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Machine-Learning-Based Diabetes Prediction
Using Multisensor Data
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Abstract—Diabetes is one such chronic disease that,
if undetected, can result in several adverse symptoms or
diseases. It requires continuous and active monitoring,
for example, by using various smartphone sensors, wear-
able/smart watches, etc. These devices are minimally invasive
in nature and can also track various physiological signals,
which are important for the prediction of diabetes. Machine-
learning algorithms and artificial intelligence are some of the most important tools used for the prediction/detection
of diabetes using different types of physiological signals. In this study, we have focused on using multiple sensors
such as glucose, electrocardiogram (ECG), accelerometer (ACC), and breathing sensors for classifying patients with
diabetes disease. We analyzed whether a single sensor or multiple sensors can predict diabetes well. We identified
various time-domain and interval-based features that are used for predicting diabetes and also the optimal window size
for the feature calculation. We found that a multisensor combination using glucose, ECG, and ACC sensors gives the
highest prediction accuracy of 98.2% with the extreme gradient boosting (XGBoost) algorithm. Moreover, multisensor
prediction shows nearly 4%–5% increase in the diabetes prediction rates as compared to single sensors. We observed
that breathing-sensor-related data have very little influence on the prediction of diabetes. We also used the score-fit-times
curve as one of the metrics for the evaluation of models. From the performance curves, we observed that three-sensor
combinations using glucose, ECG, and ACC converge faster as compared to a four-sensor combination while achieving
with same accuracy.

Index Terms— Accelerometer (ACC) sensor, breathing sensor, complexity evaluation, diabetes, electrocardiogram
(ECG) sensor, ensemble algorithm, extreme gradient boosting (XGBoost), feature fusion, glucose sensors.

I. INTRODUCTION

D IABETES is considered a chronic disorder or chronic
disease that is identified by abnormal blood glucose

levels caused by ineffective utilization or insufficient pro-
duction of insulin [1]. This is considered chronic in nature
because this disease requires active monitoring and, if not
monitored, this can even develop into more complex diseases
[2]. Similarly, uncontrolled diabetes results in long-term dam-
age to several parts of the body such as kidneys, eyes, heart,
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blood vessels, etc., and it can even cause stroke, hypertension,
and cardiovascular disease [3]. Diabetes is often classified
into type 1 diabetes mellitus, type 2 diabetes mellitus, and
gestational diabetes [4]. Type 2 diabetes mellitus requires mon-
itoring of the daily activity of the person as this type of disease
occurs mostly because of the changes in lifestyle/activity,
whereas type 1 diabetes mellitus is insulin-dependent diabetes
and occurs mainly because of the variations in the insulin lev-
els. Type 2 diabetes is often linked with low physical activity
levels and an increasing age. So, there is a need for continuous
monitoring to avoid the complications due to diabetes.

With the advent of smart-computing sensors, such as
smartwatches, smartphones, and other wearable, along with
emerging healthcare solutions, it has become comparatively
easier to monitor continuously and remotely the health of
patients either in-home or hospital environments. Embedded
sensors in these devices are capable of monitoring various
physiological signals, such as electrocardiogram (ECG) or
accelerometer (ACC) data. Results in [2] have shown that
there are several sensors that have been used to monitor
various physiological signals such as ACCs, gyroscopes, mag-
netometers, ECG, electroencephalogram (EEG), glucometers,
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etc. Hyperglycemia or increased glucose levels can affect
various components of ECG such as QT intervals [5]. So,
ECG sensors are considered one of the key sensors used for
hyperglycemia detection and continuous glucose monitoring.
Similarly, studies have also used ACC sensors [6] for tracking
the daily activity of a person as daily activity is one of the
important biomarkers for continuous monitoring of diabetes.
However, very few studies have used breath-related data for
the monitoring of diabetes. Studies in [7] have used some
biomarkers that are related to blood glucose levels but they are
detected using various chemical sensors. Sha et al. [8] have
used breath analysis methods to detect diabetic ketoacidosis.

To improve the quality of care, various researches has
been conducted including the analysis of physiological signals,
obtained from various sensors, using artificial intelligence
and machine learning. Systematic literature study in [2] has
identified various machine learning algorithms that have been
used so far for monitoring various types of chronic dis-
eases such as diabetes, arrhythmia, Parkinson’s, etc. Various
types of supervised and unsupervised algorithms have been
used in these studies such as logistic regression (Logreg),
decision trees, support vector machines (SVCs), k-nearest
neighbor, ensemble algorithms such as extreme gradient
boosting (XGBoost), adaptive boosting (AdaBoost), gradi-
ent boosting, neural network algorithms such as multilayer
perceptrons (MLPs), deep neural network, long short-term
memory network, convolutional neural network for image
analysis. Table I shows various studies that have predicted
diabetes using machine learning methods, sensor/datasets used
by such studies, algorithms used for diabetes prediction, and
algorithm’s performance.

Previous studies that have used machine learning algorithms
for diabetes detection and prediction have either used datasets
such as PIMA,1 or they have used single sensors such as
either glucose values, ECG sensors, or ACCs. However, very
limited studies have used multiple sensors for predicting
diabetes diseases as mentioned in Table I [5], [10], [11].
One of the novelty in this study is its primary focus on
using data from multiple sensors for diabetes prediction. The
availability of data from multiple sensors helps to identify
several patterns, correlations, and relationships between these
sensors. For instance, ECG, and ACC sensor data can affect
the glucose level in patients so the impact of variations in
these signals on glucose levels can also affect the prediction
rates of diabetes disease. Moreover, long-term diabetes can
result in other cardiovascular diseases, breathing problems,
or reduced activity levels so using multisensor data it is also
possible to monitor the chances of such diseases. Additional
novelty in this study comes from obtaining the optimal window
size for individual sensor data for diabetes prediction and also
identifying what sensors and their combinations can result in
the best accuracy for predicting diabetes diseases.

II. RESEARCH QUESTIONS

The objective of this research is to predict diabetes using
data from different types of wearable/sensors such as glucose,

1https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

TABLE I
STUDIES USING MACHINE LEARNING ALGORITHM

FOR DIABETES PREDICTION

ECG, ACC, and breathing sensors. This study aims to compare
the results of diabetes prediction from individual sensor data
with the feature-fused combined sensor data. Moreover, this
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study also involves extracting the features from multiple
sensors such as ECG sensors, ACC, and breathing sensors and
determining the window size that can give the highest diabetes
prediction accuracy. The following are research questions
explored by this study.

1) What kind of features can be extracted from ECG, ACC,
and breathing sensors that can be used for diabetes
prediction, and what could be the optimal window size
for feature extraction?

2) What are the prediction rates when individual sensors
are considered and when multiple sensor combinations
are considered?

3) Which type of sensors single or multisensor combination
gives the highest prediction accuracy for diabetes?

4) In terms of complexity, which model single sensor or
multisensor gives better results?

5) Which sensors are better for predicting diabetes in single
and multisensor scenarios?

III. DATASET DESCRIPTION

This section describes the dataset used for the prediction of
diabetes using the data from multiple sensors. The D1NAMO
dataset used in this article is described in [13]. This dataset
consists of four types of sensor data such as ECG sensor data,
breathing sensor data, ACC signals, and glucose measure-
ments. The dataset also consists of food-annotated pictures but
in the scope of this study, the data from four sensors are only
considered. This multimodal dataset is acquired on patients
in non-clinical conditions using the Zephyr BioHarness three
wearable devices.

This multimodal dataset includes data from 29 patients, out
of which 20 are healthy people and 9 are diabetes patients.
The dataset consists of continuous values for ECG, ACC,
and breathing signals for four days for both healthy and
diabetic groups. Glucose measurements for diabetic patients
were recorded at an interval ranging from 1 to 5 min and for
non-diabetic patients data was recorded at irregular intervals
(as glucose levels did not vary much). The frequency of
recording the ECG, ACC, and breathing waveform was 250,
100, and 25 Hz, respectively. This dataset also included
other measurements such as heart rate (HR), breath rate,
skin temperature, and HR variability (HRV) but in this study,
we considered the waveform data from four sensors and
glucose measurements data.

Several datasets have been released for the detection and
prediction of diabetes such as MIMIC II [14] dataset available
in PhysioNet2 platform, datasets from University of California
Irvine (UCI) machine learning repositories [15]. Moreover,
other datasets that also contained data from multiple sensors
included the MHEALTH [16] dataset, and diabetes dataset
from continuous monitoring and manual monitoring. However,
the dataset described in [13] and used in this study includes the
data from four different types of sensors to explore the direct
and indirect consequences of the ECG signals, activity data,
and breathing signals on the glycemic events of the patients.

2https://physionet.org/

IV. METHODOLOGY

This section describes the methodology and implementa-
tion framework used for the multimodal data-based diabetes
prediction. This section also describes different types of
time-domain, and frequency-domain features being obtained
from the raw data or raw signals. It also discusses various
machine learning algorithms and evaluation criteria used for
diabetes prediction. This section is organized into four sec-
tions namely implementation framework, feature engineering,
machine learning algorithms used, and evaluation criteria,
explained in detail.

A. Implementation Framework
The implementation framework of single and multisensor-

based diabetes prediction is shown in Fig. 1. The imple-
mentation of this concept includes two main components.
One is a machine learning engine and another is a
multisensor-based prediction engine. A machine learning
engine is used to obtain the algorithm that performs best
when single sensors are considered for diabetes prediction.
The second component, a multisensor prediction engine is
used to obtain the diabetes prediction results when multi-
ple sensor combinations such as two-sensor combinations,
three-sensor combinations, and four-sensor combinations are
considered.

As shown in Fig. 1, the data from different sensors are
given to a machine learning engine where the individual data
is processed and analyzed separately. The machine learning
engine includes a feature engineering stage where raw data is
divided into window sizes. In this study, we have explored
five different window sizes 15-s, 30-s, 1-min, 2-min, and
5-min window sizes. Different time-domain and interval-based
features were calculated for the ECG, ACC, and breathing sig-
nals in the above-mentioned window periods. A transformed
dataset with a wide variety of features was given to the set
of supervised machine-learning algorithms. The output of the
machine learning engine is the algorithm that performs best
for the individual sensor. This output is based on the accuracy
of the algorithm on sensor data and the time complexity. This
output is given to the second engine, which is a multisensor
prediction engine.

Multisensor prediction engine combines the data from dif-
ferent sensors and evaluates the diabetes prediction accuracy
when two sensors, three sensors, and all four sensors are
considered. In this scenario, the transformed features from
different sensors are combined and given to the algorithms
that performed best in the previous engine (machine learning
engine) for the different sensors. For example, if the data from
glucose and ECG sensor is considered, then the combined
data from glucose and ECG is given to the two algorithms,
one which performed best for glucose and the other which
performed best for ECG, and the performance of algorithms
on both the algorithms are evaluated. In a similar way, the
combination of three sensor data and four sensor data are also
evaluated. Finally, the results of different sensor combinations
along with single sensor results are compared to determine
which approach among single sensor or multisensor is better
for diabetes prediction.
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Fig. 1. Implementation framework for multisensor diabetes prediction.

B. Feature Engineering
Feature engineering is a pre-processing step that transforms

raw data into features, these features are then given to machine
learning models. Feature engineering helps in creating a set of
useful variables for predicting the outcome. It involves feature
creation, feature transformation, feature selection, etc. In this
study, we have applied a feature engineering process to the
raw time-series data from ECG, ACC, and breathing sensors.
Glucose recordings are used as it is for the prediction tasks.
We extracted various time-domain and interval-based features
from the sensor recordings.

1) Glucose Data: Differences in measurement intervals
of glucose data for diabetic patients and non-diabetic
patients resulted in unbalanced data for glucose record-
ings. So we applied two methods, namely random
under-sampling and averaging glucose values over inter-
vals of 5 min to get a somewhat balanced dataset.
However, for combined prediction, we used the averag-
ing method since it was easier to synchronize the time
intervals of glucose values and sensor recording than
with the random under-sampling method.

2) ECG Sensor Features: ECG signals have various essen-
tial components being recorded referred to as P wave,
QRS complex, T wave, etc. Each of these waves indi-
cates atrial polarization or depolarization and ventricle
polarization, depolarization [5]. The interval between the
onset and offset of these waves results in interval-based
features [17]. These interval-based features are important

TABLE II
ECG INTERVAL BASED FEATURES

because these are affected by the glucose level in the
body such as the QT interval being prolonged in people
with diabetes [5]. Table II shows the interval-based
features being used in this study and its description.
Another set of features is time-domain features. Time-
domain features refer to the analysis of signal or
time-series data with respect to time. These features also
play an important role in glucose prediction as they give
crucial statistics related to heart responses [18]. Glucose
variations in the body also affect the HR, the HRV, and
other statistics as well Table III shows the time-domain
features and their description. Time-domain features are
calculated using the RR interval (time duration between
the two R wave peaks of an ECG signal) or NN interval
(time duration between normal R peaks). In case of
abnormal R peaks during signal measurement, to ensure
reliable and valid data, these R-peaks are corrected and
are referred to as normal R peaks. So, RR intervals and
NN intervals are synonymous.

3) ACC Sensor Features: ACC sensor data consist of three
axes referred to as vertical, lateral, and sagittal axes com-
monly known as the X -, Y -, and Z -axes. ACC sensor
data helps in monitoring human activity. Human activity
plays a significant role in the metabolism of glucose and
significantly affects the blood glucose levels [6]. In this
study, we extracted time-domain statistical features from
the three-axis ACC data [19]. These features are mean,
standard deviation, median, median absolute deviation,
skewness, kurtosis, and interquartile range. We have also
considered the features like signal magnitude area and
energy of the signal. All these features are calculated in
all three X -, Y -, and Z -axes.

4) Breathing Sensor Features: Breathing sensors recorded
the breath rate data. Limited studies have used
breath-related data for diabetes prediction. Biomarkers,
which have been used in previous studies for dia-
betes prediction, are extracted mostly through chemical
sensors [7]. So, for this study, we have used similar
methods as used with ECG sensors for feature extrac-
tion. We engineered time-domain statistical features
from the breath sensors waveform as mentioned in
Table III. The features from the breath sensor data give
information about the breath rate, maximum, minimum
breath rate, mean, and standard deviation of breath
rate. Time-domain features for breathing sensors are
calculated using BB-interval (time duration between the
peaks of a breath signal).
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TABLE III
ECG AND BREATHING SENSOR TIME-DOMAIN FEATURES

C. Machine Learning Analysis
To predict diabetes from the sensor data, the features

extracted in the feature engineering step are given to various
machine learning algorithms. Here, we have used various
supervised learning algorithms for this task. This section
describes in detail about different types of machine learning
tasks performed and the algorithms that have been used.
As specified in the conceptual framework as well in Fig. 1,
we performed two tasks for the diabetes prediction.

1) Single sensor-based diabetes prediction.
2) Multisensor-based diabetes prediction.
In single sensor-based prediction, we used the features

from individual sensors calculated using five different window
sizes 15 s, 30 s, 1 min, 2 min, and 5 min. We utilized a
set of machine learning algorithms explored in a systematic
literature review on machine learning algorithms being used in
e-health sensor data [2]. The features calculated from the three
sensors were floating point values and the most frequently
used supervised algorithms to analyze these values are Logreg
[5], decision tree, random forest, SVC [1], AdaBoost, gradient
boosting, XGBoost, MLP. From the study in [19], it has been
observed that in the case of sensor data with time-domain
statistical features tree-based algorithms such as random forest
and ensemble algorithms such as XGBoost performed better
than other algorithms. Moreover, SVCs also performed well
with unbalanced classes [19]. In the current study, we have
also explored other ensemble boosting algorithms such as
AdaBoost and gradient boosting. AdaBoost works with a
decision tree as a base learner but sequentially corrects the
errors from the last models [10]. Similarly, in gradient boost,
subsequent trees are built from the errors of previous trees
[20]. So boosting algorithms tend to generate a stronger model
of the data. To overcome the chances of over-fitting and ensure
that the model is generalizing well on unseen data, we trained
our algorithms using repeated stratified k-fold cross-validation
with ten repeats over dataset splits. We divided the data into
80% training and 20% testing and trained the model using
repeated stratified k-fold cross-validation. The model obtained
was evaluated on the testing dataset. The output of each

TABLE IV
SINGLE SENSOR-BASED PREDICTION

algorithm is evaluated based on the accuracy metrics and the
time complexity curves. Accuracy metric tells about the cor-
rectly predicted classes out of a total number of predictions and
time complexity curves or performance curves tell about the
time algorithms take to achieve that accuracy. The results from
single sensor predictions are further discussed in Section V.

In multisensor-based predictions, the machine learning algo-
rithms that performed well in single-sensor predictions are
used to build models for multisensor prediction. Single sensor
combination also evaluated the window size, which resulted
in the best performance. Window sizes play an important
role when the features from different sensor needs to be
combined. The sensor combinations used in this study were
two-sensor combinations, three-sensor combinations, and four-
sensor combinations. We applied feature-level fusion here to
merge the features from different sensors as per the combina-
tion and the new feature set that emerged from the combination
is trained on the machine learning algorithm, which performed
best with individual sensor data. Feature fusion on sensor
combinations has previously been explored in literature [19].
Although the sensors were positional sensors rather than
ehealth sensors, the sensor combination approach resulted
in an increase in the accuracy of prediction as compared
to the single sensor results. The results of the multisensor
combination are presented in Section V.

V. RESULTS

This section describes in detail the results of apply-
ing machine-learning algorithm to the transformed features.
We have summarized the diabetes prediction results using
single sensors and multisensor combinations. The two sections
below describe the results of using individual sensor data and
combined sensor data for diabetes prediction.

A. Single Sensor Prediction Results
Table IV shows the individual sensor prediction rates and

the percentage of false positives and false negatives obtained
in that prediction. False positive here indicates percentage of
samples predicted as diabetic but in actual it is non-diabetic
and false negative refers to the percentage of samples predicted
as non-diabetic but in actual it is diabetic. We observed
that the algorithms that performed well using single sensor
for diabetes prediction were ensemble algorithms such as
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XGBoost and gradient boost. Glucose data (when averaged
over time intervals to match the time window for other
sensors) could predict diabetes with an accuracy of 92.4%
and a false positive rate of 2.49%. Moreover, ACC and ECG
sensors also predicted diabetes with accuracies of 93.5% and
87.5%, respectively. For the ACC sensor, the false negative
rate was minimal. So, it could be inferred that the time domain
and interval-based features could model diabetes prediction
well. However, breathing sensor-based predictions showed
comparatively less accuracy with 61.8%, which implies that
the features from breathing sensors did not contribute much
to diabetes prediction. Moreover, the features generated from
a window size of 5 min in all the sensors performed better as
compared to other window sizes.

We also evaluated the performance of the models in terms
of time complexity curves. Fig. 2 shows the performance or
time complexity curves for glucose, ECG, ACC, and breathing
sensors. The X -axis of the figure shows the time taken by the
model to reach particular accuracy scores and the Y -axis of
the figures shows the accuracies of the model. From the figure,
it is observed that the algorithms mentioned in Table IV took
less time to converge to their accuracies as compared to other
algorithms which either took more time to converge or showed
very little accuracy. We also observed that for glucose data
with fewer features, the maximum time taken by algorithms
was less as compared to the ECG, ACC, and breathing sensor
data which had more features.

B. Multisensor Prediction Results
In multisensor prediction, we have evaluated the results

for two-sensor combinations, three-sensor combinations, and
four-sensor combinations. Table V shows the prediction rate
and the percentage of false positives and false negatives
obtained for two-sensor combinations, with the algorithms that
performed best in that combination. For example, if we take
glucose and ECG as the sensors whose features have been
merged, then the algorithms that performed best with the indi-
vidual features that are gradient boost and XGBoost are used
to model the combined features. Among these two algorithms,
XGBoost performed best. In this way, all the combinations are
evaluated. From the two-sensor combinations we observed that
the combination of glucose, ACC, and ECG, ACC showed the
best performance with an accuracy of 96.8%. However, the
combination of glucose and ACC gave the lowest false positive
rate of 1.78% whereas ECG and ACC gave the lowest false
negative rate of 3.55%. Sensor combinations having breathing
sensors showed less performance when compared with the
combinations including glucose, ECG, and ACC. However,
in both the combinations, which performed best, XGBoost
attained the highest accuracy. We can also state that the
features of ACC sensor played an important role in diabetes
prediction. There is also a significant increase of 3%–4% in
the performance when we compare the single-sensor ACC
(since it showed the highest performance) with the two-sensor
combinations. However, when we observe the performance
curves for glucose, ACC, and ECG, ACC in Fig. 3, it can
be seen that the sensor combination using glucose and ACC
converges faster as compared to ECG and ACC. This can be

Fig. 2. Time versus accuracy curve using single sensors. (a) Glucose.
(b) ECG. (c) ACC. (d) Breathing for diabetes prediction.

due to more number of features present in ECG and ACC
data.

Table VI shows the prediction rate when three-sensor com-
binations and four-sensor combinations are considered along
with false positive and false negative rates. In three-sensor
combinations also we have evaluated the merged features
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TABLE V
TWO-SENSOR-BASED PREDICTION

Fig. 3. Performance curves for two-sensor prediction.

TABLE VI
THREE-FOUR SENSOR-BASED PREDICTION

of sensor combinations using XGBoost and gradient boost-
ing algorithms. From the table, it can be observed that the
sensor’s combinations with glucose, ECG, and ACC sensors
have performed best with an accuracy of 98.2% with the
XGBoost algorithm. An increase of 1%–1.5% can be seen
in the performance of three-sensor combinations as compared
with two-sensor combinations and 4.5%–5% of increase in
the performance with a single sensor ACC. Table VI also
shows the prediction rate and false positive, and false negative
rate when all four sensors are considered. The accuracy of
XGBoost when all sensor features are combined is 98.2%.
We also observed that the accuracy scores, when all sensors are
used and when three-sensors combination with glucose, ECG,

Fig. 4. Performance curves for three-four sensor prediction.

and ACC are taken are the same. Also for the three-sensor
combination using glucose, ECG, and ACC, the false positive
and false negative rates were the lowest, that is, 1.07% and
2.77%, respectively. Moreover, if we observe the performance
curve in Fig. 4 for three-sensor combinations using glucose,
ACC, and ECG sensors and four-sensor combinations using
glucose, ACC, and ECG sensors, it can be seen that both
the combinations are converging to the same accuracy but the
three-sensor combination is taking less time than the four-
sensor combinations. This could be because of extra features
from the breathing sensor, which did not play any significant
role in diabetes prediction.

VI. CONCLUSION

In this work, we focused on using multiple sensor
data for predicting diabetes diseases using machine-learning
algorithms. We explored different combinations of the
health-sensors for better diabetes prediction. We also inves-
tigated which sensors and which combinations can predict
better/with higher accuracy the diabetes disease. Moreover,
we also evaluated the optimal window size for diabetes pre-
diction using different sensor data. The dataset used for this
work consisted of four types of health data namely glucose
data, ECG data, ACC data, and breathing data. We found
that a multisensor combination using glucose, ECG, and ACC
sensors gives the highest prediction accuracy of 98.2% with
the XGBoost algorithm and using a 5-min window size. mul-
tisensor combinations showed an increase of nearly 4%–5%
in the diabetes prediction rates as compared to single-sensor
predictions. We also observed that the breathing-sensor-related
data have very little influence on the prediction of diabetes.
We also evaluated the accuracy versus fit-time curves and
found that a three-sensor combination using glucose, ECG,
and ACC converges faster than a four-sensor combination
while achieving the same accuracy. Although, the results
generated from the system have some false negatives, the
diabetes prediction results are most stable and consistent when
the sensors with glucose data, ECG data, and ACC data are
used in combinations. So, the system is also able to generate
reliable results with fewer false negatives.

VII. HARDWARE AND SOFTWARE USED

To predict diabetes using multisensor data, we used Jupyter
Notebook with Python version 3. For feature engineering of
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ECG and breathing signals, we used the software package
hrv-analysis 1.0.4; for basic pre-processing, machine learning
analysis, and visualization we used Python libraries such as
sklearn, scipy, matplotlib, numpy, and pandas.
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