of the source-free response in pulsed
ECT (PECT) [13], [14], [15], [16]. The operator giving the
ordered sequence of the time constants satisfies a MP without
relying on any approximation. Moreover, it is sensitive to
the global spatial distribution of the material properties, with
capabilities to image embedded interior anomalies. This latter

Fig. 1. Schematic of typical eddy current problem: a conducting domain
and the probe made by an array of coils. The matrix of the current-to-
voltage transfer functions at the coils of the system is the measured
data.

feature is not trivial, since ECT is severely limited being a
diffusive phenomenon. The drawback of this approach is that
measuring the sequence of time constants is a highly ill-posed
problem.

The original contribution of this work is to recognize that
the operator mapping the electrical resistivity of a conductor
to the transfer matrix between coils of an array probing the
specimen under testing, satisfies the MP. This MP is very
effective because the transfer function can be easily measured,
in practical PECT experiments. This new operator is expected
to outperform MP for frequency domain ECT at both small or
large skin-depth and MP for PECT.

The article is organized as follows. In Section II, the math-
ematical model for ECT is briefly summarized. In Section III,
the transfer function is introduced and proved to be a MP
operator. In Section IV, the imaging method based on the
MP is implemented. In Section V, numerical examples in a
real-world setting demonstrate the effectiveness of the imaging
method. Finally, in Section VI, the conclusions are drawn.

II. MATHEMATICAL MODEL FOR ECT
The problem considered in this contribution consists of

retrieving the shape of one or several anomalies located in
the interior of a conductive domain �, by means of elec-
tromagnetic fields in the magnetoquasistatic limit, where the
displacement current is negligible [27]. A relevant case of
interest is that of ECT, where the interest is in finding defects
in an otherwise homogeneous material [28], [29].

The conducting domain is assumed to be nonmagnetic,
although the approach can be extended to conductors with
linear magnetic properties. We consider the typical case of
a conductive domain � which is surrounded by an isolat-
ing material and, therefore, the normal component of the
eddy current density J on the surface of the sample � is
vanishing.

The probing system for ECT is made by an array of Nc coils
exterior to the conducting domain (see Fig. 1). The Nc coils of
the array are used both as excitation and pick-up. Time-varying
currents i1(t), . . . , iNc(t) are impressed in these coils, and the
corresponding induced voltages v1(t), . . . , vNc(t), across the
same set of coils, are measured.

The anomalous region V , which is made by one or multiple
defects of arbitrary topology and shape, has a resistivity
different from that of the background, i.e., the conducting
domain �. Retrieving the shape of one or more anomalies
is an inverse obstacle problem.

We highlight that the proposed approach is even more
general, and includes nonhomogeneous materials, as well as
anisotropic conductors.
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A. Mathematical Model
The variational formulation (with respect to the spatial

coordinates) for the eddy current problem is [30]∫
�

J′(r) · ηJ(r, t)dV

= −∂t

∫
�

J′(r) ·Ai [J(·, t)]dV

− ∂t

∫
�

J′(r) · Ac(r, t)dV ∀J′
∈ HL(�) (1)

where J ∈ L2(0, T ; HL(�)), the functional space HL(�) is
defined as

HL(�) =
{
v ∈ H(div; �)|∇ · v = 0, v · n̂ = 0 on ∂�

}
(2)

η is the point-wise resistivity, Ai [·] is an integral operator
acting on the spatial coordinates only

Ai : v(r) ∈ HL(�) →
µ0

4π

∫
�

v(r)
∥r − r′∥

dV ∈ L2(�; R3) (3)

and Ac is the magnetic vector potential due to the assigned
driving currents.

When the driving system is made by a proper set of Nc

filamentary coils, Ac can be expressed as

Ac(r, t) =

Nc∑
k=1

Ac,k(r)ik(t) (4)

where ik(·) is the electrical current prescribed at the kth coil,
Ac,k is the vector potential due to an unitary current flowing
in the kth coil, that is given by

Ac,k(r) =
µ0

4π

∫
γk

dl′

∥r − r′∥
, (5)

γk being the curve representing the path of the kth coil. In this
case, the integral appearing at the right hand side of (1) is∫

�

J′(r) · Ac(r, t)dV =

Nc∑
k=1

[∫
�

J′(r) · Ac,k(r)dV
]

ik(t). (6)

The voltage induced by the eddy currents at the kth coil is

vk =
dφ

eddy
k

dt
(7)

where the linked-flux φ
eddy
k due to the eddy currents is

φ
eddy
k (t) =

∫
γk

µ0

4π

∫
�

J(r, t)
∥r − r′∥

dV · dl′

=

∫
�

J(r, t) · Ac,k(r)dV . (8)

B. Numerical Model
The numerical model (see [31], [32]) is obtained by intro-

ducing the electric vector potential T (J = ∇ × T) to enforce
∇ · J = 0, and expanding T by means of edge-element shape
functions N′

i s (see [33]), i.e.,

T(r, t) =

N∑
i=1

Ti (t)Ni (r) (9)

where N is the number of degrees of freedom (DoFs) in
the discrete model. The tree-cotree decomposition technique
is used to impose both the uniqueness (gauge condition)
of the electric vector potential and the boundary condition
J · n̂ = 0 on ∂� [32], [34], [35].

The Galerkin method applied to (1) yields the linear system(
R +

d
dt

L
)

T(t) = s(t) (10)

where the elements of matrices R and L and vector s are given
by (see [11], [14])

Ri j ≜
∫

�

∇ × Ni · η∇ × N j dV (11)

L i j ≜
µ0

4π

∫
�

∫
�

∇ × Ni (r) · ∇ × N j
(
r′

)
∥r − r′∥

dV dV ′ (12)

si (t) ≜ −
d
dt

∫
�

∇ × Ni (r) · Ac(r, t)dV . (13)

When the driving system is made by a proper set of Nc

coils, as in this article, we have that

s(t) = −M
di(t)

dt
(14)

where i is the Nc × 1 column vector of the coil currents iks.
The voltages due to eddy currents across the set of coils are
given by

v(t) = MT dT(t)
dt

(15)

where Mik =
∫
�

∇ × Ni (r) · Ac,k(r)dV and v is the
Nc × 1 column vector of the coil voltages.

III. MONOTONICITY OF TRANSFER FUNCTION

In this section, we first introduce the concept of transfer
function in this specific setting and, then, we prove that
the operator mapping the material property into the transfer
function satisfies a MP.

A. Definition of Transfer Function
Let us assume the input current is exponentially decaying

after time t = 0, i.e.,

i(t) = i01(t)e−t/τ
+ i01(−t) (16)

where i0 is a vector describing the magnitude of currents
injected in the coil array, τ is a prescribed positive constant,
and 1(t) is the Heaviside step function

1(t) =


0, t < 0
1
2
, t = 0

1, t > 0.

(17)

An illustration of the current waveform is given in Fig. 2.
The solution to (10), given the prescribed source in (16)

consists of two parts, a source-free response and a forced
response

T(t) = Tfree(t) + Tforced(t). (18)
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Fig. 2. Example of the excitation waveform.

The source free response is the solution for the homogeneous
problem, and can be expressed as superposition of natural
modes [14]

Tfree(t) =

N∑
k=1

ckuke−t/τk (19)

where the time constants τ1 ≥ τ2 ≥ · · · ≥ τN > 0 are bounded,
and the uks are the corresponding modes. Time constants and
related modes are an intrinsic property of the test sample,
depending on η and � and not depending on the excitation.
Specifically, the time constants τk and the related modes uk are
the generalized eigenvalues and eigenvectors of the following
problem (see [14]):

Lu = τ̃Ru. (20)

Moreover, it can be proved that when N → +∞ expan-
sion (19) is still valid, the time constants form a bounded
and nonnegative sequence which approaches 0 asymptotically
(see [13]).

The induced voltage corresponding to the solution of the
homogeneous equation is

vfree(t) = MT dTfree(t)
dt

= −

N∑
k=1

ckMT uk
e−t/τk

τk
. (21)

The forced response satisfies(
R +

d
dt

L
)

Tforced(t) = −M
d
dt

i0e−t/τ (22)

and it can be found assuming Tforced(t) = Ae−t/τ . Specifically,
by plugging the previous expression into (22), we found that

A = (τR − L)−1Mi0. (23)

Substituting the expression for Tforced into (15), we have

vforced(t) = Zi0e−t/τ (24)

where

Z = −
1
τ

MT (τR − L)−1M. (25)

Summing up, under the assumption of an exponentially
decaying current i(t) = i0e−t/τ for t > 0, we have that the
output voltage is given by

v(t) = Zi(t) +O
(
e−t/τ1

)
, t > 0. (26)

Matrix Z plays a key role. Specifically, it gives the
input-output relationship for the forced response, under an
exponentially decaying input current, as it appears from (24)
and (26).

Remark 1: Although not required in this work, we highlight
that the computation of coefficients cks in (19) can be easily
carried out by imposing T(0) = 0. Indeed, before the transient
is started at time t = 0, the eddy current density is vanishing,
therefore T(t) = 0 for t < 0. Specifically, we have c =

−U−1A, being c = [c1, . . . , cN ]
T and U = [u1, . . . , uN ].

B. Connection to the Laplace Transform
Matrix Z is the current-to-voltage transfer function at the

coils of the system, evaluated on the real negative axis at p =

−1/τ . In fact, applying the Laplace transform to (10), (14),
and (15) with T(0) = 0, we have

(R + pL)T(p) = −pMi(p) (27)

v(p) = pMT T(p) (28)

where i(p), v(p), and T(p) are the Laplace transforms of i(t),
v(t), and T(t), respectively, evaluated at the complex value p.

From (27) and (28), it turns out that

v(p) = H(p)i(p) (29)

where H(p) = −p2MT (R + pL)−1M is the transfer function.
Therefore, Z = H(p = −1/τ).

As it is well known, this transfer function exists for any
complex p with real part greater that −1/τ1. Therefore,
we have the constraint that τ has to be greater than τ1. From
the physical standpoint, τ > τ1 guarantees that the Zi(t) is the
leading term in (26), for large enough t .

C. Measurement of the Transfer Function
In principle, the step-by-step derivation of Z presented in

Section III-A may be replaced by the direct derivation of the
transfer function presented in Section III-B. Despite this, the
derivation of Section III-A is useful for deriving the expression
for the response as seen in (26) in the time-domain which,
in turn, is required to develop a method to extract the transfer
function Z from measured data.

The measurement of the elements of the transfer func-
tion Z following (26) is, in principle, straightforward. The
elements of Z are the self/mutual impedances relating the
forced response for the output voltage to the input current, for
large t . To estimate Z, one may choose τ > τ1 and measure
the pick-up coil voltages for t large enough so that the source
free response is negligible with respect to the forced response.
This condition is met when t/τ ≫ (τ/τ1 − 1)−1 as it follows
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from (26) written as Zlk = vl(t)/ ik(t) + O(e−(t/τ)((τ/τ1)−1)),
being in = 0 for n ̸= k.

In practice, the noise affects the measurements. Therefore,
the measurement of the Zlks requires a slightly more sophisti-
cated approach. Hereafter, we assume that: 1) the coil currents
are imposed whereas the coil voltages are measured; 2) the
noise level affecting the imposed currents is negligible if
compared to the noise level affecting the measured voltages;
and 3) the noise affecting the measured voltage ṽl is additive,
that is

ṽl(t) = vl(t) + nl(t) (30)

= Zlk ik(t) + nl(t) +O
(
e−t/τ1

)
. (31)

Then, Zlk is estimated from noisy data as the minimizer of
the functional 8(z) =

∫ T2

T1
|ṽl(t) − zik(t)|2dt (least square

approach). In this way, the estimate of Zlk is

Z̃ lk =

∫ T2

T1
ṽl(t)dt∫ T2

T1
ik(t)dt

, l, k = 1, 2, . . . , Nc (32)

where ik(t) = i0e−t/τ and in(t) = 0 for n ̸= k, for t > 0.
In (32), T1 and T2 have to be properly chosen (see Section V).

D. MP for the Transfer Function
Here, we describe the key MP at the foundation of the

imaging method.
Let � ⊂ R3 be a conductive and nonmagnetic domain,

and let ηα and ηβ two electrical conductivities defined in �.
We define Zα and Zβ to be the transfer matrices related to ηα

and ηβ , respectively. Similarly, we define τ α
1 and τ

β

1 to be the
largest time constants for ηα and ηβ , respectively. We have the
following Theorem.

Theorem 1: Let � ⊂ R3 be a conductive and nonmagnetic
domain and let ηα and ηβ be two electrical resistivities defined
in �. It results that

0 < c ≤ ηα ≤ ηβ in � ⇒ Zα ⪯ Zβ (33)

where c is a proper constant, τ > τ α
1 , τ > τ

β

1 , and ηα ≤ ηβ

means that ηα(r) ≤ ηβ(r), for almost everywhere r ∈ � and
Zα ⪯ Zβ means that Zα −Zβ is a negative semidefinite matrix.

Proof: From ηα ≤ ηβ and the definition of matrix R
in (11), it turns out that Rα ⪯ Rβ (see also [11]). Then,
we have that

Rα ⪯ Rβ ⇔ (τRα − L) ⪯ (τRβ − L) (34)

⇔ (τRα − L)−1
⪰ (τRβ − L)−1. (35)

Proposition at the right hand side of (35) implies (⇒) that

MT (τRα − L)−1M ⪰ MT (τRβ − L)−1M

⇔ −
1
τ

MT (τRα − L)−1M ⪯ −
1
τ

MT (τRβ − L)−1M

⇔ Zα ⪯ Zβ (36)

and, therefore, (33) holds.
Remark 2: Equation (35) holds if matrices τRα − L and

τRβ − L are positive definite. This is the case when τ > τα
1

and τ > τ
β

1 , as in the assumptions of Theorem 1.

E. MP for the Inverse Obstacle Problem
MP (33) of Theorem 1 is in a very general form. It can

be conveniently specialized when the electrical resistivity
assumes two different values, η0 > 0 for the background
material and ηi > 0 for an inclusion occupying region V ⊂ �,
and the interest is in reconstructing the shape (inverse obstacle
problem) of V . The first successful specializations of MP to
this inverse obstacle problem can be found in [2].

The spatial distribution of the electrical resistivity in �

relative to the presence of the anomaly V is

ηV (r) =

{
ηi , in V
η0, in �\V .

(37)

Hereafter, we assume that ηi > η0, the typical case in
nondestructive testing of conducting materials. We have the
following theorem.

Theorem 2: Let � ⊂ R3 be a conductive and nonmagnetic
domain and let Dα ⊂ � and Dβ ⊂ � be two domains
representing inclusions in �. It results that

Dα ⊆ Dβ ⊂ � ⇒ Zα ⪯ Zβ (38)

where Zα and Zβ , are the transfer matrices related Dα and
Dβ , and τ > τα

1 , τ > τ
β

1 .
Proof: The proof is trivial by recognizing that Dα ⊆ Dβ

implies that ηDα
≤ ηDβ

and applying Theorem 1.
Remark 3: It is worth noting that the electrical resis-

tivity in the background and/or in the inclusion do not
need to be constant. Theorem 2 and (38) are valid even
if η0 = η0(r) and ηi = ηi (r), as long as η0(r) ≤

ηi (r), for almost everywhere r ∈ �.

IV. NONITERATIVE IMAGING VIA MONOTONICITY

In this section, we shortly summarize the imaging method
for the inverse obstacle problem.

The key idea is that (38) is equivalent to Zα ⪯̸ Zβ ⇒ Dα ⊈
Dβ . Therefore, if Dα is equal to a known set T ⊆ � and Dβ

is equal to the unknown domain V , then condition ZT ⪯̸ ZV

implies that T ⊈ V . In other terms, from the measured data,
it is possible to infer if the prescribed set T is not included
in V . By repeating this test for several/many sets T located in
different positions, it is possible to estimate the shape of V .
We refer to [2], [11], and [14] for details.

A. Imaging Algorithm
MP for the transfer function can be exploited to formulate a

noniterative imaging algorithm. Let {T j }
P
j=1, be a set of small

volumetric domains located in the sample. The T j s are termed
as test elements, selected such that their union covers the
region of interest (ROI), where one is looking for anomalies.

Let V be the unknown anomaly. From (38), if T j ⊆ V , then,
matrix ZT j −ZV is negative semidefinite. Vice versa, if matrix
ZT j − ZV is not negative semidefinite, then, T j is surely not
contained in V . Therefore, we may estimate V as follows:

VU =

⋃
{T j |ZT j ⪯ ZV }. (39)
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In this case, the unknown anomaly is approximated by the
union of test elements that appear to be part of the anomaly,
from the monotonicity test. Another reconstruction formula
can be easily obtained exploiting test elements that appear to
be larger than the unknown anomaly, from the monotonicity
test. In this case, we estimate V as follows:

VL =

⋂
{T j |ZT j ⪰ ZV }. (40)

The reconstruction is sought as intersection of test elements
appearing to contain the unknown anomalous region V .

B. Computational Cost
The proposed method has a very low computational cost,

as it involves only a trivial test on the sign of the eigenvalues
of each difference matrix ZT j − ZV , with dimension equal to
the number of coils of the probing array. In practical systems,
this number does not exceed the hundreds. To retrieve the
estimate of the unknown anomaly V , i.e., VL and/or VU , one
needs to repeat this simple test for all test elements. The total
number of test elements is predefined by the inspector and it
depends on the desired spatial resolution.

Summing up, the computational cost for forming the recon-
struction with either (39) or (40), is equal to O(P N 3

c ), where
P is the total number of test domains and N 3

c comes from
the effort to compute the eigenvalues of an Nc × Nc matrix.
This estimate gives the total computational cost for processing
the measured data ZV . It is linear with respect to P , which is
related to the spatial resolution, making it suitable for real-time
imaging.

The O(P N 3
c ) estimate of the computational cost does not

take into account the time required for getting the test matrices
ZT j s. It is worth noting the test matrices can be either
computed numerically or evaluated experimentally. This task
needs to be done only once. Indeed, the computation of the
test matrices ZT j s does not depend on the measured data to
be processed. Therefore, the test matrices can be precomputed
once for all: they depend on the specific driving system and
the geometries and material properties of the specimen and
the test domains. Moreover, both the numerical computation
or the experimental measurement of the set of test matrices
ZT j s can be carried out in parallel.

C. Noise and Bounds
In practice, due to the presence of the noise, only a noisy

realization Z̃V is available. In line with [8], if an upper bound
δ to the two-norm of the noise matrix N is known, then
∥Z̃V − ZV ∥2 ≤ δ and

Z̃V − δI ≤ ZV ≤ Z̃V + δI. (41)

In this case, the unknown anomaly can be estimated as

VU =

⋃
{T j |ZT j ≤ Z̃V + δI}. (42)

and

VL =

⋂
{T j |ZT j ≥ Z̃V − δI}. (43)

We highlight that (39) and (40) correspond to (42) and (43),
in the absence of noise, i.e., for δ = 0.

Fig. 3. Test specimen and the probing system made by two arrays of
12 coils (left). ROI, together with a defect (red) and the probing system
(right).

It is worth noting that but under proper assumptions (see
[2], [7], [8]) and even in the presence of noise, it results

VL ⊆ V ⊆ VU . (44)

V. APPLICATION CASE

In this section, an application of the theory of defect imag-
ing via MP of transfer function is presented. The experimental
validation is outside the scope of this contribution and will be
part of a future study. In this article, we provide the theoretical
framework, the data processing (imaging) method, and a first
numerical feasibility study to validate it.

In the following, we first describe the problem of the
inspection of a metallic plate via eddy current nondestructive
evaluation (NDE), then, we describe all the steps involved in
the imaging process, providing detailed examples of recon-
structions for different defects. It is worth noting that the
inspection of a metallic plate represents a relevant configu-
ration in eddy current NDE, which is found in many practical
applications.

The specimen under inspection is an Aluminum plate of
12 cm × 14 cm × 3 cm. The objective of the imaging process
is to recover the shape of an unknown defect(s) which may be
present in the specimen. Without loss of generality, we assume
that the crack is confined in a known ROI, which is one
vertical slice of the specimen. The electrical conductivity of
the specimen is 3.7 × 107 S/m, whereas that of the defect
is negligible, relative to the background conductivity. The
geometry of the configuration is shown in Fig. 3. The probing
system consists of two arrays of coils, located on both sides
of the Aluminum plate. The lift-off distance between the coils
and the plate is 1 mm. The total number of coils is 24 (12
per each array) and all coils in the arrays are identical (100
turns, inner diameter of 8 mm and outer diameter of 10 mm).
The design of the probing system in the framework of MP is
nontrivial (see [36], for instance).

Other than the 2 × 12 elements array, arrays of 24 elements
and 12 elements placed on the top of the plate have been
considered for performances comparisons (see Fig. 4).

In order to demonstrate the effectiveness of our imaging
method, results for two families of defects are considered.
The first family consists of three “canonical” cases cover-
ing typical eddy current NDE configurations encountered in
industrial applications. The second family of defects consists
of “complex” geometries designed to define the limitations
of the method, are less common in practical cases. The first
family consists of three different defects, showed in Fig. 5: a
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Fig. 4. Test specimen and the probing system made by one arrays
of 24 coils (left). Test specimen and the probing system made by one
arrays of 12 coils (right).

Fig. 5. Canonical defects to be imaged. Surface breaking defect (left).
Buried defect (center). Multiple defect (right).

Fig. 6. Complex defects to be imaged. Nonconvex defect (left).
Nonsimply connected defect (center). Through hole defect (right).

surface breaking defect, a buried defect, and two interacting
defects. These cases cover different aspects: a surface breaking
defect (Fig. 5, left) is easier to be detected/imaged than a
buried defect (Fig. 5, center) because of the diffusive nature of
quasi-static fields, whereas interacting defects (Fig. 5, right)
pose challenges with regards to the spatial resolution and,
in some imaging methods, they cannot be reconstructed. The
second family (see Fig. 6) consists of three different defects: a
nonconvex defect (Fig. 6, left), a nonsimply connected defect
(Fig. 6, center) and a through hole defect (Fig. 6, right). The
first two defects test the capability of the eddy current NDE
system to resolve details of the shape of the unknown defect,
whereas the third geometry tests the system performances on
defects making the ROI topologically disconnected.

As discussed in Section III-A, to extract the transfer function
Z from time-domain measurements, the excitation current
has to be exponentially decaying. Following [14], the time
constants of the natural response are evaluated by solving
the generalized eigenvalue problem (20). In this example, the
largest time constant is τ1 = 12.6 ms. The time constant τ for
the input current is chosen twice this value, i.e., τ = 25.2 ms.

Fig. 7 provides an illustration of the main waveforms: the
excitation current, the pick-up voltage, and their ratio. The plot
of the waveform of the ratio, which asymptotically gives the
sought element of the transfer function, shows that retrieving
its limiting value in the presence of noise is nontrivial. The
selection of T1 and T2 in (32) is carried out to meet two
conditions: on one hand, T1 and T2 should be large enough
such that t/τ ≫ (τ/τ1 −1)−1 for any t ∈ [T1, T2]; on the other
hand, T1 and T2 should not to be too large, to get the estimate

Fig. 7. Time domain waveforms.

Fig. 8. Noise corrupted measurements at various noise level. η = 10−5

(left), η = 10−4 (middle), and η = 10−3 (right).

of the limiting value overwhelmed by the measurement noise.
After extensive numerical simulations, we found that T1 =

0.126 s and T2 = 0.176 s constitute values that satisfy the
two aforementioned conditions.

The noise signal nl(t) is due to the measurement system.
Usually, in a properly designed and calibrated system, it can be
considered as a Gaussian noise with mean µ = 0 and standard
variation σ proportional to the scale of the signal. In this exam-
ple, we assume σ = ηvl |t=3τ1 , being η a constant parameter
representing the noise level. Fig. 8 shows an example of noisy
measurement, zoomed in between T1 and T2, at various noise
levels η = 10−5, 10−4, and 10−3. This noise level can be
translated into the well-known signal-to-noise ratio, or SNR,
defined as

SNR = 10 log10

∫ T2

T1
v2(t)dt∫ T2

T1
n2(t)dt

.

In this way, we can easily establish a correspondence between
η and the SNR, as shown in Table I.

As imaging method based on the MP of the transfer
function, we use a union-based scheme of (42). The selection
of the geometry (size, shape, and topology) of test elements
is another relevant aspect to achieve accurate reconstructions.
As a rule of thumb, one may choose the size of a test element
of the order of the expected spatial resolution. If the dimension
of a test element is too small, the occurrence of false positives
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TABLE I
NOISE LEVEL η AND THE CORRESPONDING SNR

Fig. 9. Three different types of test elements for the imaging method.
Each test elements generate a family of test elements by horizontal
and/or vertical translations of one single pixel.

increases. On the other hand, if the dimension of a test element
is too large, details of the defect which cannot be represented
via union of test element contained in the unknown defect,
can be missed. Or, even worse, if the defect is smaller than
the test elements, it can go undetected.

The family of test elements needs only to be a covering
of the ROI, i.e., the union of all test elements covers the
ROI. Different test elements may be overlapped. This concept
allows to get a spatial reconstruction for the unknown defect
which is better than the size of the smallest test elements
(see [37]). Also, prior information about the unknown defect
can be accounted for by properly designing the family of
test elements. For instance, if one knows that the unknown
defects are horizontally elongated, it would be proper to select
horizontally elongated test elements. Three different types of
test elements applied in this study are sketched in Fig. 9. Each
test element generates a corresponding family of test elements,
by means of horizontal or vertical translations at pixel level.

The reconstructions of the target defects for the first family
of configurations, the “canonical” configurations of Fig. 5, are
showed in Figs. 10–12. Specifically, Figs. 10–12 showed the
result of a Monte Carlo study, where the imaging process was
repeated on each individual target of Fig. 5, for 1000 different
realizations of the noise process. Final results are presented in
a gray scale proportional to γ = score/1000, where “score”
is the number of times a specific pixel is recognized as part
of the defect. Therefore, γ assumes values between 0 and 1.
A darker pixel (γ closer to 1) is recognized as more likely
to be part of the unknown defect, whereas a lighter pixel (γ
closer to 0) is recognized as more likely to be external to the
unknown defect.

While all three reconstructions are satisfactory, we empha-
size the following.

1) With smaller test elements, more details of the unknown
defect can be represented. However, as the noise level
increases, more errors are expected, as is the case for the
reconstructions obtained with the 2 × 2 test elements.

2) The combination of reconstructions from different fam-
ilies of test elements, is a key for more accurate
reconstructions. For instance, results of Fig. 10 demon-
strate that the union of the reconstructions achieved with
2 × 4 and 4 × 2 test elements are more accurate than

Fig. 10. Reconstruction of defect 1 (surface defect) with various noise
level and test elements.

Fig. 11. Reconstruction of defect 2 (buried defect) with various noise
level and test elements.

Fig. 12. Reconstruction of defect 3 (interacting defects) with various
noise level and test elements.

the reconstructions obtained by means of any individual
family of test elements (either the 2 × 2, or the 2 × 4 or
the 4 × 2 family, in our examples).

3) When the test elements are not compatible with the
unknown defect, i.e., they are too large, the reconstruc-
tion is empty, up to a certain noise level, as shown in
Fig. 12. This result demonstrates that if the test elements
are too large, relative to the defect size, V may be
approximately retrieved only if the noise level increases.
The increase in the noise level can be carried out by
introducing a synthetic noise.

The reconstructions of the target defects for the second
family of configurations, the “complex” configurations of
Fig. 6, are shown in Fig. 13. The reconstructions at different
noise levels (see top row of Fig. 13) show that retrieving
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Fig. 13. Reconstruction of the complex defects with various noise
levels. Test elements are 2 × 2 squares.

Fig. 14. Reconstructions of the six test defects with the array made
by 24 coils placed on the top of the plate. Tests elements are 2 × 2
squares.

a nonconvex defect is challenging and that, as the noise
increases, a convexification of the reconstruction occurs. The
same convexification of the reconstruction occurs in the case
of the nonsimply connected defect in the center row of Fig. 13.
This defect is even more challenging because, the hole appears
only at a larger SNR, not reported here for the sake of
brevity. The third defect, where the ROI is not topologically
connected, is retrieved with reasonable accuracy, at several
SNR values. We found a degradation of the reconstruction
in the innermost parts, at the lower SNR values. This is due
to the diffusive nature of the physics underlying ECT, which
makes the innermost regions of a material very difficult, if not
impossible, to be imaged.

The last set of test examples refer to the impact of the
driving system on the quality of the reconstructions. Specifi-
cally, we tested: 1) reflection/transmission mode versus pure
reflection mode and 2) the impact of the number of elements
of the array. The array of Fig. 3, left, combines reflection
mode between the 12 elements placed on either the top or the
bottom of the plate, and transmission mode between any pair
of the elements placed on the two opposite side of the plate.

Fig. 15. Reconstructions of the six test defects with the array made
by 12 coils placed on the top of the plate. Tests elements are 2 × 2
squares.

When the 24 elements are placed onto the top (bottom) side
of the plate (see Fig. 4, left), the coil-to-coil interaction are of
reflection type only and, as expected, the performances worsen
as seen in Fig. 14. Moreover, the reconstructions worsen
progressively in those voxels at increasing distance from the
array, as expected from the diffusive nature of the underlying
physics. A further degradation appears when one reduces the
number of sensors. Fig. 15 showed the reconstruction obtained
when using only the 12-element array placed on the top of the
plate (see Fig. 4, right). It is worth noting that the worsening
in the quality of the reconstruction due to this reduction of the
number of elements is less relevant than that due to changing
from a reflection/transmission mode to a pure reflection mode,
only.

VI. CONCLUSION

In this article, we developed a MP for the transfer function
in ECT, and demonstrated its effectiveness as basis for an
imaging method.

Our original contributions are threefold. First, we derived a
new operator satisfying the MP, for time-domain eddy current
problems. This operator maps the electrical resistivity into
a measurable quantity, the transfer function of an array of
coils, evaluated on a segment of the real axis. Hence, this
operator can be applied to image inhomogeneities in the spatial
distribution of the electrical resistivity, via the MP. Second,
we proposed a practical approach to measure the transfer
function, highlighting all the details to be dealt with. Third,
we presented the implementation of the theory in a relevant
NDE setup, to estimate the shape of unknown defects in a
metal plate. We took advantage of this application case to
highlight key features of the method, i.e., the tendency toward
convexification of the reconstruction, and the key role of
transmission measurements.



SU et al.: MONOTONICITY OF THE TRANSFER FUNCTION FOR ECT 29165

Future work of this methodology will include the realization
of a prototypical system. With the merit of being nondestruc-
tive and nonionizing, our imaging method is an ideal candidate
for medical imaging problems, such as imaging of tumors,
blood clots, etc.
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