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Abstract—The diagnostic accuracy (ACC) of otitis media
with effusion (OME) depends on a clinician’s experience
and evaluation tools. Various assessment technologies have
been applied to support clinical diagnosis, such as digital
otoscopy and tympanometry. However, several challenges
and issues limit the capabilities and usability of these assess-
ment technologies, including high costs and needing to rely
on specialists’ interpretations. In this work, we designed
and validated OME detection using a machine learning (ML)
model and in-ear microphones. Two off-the-shelf micro-
phones were placed in the bilateral ear canals to record the
voice when participants pronounced five 3-s sustained vowel
sounds. Various signal processing and ML techniques were
applied to the recordings, and the magnitude spectrograms
of the vowel sound recording from in-ear microphones can
distinguish ears with OME from healthy ears according to the
differences in high-frequency response. Our results using
in-ear microphones and ML algorithms had an ACC of 80.65% in detecting OME, similar to that of typical OME detection
approaches. This work demonstrates the potential to provide healthcare practitioners with a simple, safe, and more
reliable expert-level diagnostic tool.

Index Terms— In-ear microphones, machine learning (ML), otitis media with effusion (OME).
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I. INTRODUCTION

OTITIS media (OM) is a common disease and infection of
the middle ear in children [1]. A previous report showed

that the annual medical cost of OM treatment was approxi-
mately $4 billion in the United States [2]. OM with effusion
(OME) is a specific type of OM characterized by middle ear
effusion but lacks the signs of acute infection [3]. Persistent
OME for three months or more, also known as chronic OME
[4], may lead to hearing loss, sleep disruption, and balance
issues [3], [5]. Additionally, children may have decreased
learning efficiency, signs of inattention, and delayed speech
and developmental skills [4], [6], [7]. Chronic OME without
spontaneous resolution may also cause eardrum structural
damage [4]. A typical examination tool is pneumatic otoscopy,
which is used to visually assess the tympanic membrane
and middle ear. However, a clinician using otoscopy has an
accuracy (ACC) of 50%–70% for diagnosing OM [3], [8], [9],
[10]. In particular, OME is often underdiagnosed in clinical
environments [3].

Various assessment technologies have been applied to
support clinical diagnosis, including image-based and
acoustic-based approaches. Telescopy with video cameras,
an image-based approach, is the most common assistive
method in clinical environments [11], [12], [13], [14]. It can
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enhance the diagnostic ACC [15], but it still requires profes-
sional interpretation [16], and the high-cost video system is not
affordable for all primary clinics. Tympanometry, the acoustic-
based approach, is a dynamic documentation of middle ear
impedance, using increased and decreased air pressure in the
external auditory canal and then measuring the associated
reflected response recorded by a microphone [17]. However,
an airtight seal is required between the probe and the ear canal.
This may cause manual errors or bias and decrease usability
in clinical settings. Moreover, tympanometry cannot be used
alone as a diagnostic tool. For example, the result will differ
if cerumen or a perforation is present. In summary, several
challenges and issues limit the capabilities and usability of
these assessment technologies. First, OM assessment tools
rely on specialists’ interpretation. The diagnostic ACC of
otolaryngologists, pediatricians, and general practitioners is
different and depends on their experience and skills. The
second challenge is that the high-cost equipment decreases the
penetration rate and availability in primary clinics: cost can
be the main barrier for primary clinics to use tympanometry
in diagnosis [18]. For example, only 7%–33% of caregivers
have pneumatic otoscopy [3]. Therefore, it is essential to
develop low-cost, easy-to-use, and objective approaches that
help primary clinics detect and identify OM.

In recent years, machine learning (ML) techniques have
been widely applied to support clinical assessment [19], [20]
and objectively classify the status of the middle ear. Clinically,
ML can enhance current predictions and be a novel tool for
helping clinicians assess diseases [21], [22], [23].

The primary aim of this study is to propose an OME
detection system using in-ear microphones and ML techniques
to assist clinicians in diagnoses. The system records the voices
of the user using in-ear microphones, extracting acoustic
features with short-time Fourier transform (STFT) and esti-
mating the health status of the middle ear with ML classifiers
and weighted-threshold postprocessing. The developed low-
cost, easy-to-use, and objective approaches have the potential
to help clinicians detect and identify OME in home-based
environments.

In summary, the main contributions of this work are as
follows.

1) The proposed system using in-ear microphones directly
records the voices of the user transmitted through the middle
ear, in contrast to typical acoustic-based assessment tools,
which require additional speakers to generate a specific tone
for the recording and analysis.

2) Off-the-shelf microphones are used for voice recording
instead of customized designs, which decreases the cost of the
equipment and lowers the barrier to accessing OME screening
tools for caregivers and physicians.

3) This work explores the effectiveness of various ML
classification models in automatic OME detection, including
support vector machine (SVM), Gaussian Naive Bayes (GNB),
adaptive boosting (AdaBoost), random forest (RF), and con-
volutional neural networks (CNNs).

The rest of this article is organized as follows: the related
works are presented in Section II. In Section III, we intro-
duce the experimental setups and the processes of the OME

detection systems. Section IV presents the experimental results
using the proposed approach. The performance analysis, lim-
itations, and futures are discussed in Section V. Section VI
concludes this article.

II. RELATED WORKS

A. OM Detection Based on Images
Several assessments based on image detection have been

proposed for OM. Optical coherence tomography, a cross-
sectional imaging technique, combined with ML methods may
provide a promising platform with more than 90% ACC [24].
Viscaino et al. [25] successfully applied ML approaches for
external and middle ear assessment with computer vision (dig-
ital otoscopy). Their experimental results show that diagnosing
external and middle ear conditions using an SVM can achieve
93.9% ACC. Crowson et al. [26] reported that they employed
ML to assist with the diagnosis of OM using tympanic images
obtained from children. The proposed model achieved an ACC
of 83.8%. Kashani et al. [27] integrated shortwave infrared into
an otoscope along with an ML-based model. The RF method
yielded the highest ACC of 90.3%. In general, the ACC of
image-based detection with ML has satisfactory results. The
ACC of ML approaches for diagnosing middle ear disorders
using tympanic membrane images has ranged from 76.00% to
98.26% [28]. However, these image-based approaches require
high-cost equipment.

B. OM Detection Based on Acoustics
Compared to image-based detection of OME, research on

acoustics-based OME detection is less common. Chan et al.
[29] developed an acoustic-based OME classification sys-
tem using smartphones and logistic regression classifiers.
A funnel was designed and placed between the smartphone’s
speaker/microphone and the participant’s ear canal, and the
raw acoustic waveform was obtained from the ear canal
after chirps were played into an ear, with or without mid-
dle ear fluid. The system used to assess eardrum mobility
can achieve 85% sensitivity (SEN) and 82% specificity
(SPE). Binol et al. [30] combined otoscopy imaging and
tympanogram to detect OME automatically. The proposed
decision fusion method using the RF classifier has an ACC of
84.9%. Grais et al. [31] employed ML techniques to examine
the differences between normal ears and those with OME
using wideband tympanometry analysis. They used an RF
model to create class activation maps for interpreting diag-
nostic decisions. These works demonstrated the superiority
of ML models in supporting OME assessment in medical
practice.

III. MATERIALS AND METHODS

The framework of the proposed OME detection systems is
shown in Fig. 1. Initially, several signal preprocessing and
feature extraction approaches were applied to the recorded
vowel sounds, including Z score normalization and STFT.
The OME detection models were trained and developed with
various ML techniques and training vowel sounds. Then, in the
testing stage, the testing data were input into the trained ML
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Fig. 1. Framework of the proposed OME detection systems.

TABLE I
PATIENT DEMOGRAPHICS

models, and preliminary results were obtained. Finally, the
weighted threshold function of postprocessing was employed
to make the final OME decision.

A. Participants and Experimental Protocol
This cross-sectional study was completed in a tertiary and

academic medical center, and data were collected between
November 2020 and August 2021. Adults above 20 years of
age who were diagnosed with unilateral or bilateral OME
at outpatient departments were enrolled. All patients under-
went pure tone audiometry, tympanometry, video telescopy,
and nasopharyngoscopy. Patients with a history of head and
neck cancer or middle ear surgery were excluded. The study
was conducted under a protocol approved by the Taipei
Veterans General Hospital Review Boards (IRB-TPEVGH
No. 2021-02-011BC). All participants provided written
informed consent.

Thirty-one adults diagnosed with OME [20 men and
11 women with a mean age of 60 years (range 26–79 years)]
participated in this study. Twenty-five patients had unilateral
OME (15 right ear and ten left ear), and six had bilateral OME.
In summary, there were 25 healthy ears and 37 ears with OME.
Of the 37 ears with OME, 27 had type B tympanograms
and ten had type C tympanograms, with a mean air-bone
gap of 25.81-dB hearing level (HL) (SD 13.26 dB) in pure
tone audiograms (see Appendix). The patient demographics
are summarized in Table I.

Fig. 2. Placements of the microphones in (a) right ear canal and (b) left
ear canal. (c) Hardware setup for voice recording.

B. Hardware and Data Recording
Each participant was invited to pronounce five 3-s sustained

vowel sounds, namely, /e:/, /i:/, /aj/, /o:/, and /a:/. Two off-
the-shelf microphones (Sony Electronic Inc., Tokyo, Japan)
sampled at 44.1 kHz were placed at the ear canal entrance
to record the voice in the ears. Roland OCTA-CAPTURE
(Roland Corporation Shizuoka, Japan) was applied to syn-
chronize the two microphone signals and transmit the data
to a laptop via a USB connection. The participants sat in a
quiet office room with an average noise level of 30 dBA and
were asked to wear earmuffs (3M1 PELTOR1 X3A) to reduce
the environmental noise from the recordings and ensure the
acoustic signal quality. An illustration of the hardware and
microphone placements is shown in Fig. 2.

C. Data Preprocessing and Acoustic Feature Extraction
A series of data processing steps were employed to obtain

satisfactory acoustic features for OME detection. In the data
preprocessing, the raw signals were resampled first at 16 kHz
(the frequency of a human speaking voice is typically up to
4 kHz). Then, the researchers labeled the starting and ending
points for each vowel sound recording. Finally, because of the
unstable voice quality, we removed the first and last 0.70 s
from the recorded waveform.

This study applied STFT to extract acoustic features
(Fig. 3). The STFT has been widely used in many speech
processing applications [32]. For each utterance in the U
recording set, the framing technique was first applied to split
the input waveform into a series of temporal frames, where the
frame size and the hop length for the framing process were
64 and 32 ms, respectively.

In addition, the Hamming window function was used to
smooth the frame boundary. Then, a Fourier transform was
applied to provide magnitude spectra for each temporal frame
signal. Next, we collected and stacked all the magnitude spec-
tra to generate the acoustic features. Finally, we normalized

1Trademarked.
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Fig. 3. Illustration of STFT to the raw waveform.

this spectrogram to zero mean and identity variance to enhance
the energy in the high-frequency range.

D. ML-Based OME Detection
ML classification models were applied to acoustic feature

vectors to detect OME. ML-based OME detection involves
two stages: training and testing stages. In the training stage,
the training feature set φtrain was composed of Ntrain pairs of
a feature frame vector Ftrain and the associated OEM label
ctrain, which was a binary value. Then, a classification model
H was leveraged to predict the OEM label ĉtrain with respect
to the input Ftrain, i.e., ĉtrain= H{Ftrain}. The error between the
predicted ĉtrain and ctrain was then minimized to optimize H.
In the testing stage, a testing acoustic feature was placed at
the input side of H, and the classification output was obtained.

In this study, five popular ML classification models were
applied to acoustic feature vectors to detect OME: SVM, GNB,
AdaBoost, RF, and CNN classification models. These models
have been widely used in acoustic-based medical applications,
achieving reliable performance [33], [34]. A brief introduction
and the important parameters of the applied models are as
follows.

SVM: SVM is a general classification method in many
healthcare and medical diagnosis applications [33], [35]. The
effectiveness and usability of SVM have been validated in
previous studies [36]. The main objective of SVM is to observe
a hyperplane in the feature space to make decisions. In the
training stage, the hyperplane is optimized with the maximum
margin between two classes. The trained SVM classifies the
testing data according to the decision hyperplane. This work
applied a linear kernel function and Bayesian optimization to
train the SVM model.

GNB: GNB is a typical identification approach based on the
Bayes theorem [37], which assumes that the input features are
independent. In the training stage, GNB calculates the mean
and the standard deviation of the training data and applies them
to the conditional likelihood function. GNB observes the input
feature with the largest posterior probability and outputs the
class label.

AdaBoost: AdaBoost [38] aims to build an ensemble of
weak classifiers and apply them to final decision making.
During the training, each weak classifier literately fits the
training data in a specific feature domain to minimize weighted
errors. Then, more weights are updated for the classifier that
has a lower false prediction rate. The final classification model
is a linear combination of the trained weak classifiers. In this
study, we investigated the number of weak classifiers in a range
of 80–120 with a step of 10. The best detection performance
with 100 weak classifiers is shown in the final results.

RF: RF [39] is an ensemble learning approach for classifi-
cation. This approach trains k decision trees with k different
training subsets, where the training subset data are randomly
sampled from the training set by the bootstrap method. The
RF classification model is then constructed based on these
trained k decision trees. In the testing stage, the testing data
are input into each decision tree, and the final classification
output is generated by the majority voting of k decision trees.
In this work, a range of k from 30 to 60 with a step of 10 was
tested, and the best performance using k= 50 is presented in
the results.

CNN: CNN is a common type of neural network that
has been applied in different applications, including image
recognition [40] and audio processing [41]. The CNN-based
classification model mainly contains 1-D convolution, batch
normalization, dropout, rectified linear unit (ReLU), max
pooling, full connection, and softmax layers. In the begin-
ning, we apply two CNN blocks to process the inputs,
where a CNN block is composed of a 1-D convolution
layer with a kernel number of 32, kernel size of 30, stride
size of 1, batch normalization, ReLU, max pooling with
a size of 2, and dropout (p = 0.2). After the process
of the CNN blocks, we employ the flattening process to
the feature maps and connect to one full connection with
32 filters and softmax layers for the detection. The softmax
layer calculates the possibility of the target classes. Finally,
the classification model outputs the class with the highest
probability.

The Adam optimizer [42] is utilized during the training pro-
cess. The loss function is cross-entropy. The learning weight
and weight decay are 0.0001 and 0.000001, respectively.
A total of 40 epochs are applied for model training, and
the batch size is 32. The CNN model is implemented on
Python 3.9, PyTorch 1.9.1, and CUDA 1.1.1.

E. Postprocessing
Weighted threshold postprocessing was applied to the out-

puts of the ML classifiers for the final OME decision.
An efficient postprocessing mechanism can enhance perfor-
mance in the field of computer-aided diagnostic systems,
such as for the detection of Parkinson’s disease [43] and
lung function diagnosis [44]. The weighted threshold function
0 was achieved via the following steps: 1) the number of
positive labels in an utterance was represented as the score
Scp and 2) the threshold β, which varied from 5 to 40, was
compared with Scp to assess the positive OME hypothesis of
Scp ≥ β.
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Fig. 4. Example of otoscopy and the magnitude spectrograms of vowel sound recording. A participant with right side OME pronounced a 3-s
sustained vowel sound /a:/. (a) Left healthy ear without middle ear effusion. The tympanic membrane is translucent with a light reflex on otoscopic
examination. (b) Right ear with OME. The noninfected fluid accumulates in the middle ear space. The tympanic membrane is retracted with an
amber appearance. (c) Magnitude spectrogram of the left healthy ear. High-frequency responses to voice are retained from 2000 to 10 000 Hz.
(d) Magnitude spectrogram of the right ear with OME. High-frequency features of sounds are eliminated over 2000 Hz.

F. Performance Evaluation
Several evaluation metrics were used to evaluate the per-

formance of the proposed OME detection systems, such as
ACC, SEN, precision (PRE), and SPE. The definitions of these
metrics are as follows:

ACC =
TP + TN

TP + TN + FP + FN
(1)

SEN =
TP

TP + FN
(2)

PRE =
TP

TP + FP
(3)

SPE =
TN

TN + FP
(4)

where TP and TN represent that the number of OME and
the healthy ears are correctly identified, while FP and FN
determine the misidentification number of OME and healthy
ears.

This study applied the leave-one-subject-out (LOSO) cross-
validation approach to validate the effectiveness of the pro-
posed OME detection approach. LOSO divided all of the
data into κ subsets based on κ subjects involved in the
experiments. Then, one subset and the remaining κ−1 subsets
were used to test and train the OME detection model. This
validation approach was repeated κ times until all subsets
were tested. Finally, the testing results were averaged over
all folds/subjects.

The proposed OME detection approach was implemented
in the Python environment. The data preprocessing [e.g.,
fast Fourier transform (FFT) and feature extraction] and ML

models were realized with librosa 0.8.0 music and audio
analysis package [45] and scikit-learn 0.24.1 ML toolkit [46].

IV. EXPERIMENTAL RESULTS

The magnitude spectrograms of the vowel sound record-
ing from a unilateral OME patient are shown in Fig. 4.
The results showed that the frequency response >2 kHz
was lost in OME patients, while it was maintained in
healthy ears. Thus, the voices recorded from the healthy ear
retained most high-frequency responses to voice, as shown in
Fig. 4(a) and (c).

The high-frequency features of sounds were eliminated in
the ear with OME, as shown in Fig. 4(b) and (d), because
effusion in the middle ear space had a considerable impact
on voice transmission, which led to the loss of consonant
components. Such distinguished differences in high-frequency
regions enabled the proposed system to distinguish ears with
OME from healthy ears.

The ACC, SEN, PRE, and SPE of the proposed OME
detection approach using ML models and vowel recordings
with different β values are presented in Fig. 5. In general,
most ML models, including SVM, AdaBoost, RF, and CNN,
using β from 10 to 28 achieved the best ACC, and their
SEN increased when β was greater than 5. In contrast, their
PRE and SPE decreased notably with β≥ 5, particularly for
SVM and AdaBoost. For the GNB model, the ACC and SEN
improved when β was larger than 20.

Table II presents the best ACC with the corresponding
β values of the ML models using all vowel sounds and
five single vowel sounds (/e:/, /i:/, /aj/, /o:/, and /a:/). The
proposed OME detection approach using the CNN model with
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Fig. 5. Performance analysis of ML classification versus different threshold weights (β) in (a) ACC, (b) SEN, (c) PRE, and (d) SPE.

β = 28 achieved the best ACC of 80.65%, while those
achieved using typical ML models were lower than 75.00%.
Similarly, the CNN-based OME detection system achieved the
best SPE of 87.8%. The RF model with β = 13 achieved
the best SEN of 94.59% but the worst SPE of 16.32%.
Additionally, the detection system achieved the best ACC of
77.42% with the single vowels /i:/. For the OME detection
systems using single vowels, the CNN model had the best
performance. Overall, most ML models using single vowel
sounds had high SEN and moderate PRE, while their SPE
was relatively low.

V. DISCUSSION

The accurate diagnosis of OM is important; however, the
diagnostic ACC depends on the experience of the clinician
and evaluation tools. Otolaryngologists had a better correct
diagnostic rate than pediatricians and general practitioners
[16]. The correct diagnosis rates of video-presented OME,
acute OM, and retracted tympanic membrane among otolaryn-
gologists, pediatricians, and general practitioners in the US
were 74%, 51%, and 46%, respectively [16]. Pichichero and
Poole [10] evaluated 188 otolaryngologists and 514 pedia-
tricians for their diagnostic ACC of OM, and the correct
diagnosis rates by otolaryngologists and pediatricians were
73% and 50%, respectively. Jones and Kaleida [8] reported that
pneumatic otoscopy ACC for OME was 76% and that static
otoscopy ACC for OME was 61% in 34 pediatric residents,
four pediatricians, and two pediatric otolaryngologists. Both
pneumatic otoscopy and video-telescopy require professional
interpretation. Our results using in-ear microphones and ML
algorithms had an ACC of 80.65% in detecting OME, similar
to that of typical OME otoscopy detection approaches. Such
detection ACC shows the potential of the proposed approach
in clinical practice.

Tympanometry is a rapid and simple examination to assess
the middle ear condition. According to the American Academy

of Otolaryngology-Head and Neck Surgery clinical practice
guidelines, tympanometry should be performed when the
diagnosis of OME is uncertain after performing pneumatic
otoscopy [3]. However, the equipment for tympanometry is
relatively expensive and requires a referral to a clinician.
Our system records the voices of the user using commercial
in-ear microphones, extracts acoustic features with STFT,
and estimates the health status of the middle ear with ML
classifiers and rule-based postprocessing. This low-cost and
easy-to-use OME detection system is usable and beneficial
for nonmedical caregivers and primary clinicians.

To support the clinical assessment of OME, this study
proposed an OME detection system using in-ear microphones
and ML models. Our analysis showed that the proposed OME
detection system using an ensemble learning approach could
achieve better detection performance than that using a single
strong classification model. For example, the system using
the CNN model and all vowel sounds achieved the best ACC
of 80.65%. Similar trends showed that the CNN model was
suitable for the system using single vowel records. Several
previous studies have shown the superiority of ensemble
learning methods for classification problems [47], [48]. The
effectiveness of ensemble models has been validated in dif-
ferent applications [49], [50]. Additionally, we demonstrated
that the weighted threshold function can improve the detection
performance since the detection system is sensitive to OME
diseases and avoids misclassifying healthy ears as OME.
Suitable weight tuning can enhance the correct rejection ability
of the system.

To the best of our knowledge, this is the first work to
propose an OME detection system using in-ear microphones
and ML techniques to support clinical diagnosis and assess-
ment. Previous works have demonstrated the feasibility of ML
models for acoustic-based OME detection [17], [51], [52],
[53], [54]. However, they had to use both microphones and
speakers for disease detection. In contrast to previous works,
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TABLE II
BEST DETECTION PERFORMANCE OF DIFFERENT ML MODELS

the proposed approach required microphones only for voice
recording and analysis. Furthermore, similar to previous work
[29], this study preliminarily validated the feasibility of off-
the-shelf microphones in assessing the health status of the
middle ear. These advantages and experimental results show
that the proposed detection system has the potential to provide
a low-cost, easy-to-use, and user-friendly screening tool for
clinical evaluation outside of the examination room.

Currently, the proposed OME detection system is a proof-
of-concept prototype and still has several limitations. First,
individual differences in pronunciation, sex, and age caused
high variance and diversity in the voice recording. For exam-
ple, the fundamental frequency was different for females
and males. This challenge limits the OME detection per-
formance. Second, previous works have demonstrated that
different design and environmental factors affect system relia-
bility, including background noise and wearing position [55].
Furthermore, it is necessary to validate the intra- and interrater
reliability for OME detection. Finally, the proposed system did
not classify the types of middle ear fluid, such as purulent,

serous, and mucoid. These detailed disease types would sup-
port clinical professionals for more robust assessment and
evaluation.

In future work, we will aim to recruit more patients from
different age groups to validate the feasibility of the proposed
detection systems. More types of OMs (e.g., acute otitis
media and chronic otitis media) and their subtypes will be
involved in developing a robust disease detection system.
Various acoustic feature extraction techniques (e.g., wavelet
transform [56] and empirical mode decomposition [57]) and
advanced deep learning techniques (e.g., transformers [58] and
self-supervised learning [59]) will be applied to improve the
detection ACC and address the technical issues of individual
differences. Furthermore, we plan to explore the impacts of
extrinsic factors on the system performance, including wearing
positions, background noise, and microphone type.

Telehealth increased during the coronavirus disease 2019
(COVID-19) pandemic, with many clinicians using video
or telephone visits to provide medical consultation and to
reduce the risk of exposure to the virus [60], [61], [62].
Our ultimate goal is to develop a smartphone-based OME
detection system using derived algorithms and models. The
use of smartphone-based telemedicine can provide healthcare
practitioners with a simple, safe, and reliable tool to detect
middle ear disease.

VI. CONCLUSION

To develop OME diagnostic tools for caregivers and primary
clinicians in home/clinical environments, this study proposes
a low-cost, easy-to-use, and reliable OME detection system
using off-the-shelf microphones and ML models. The experi-
mental results show that the proposed OME detection system
can achieve 80.65% ACC, 66.67% SEN, 73.68% PRE, and
87.8% SPE. We demonstrate that using in-ear microphones
is sufficient to support OME detection, and it can help to
develop telemedicine in pandemic and postpandemic health-
care delivery.

APPENDIX

1) Tympanometry with a 226-Hz stimulus is a standard
audiological procedure to evaluate middle ear function
[63]. In the absence of any objects in the ear canal and
with an intact eardrum, there are three main types of
tympanograms: types A–C [64].

a) A normal, or type A, tympanogram typically dis-
plays a peak in compliance that falls within the
range of 0–100 dPa in the ear canal. Both the
location and height of this peak must fall within
the normal range on the pressure dimension for
the recording to be considered normal.

b) Type B tympanogram exhibits a flat pattern with
little or no apparent change in compliance as
pressure is applied to the ear canal, as opposed
to a distinct peak in compliance. This pattern is
frequently indicative of fluid within the middle ear
space, known as OM.

c) Type C tympanogram exhibits a compliance peak
similar to that of type A recordings, except that
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the peak falls within the negative pressure region
beyond approximately 100 dPa. This pattern is
typically observed in patients with eustachian tube
dysfunction and insufficient ventilation of the mid-
dle ear space. It often precedes the acquisition of
a type B tympanogram during the development
of OM.

2) The mean of pure tone frequencies refers to the average
of hearing threshold levels at a specific set of frequen-
cies, typically including 500, 1000, 2000, and 4000 Hz.
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