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Underwater Source Localization via Spectral
Element Acoustic Field Estimation
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Abstract—Underwater source localization (USL) from a
passive array of acoustic sensors is a challenging prob-
lem, especially in complex environments characterized by
multipath and reverberation effects, irregular seabed geom-
etry, and low signal-to-noise ratio (SNR). This article pro-
poses a recursive Bayesian approach that propagates a
spectral-element approximation of the wave equation to
model the discretized space–time dynamics of the acous-
tic field conditioned on the position of the source, and
sequentially estimates the field and the position of the radi-
ating source from the acoustic measurements. We pursue a
multiple-model approach where each model assumes either
the source absence or its presence within a specific spectral
element. To handle the high dimension of the large-scale field
estimation problem and reduce the computational complex-
ity, the multiple-model filter is implemented using ensemble Kalman filters (EnKFs). Finally, the effectiveness of the
proposed multiple-model spectral-element ensemble Kalman filter is demonstrated through simulation experiments in
underwater acoustic environments with regular and irregular seabed geometry and via comparison with the standard
matched-field processing (MFP) method.

Index Terms— Acoustic field estimation, ensemble Kalman filter (EnKF), multiple-model filtering, spectral-element
method (SEM), underwater source localization (USL).

NOMENCLATURE

R+ Set of nonnegative real numbers.
N+ Set of nonnegative integers.
G(·; m,P) Gaussian probability density with mean

m and covariance P.
a ∼ G(·; m,P) a is Gaussian with mean m and covari-

ance P.
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col{ai }
N
i=1 [a1; a2; . . . ; aN ].

∇ [∂/∂ξ ; ∂/∂ζ ].
δ(·) Dirac delta.
O(·) In the order of.
� Physical domain.
0U , 0D Upper boundary, seabed.
ξ, ζ Range, depth.
b(ξ) Bathymetry.
p = [ξ ; ζ ] Position.
α(p), c(p), ρ(p) Damping coefficient, speed of sound,

water density.
t Time.
ps(t) Source position.
x(p, t; ps(t)) Acoustic pressure field produced by

source located at ps(t).
yi (t) Measured pressure at hydrophone i .
ph

i Position of hydrophone i .
Nh No. of hydrophones.
s(t) Source waveform.
fs Source frequency.
�d Truncated domain.
0L , 0R Left, right boundary.
ξmax Range extent.
n Outward pointing unit normal to the

boundary.
Ne No. of spectral elements.
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�e Spectral element.
D Reference depth.
ξ, ζ Transformed range, depth.
Nξ , Nζ No. of horizontal, vertical elements.
1L Element length.
3 = [−1, 1]

2 Reference element.
Te : 3 → �e Coordinate transformation.
g No. of GLL points.
Pg(·) Legendre polynomial of degree g − 1.
4e, 4 Local, global mesh.
Li (·) Lagrange polynomial associated with

node i .
Nn No. of nodes.
8 j (p) Basis function of node j .
M,D,K Mass, damping, stiffness matrix.
f(t) Forcing term.
1t Time integration step.
k Discrete time.
C Measurement matrix.
σw1 , σw2 , σw3 , σv std. dev. of pressure, pressure derivative,

source position, measurement noise.
T Sampling interval.
xk, ẋk,ps

k Pressure, pressure derivative,
source position state.

zk Augmented state.
µe

k Probability of mode e.
πee′ Transition probability from mode e′ to e.
q Ensemble size.
êk Estimated mode.
p̂s

k|k Estimated source position.
t0 Data assimilation starting time.
t∗ Source detection time.

I. INTRODUCTION

UNDERWATER source localization (USL) using a passive
array of acoustic sensors aims at detecting a radiating

source and estimating its position in space by analyzing the
acoustic field measured by an array of hydrophones. Due to
the special characteristics and complexity of the underwater
environment, USL using a passive array of acoustic sensors
is a challenging task, attracting great interest within both the
control and signal processing communities, especially in low
signal-to-noise ratio (SNR) scenarios where the source can be
difficult to detect [1]. When the source is in the far-field of the
sensor array, i.e., far enough for the plane-wave approximation
to be valid, conventional passive sonar systems based on
array signal processing can only estimate the direction of
arrival (DOA) of an acoustic signal impinging on the array
via plane-wave beamforming [1], [2]. DOA is determined
using the time differences in the sound arrival among the
spatially separated hydrophones of the array. This is the main
difference from active sonar systems where the absolute time
of signal transmission from a projector is known, also allowing
estimation of the range from the sonar system to the source
of interest. In addition to conventional beamforming, other
DOA estimation methods have been developed and applied
to USL [3], including subspace-based approaches such as
multiple signal classification (MUSIC), estimation of signal

parameters via rotational invariance technique (ESPRIT), and
their modifications [4].

In low SNR environments, the major practical challenge
is to extract the DOA information from acoustic signals
that are distorted by different types of noise (e.g., ambient,
measurement, and thermal noise). In fact, classical methods
based on DOA estimation can only exploit thresholded mea-
surements. Then, for low SNRs, the received signals are more
likely to be undetected using conventional DOA methods
since the information contained in the measurements may
be irreversibly discarded after the thresholding process [5],
[6], [7]. Moreover, in realistic underwater environments, DOA
estimation methods can be highly affected by multipath and
reverberation effects, inhomogeneous domains, and irregular
seabed geometries, resulting in inaccurate localization. In such
scenarios, acoustic propagation and its effects can be exploited
to enable passive localization. To this end, the major devel-
opments in underwater passive localization since the early
1980s have focused on the inclusion of acoustic propagation
modeling into signal processing algorithms [8]. When the
acoustic propagation model is accounted for in the passive
sonar array signal processing, we refer to the procedure as
matched-field processing (MFP) [9], [10], [11], [12]. MFP is
a well-established generalization of plane-wave beamforming
for USL where the steering or replica vector is derived from a
solution of the wave equation in the frequency domain (i.e., the
Helmholtz equation) for a point source, especially common for
shallow water applications where multipath propagation can
yield useful information to infer the source range and depth.
MFP is based on matching (correlating) the acoustic pressure
field measured at the hydrophone array with modeled replica
fields computed for a given acoustic waveguide environment
via a numerical propagation model over a set of test source
positions, typically distributed over a uniform search grid
covering the given range-depth domain. The maximum in the
cross correlation or ambiguity surface gives an estimate of the
position of the underwater source, usually taken to be the grid
point associated with the highest match. Source localization
using common MFP is effective when the source is already
detected and stationary, its frequency is known, and there is
full knowledge of the propagation model. However, it can be
highly degraded or precluded in the case of inaccurate corre-
spondence (mismatch) between the propagation model and the
real oceanic waveguide, i.e., for noisy or uncertain source and
environmental parameters [13], [14], [15]. To improve USL
performance, MFP approaches combining information from
multiple arrays have recently been studied for shallow-water
scenarios [16], [17]. It is demonstrated that spatially coherent
processing of multiple arrays can yield significant improve-
ment in localization performance over incoherent processing.
However, it can also be more susceptible to model mismatch
than incoherent processing.

The main challenge of USL is to devise estimators which
are less sensitive to noise level and environmental mismatch.
Conventional MFP methods rely on numerically efficient prop-
agation models such as normal modes that are not capable of
treating inhomogeneous environments with complex geometry
characterizing scattering and reverberation problems. More
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general numerical methods based on direct discretization of the
governing full wave equation include the finite difference and
finite element method (FEM). In particular, FEM is extremely
versatile in terms of geometries and environment properties
that can be treated, and boundary conditions and point sources
can be directly incorporated in its formulation. However, with
increasing frequencies, the FEM mesh requires a growing
number of finite elements, thus resulting in increased com-
putational time. The spectral element method (SEM) [18],
[19], [20] is a particular kind of FEM that uses high-degree
piecewise polynomials as basis functions within quadrangular
(in 2-D) or hexahedral (in 3-D) elements. The SEM provides
high accuracy with fewer degrees of freedom in comparison to
the standard FEM. Moreover, it uses nonuniformly distributed
nodes, the so-called Gauss–Lobatto–Legendre (GLL) points,
and, when used in conjunction with the GLL quadrature
rule, results in a diagonal mass matrix, allowing for reduced
complexity, computational time, and memory.

This work exploits recent advancements in numerical sim-
ulation of partial differential equation (PDE) systems [18],
[19], [20], [21], [22] to approximate the wave equation into
a finite-dimensional space–time model of the underwater
acoustic field. In addition, this article builds on large-scale
field estimation of discretized PDE systems [23], [24] and
previous work on source identifiability and estimation in such
systems [25], [26]. Further related work focused on USL for
shallow-water environments and high-frequency signals using
a multiray propagation model [27], decentralized detection
in underwater sensor networks [28], decentralized USL via
generalized likelihood ratio test [29], a self-supervised learning
architecture that exploits joint time–frequency processing for
USL [30], and acoustic source localization and tracking using
a cluster of mobile agents [31].

This article presents a novel multiple-model spectral-
element ensemble Kalman filter (MM-SE-EnKF) algorithm for
underwater source detection and localization. The proposed
method incorporates an SEM-based model of underwater
acoustic propagation in the time domain to sequentially
estimate the acoustic field directly from acoustic pressure
measurements. This allows USL in complex environments
characterized by inhomogeneous properties and/or irregular
seabed geometries. The ensemble Kalman filter (EnKF) [32]
is adopted for computationally efficient acoustic field estima-
tion. Source localization is performed using a multiple-model
approach that runs in parallel a bank of field estimators, each
conditioned to the source being placed in a given element of
the discretized computational domain, plus a null hypothesis
accounting for the possible absence of the source. This article
improves previous work on USL using FEM-based acoustic
field estimation [33] by developing a more computationally
efficient SEM-based formulation of the acoustic propagation
model, a faster algorithm for multiple-model estimation of
the element containing the source position, and by including
results in terms of USL in the case of both regular and irregular
seabed geometry. In addition, the former scenario includes
a comparison of results against standard MFP. Summing
up, the main contributions are as follows: 1) we provide a
Bayesian formulation for the problem of joint pressure field
estimation and source detection/localization directly exploiting

Fig. 1. Sketch of the source localization problem in an underwater
acoustic environment.

the acoustic measurements and show how to directly integrate
the SEM within the Bayesian formulation; 2) we develop
a novel multiple-model filtering algorithm based on a bank
of SE EnKFs for joint pressure field estimation and source
detection/localization capable of dealing with arbitrary geome-
tries and inhomogeneous properties; and 3) to improve the
computational efficiency, we develop a fast algorithm in which,
at each time, only the SE EnKF corresponding to the most
likely mode is activated.

The rest of this article is organized as follows. Section II
describes the formulation of the considered USL prob-
lem. Section III presents an SEM-based approximation and
time integration of the generalized wave equation modeling
underwater acoustic propagation. In Section IV, a novel MM-
SE-EnKF algorithm is proposed to address USL. Section V
shows the simulation results, while Section VI concludes this
article.

A. Notation
Vectors and matrices are denoted by lower case and, respec-

tively, upper case letters in bold, while scalars are denoted
by normal lower case letters. For convenience of the reader,
notation and symbols used throughout the article are listed in
Nomenclature.

II. PROBLEM FORMULATION

Consider the 2-D infinite oceanic waveguide � depicted in
Fig. 1, bounded from above by a flat free surface 0U and from
below by a possibly irregular seabed 0D . Define a Cartesian
coordinate system Oξζ , with origin O on 0U and vertical
axis ζ oriented toward the seafloor, and denote by ppp ∈ �

the position vector and by t ∈ R+ the time variable. Let
ζ = b(ξ) be the function describing the variable bathymetry,
and let α(ppp), c(ppp), and ρ(ppp) be the assumed-known space-
dependent damping coefficient, ambient speed of sound, and
water density, respectively. Suppose that a perturbation of
pressure x(ppp, t; ppps(t)) is generated in the water column by a
point source f located at ppps(t). The proposed algorithm aims
at detecting the presence of the sound emitter and estimating
its position ppps(t) and the induced acoustic field x(ppp, t; ppps(t)),
given discrete time pressure signals yi (t), recorded by Nh
sensors (hydrophones) at known locations ppph

i , i = 1, . . . , Nh .
To this end, the propagation of the acoustic perturbation
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x(ppp, t; ppps(t)) is assumed governed by the generalized wave
equation [1]

1
ρc2

∂2x
∂t2 +

α

ρ

∂x
∂t

− ∇ ·

(
1
ρ

∇x
)

=
f
ρ

(1a)

with initial conditions

x = 0,
∂x
∂t

= 0, for t = 0 ∀ppp ∈ � (1b)

and boundary constraints

x = 0 ∀t ∈ R+
∀ppp ∈ 0U

∇x · nnnD = 0 ∀t ∈ R+
∀ppp ∈ 0D. (1c)

The forcing term is null in the absence of source and modeled
as f (ppp, t; ppps(t)) = s(t) δ(ppp − ppps(t)) otherwise, where s(t)
is the source temporal waveform and δ denotes the Dirac
delta. In this work, the function s(t) is considered known,
while the source position ppps(t) and the acoustic perturba-
tion x(ppp, t; ppps(t)) are to be estimated. More specifically, the
temporal envelope s(t) is a sinusoidal waveform with known
frequency fs

s (t) = sin (2π fs t) . (2)

This assumption is reasonable for narrowband sources typi-
cally encountered in underwater applications.

The above-stated dynamic estimation problem is clearly
infinite-dimensional. To make it numerically tractable, a finite-
dimensional approximation of the solution x(ppp, t; ppps(t)),
based on the spectral-element method, is introduced in
Section III.

III. SPECTRAL-ELEMENT DISCRETIZATION AND TIME
INTEGRATION

A. Computational Domain and Integral Formulation
Problem (1) is solved numerically through the SEM pro-

posed in [18], [19], [20], and [21]. The infinite domain �

is first truncated along the horizontal axis, as illustrated in
Fig. 1. The resulting computational domain �d is delimited
by the piecewise closed line 0U ∪ 0R ∪ 0D ∪ 0L and spans
the physical region of interest

�d =

{
(ξ, ζ ) ∈ R2

: ξ ∈ [0, ξmax] , ζ ∈ [0, b (ξ)]
}
. (3)

Let nnn denote the outward pointing unit normal on the boundary
of �d . To ensure that the acoustic waves leave the domain
without significant spurious reflections, the following radiation
condition [1, Ch. 7] is applied to the left and right boundaries,
0L and 0R

1
ρ

∇x · nnn = −
1
ρc
∂x
∂t

∀t ∈ R+
∀ppp ∈ 0L , 0R . (4)

As highlighted by Jensen et al. [1, Ch. 7], this constraint is
only exact for a plane wave impinging normally onto a plane
boundary. Nonetheless, it significantly reduces the amplitude
of the numerical reflections even for moderate angles of
incidence.

As a standard finite-element method, SEM is based on an
integral formulation of problem (1). Multiplying (1a) by a
generic space-dependent test function ψ(ppp), integrating over

�d , and enforcing the boundary constraints (1c) and the
radiation condition (4) yield

d2

dt2

∫
�d

ψx
ρc2 d ppp +

d
dt

∫
�d

αψx
ρ

d ppp +

∫
�d

∇ψ · ∇x
ρ

d ppp

−

∫
�d

ψ f
ρ

d ppp −

∫
0U

ψ∇x · nnn
ρ

d ppp +
1
ρc

∣∣∣∣
0L

d
dt

∫
0L

ψx d ppp

+
1
ρc

∣∣∣∣
0R

d
dt

∫
0R

ψx d ppp = 0. (5)

B. Computational Mesh
The computational frame �d (see Fig. 2) is partitioned into

a set of Ne nonoverlapping quadrilateral elements �e, e =

1, . . . , Ne, such that

�d =

Ne⋃
e=1

�e. (6)

These elements are constructed with curvilinear boundaries to
adapt to the irregular bottom. To this end, the following change
in coordinates is first introduced:

ξ = ξ̄

ζ =
b
(
ξ̄
)

D̄
ζ̄ . (7)

In (7), the parameter D̄ represents a characteristic reference
depth. As a result, the complex waveguide �d in the physical
plane Oξζ is transformed into a rectangle �̄d in the plane
O ξ̄ ζ̄

�̄d =

{(
ξ̄ , ζ̄

)
∈ R2

: ξ̄ ∈ [0, ξmax] , ζ̄ ∈
[
0, D̄

]}
. (8)

The rectangular domain �̄d is then divided into Ne equal
square elements �̄e with side 1L , each of which corresponds
to a curvilinear element �e in the physical plane Oξζ . Let
Nξ and Nζ be the numbers of elements along the ξ̄ and ζ̄

directions, respectively, so that Ne = Nξ · Nζ . Let (ξ̄e, ζ̄e) be
the coordinates of the eth element’s center in the plane O ξ̄ ζ̄ ,
and let u, v ∈ [−1, 1] be local variables such that

ξ̄ = ξ̄e +
1L
2

u

ζ̄ = ζ̄e +
1L
2
v. (9)

Each element �e in the physical plane Oξζ is thus mapped
to the reference square 3 = [−1, 1] × [−1, 1] (see Fig. 2)

3 =

{
(u, v) ∈ R2

: u ∈ [−1, 1] , v ∈ [−1, 1]
}
. (10)

Equations (7) and (9) define a local vector-valued invertible
function Te : 3 → �e that maps the pair (u, v) ∈ 3 to a
point ppp ∈ �e, i.e., ppp = Te(u, v).

For the sake of clarity, it is worth pointing out that the
change in variables here used to transform the irregular
physical region into a rectangular domain allows to avoid
using mesh generation software and dramatically simplifies the
structure of the numerical solver. Nevertheless, such a change
in variables is not strictly necessary, and unstructured meshes
could be used to handle irregular seabeds.
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Fig. 2. Computational mesh, reference element Λ, and GLL points for
g = 5.

C. Polynomial Approximation in Spectral Elements
In a traditional finite-element method, low-degree polyno-

mials are used as basis functions for computing the unknown
field x(ppp, t). In the SEM, the pressure x(ppp, t) is approximated
by a higher degree Lagrangian interpolant. To this purpose,
a set of g nodes, called GLL points, is first defined along each
direction u, v, within the reference element 3 (see Fig. 2).
On a direction w = u, v, the GLL nodes wi , i = 1, . . . , g, are
defined as the roots of the equation(

1 − w2
)

P ′
g (w) = 0, w ∈ [−1, 1] (11)

where P ′
g represents the first derivative of the Legendre

polynomial of degree g − 1. Typically, g is between 4 and
10. The GLL points are computed numerically and, as shown
in Fig. 2, they form a nonuniform grid of g × g nodes in 3
that is mapped, via Te, to a nonuniform grid 4e in �e

4e =
{
Te
(
uiu , viv

)
; iu, iv = 1, . . . , g :

uiu , viv are solutions of (11)
}
. (12)

Within a generic element �e, the restriction xe(ppp, t) of the
pressure field x(ppp, t) to �e is then approximated as

xe(ppp = Te (u, v) , t) ≃

g∑
iu=1

g∑
iv=1

Liu (u)Liv (v) xe
iu iv (t) (13)

where xe
iu iv (t) is the time-dependent value of xe(ppp, t) at the

GLL point ppp = Te(uiu , viv ) and Li is the gth degree Lagrange
interpolating polynomial associated with node i , i.e.,

Li (w) =

g∏
ℓ=1
ℓ̸=i

w − wl

wi − wl
. (14)

By definition, the function Li (w) satisfies the property

Li
(
w j
)

=

{
1, i = j
0, otherwise.

(15)

Boundary nodes are shared by neighbor elements, and the
union of all the local grids

4 =

Ne⋃
e=1

4e (16)

contains

Nn =
[
Nξ (g − 1)+ 1

]
·
[
Nζ (g − 1)+ 1

]
(17)

grid points ppp j , j = 1, . . . , Nn , which span the whole com-
putational domain �d . The triple of indices (e, iu, iv), with
iu, iv = 1, . . . , g, identifies a unique node j of the global grid
4. As a result, the pressure field x(ppp, t) can be expressed as
a linear combination of Nn spatially varying basis functions
8 j (ppp), j = 1, . . . , Nn , each of which is associated with a grid
point j of 4. Accordingly, (13) is rewritten as

x (ppp, t) ≃

Nn∑
j=1

8 j (ppp) x j (t) =888T (ppp) xxx (t) (18)

where x j (t) is the time-dependent value of the pressure field
x at node j , and 888(ppp), xxx(t) ∈ RNn are the column vectors

888(ppp) ≜ col
{
8 j (ppp)

}Nn
j=1 , xxx (t) ≜ col

{
x j (t)

}Nn
j=1 . (19)

The basis function 8 j (ppp) does not vanish only at points ppp
belonging to elements that contain the node j (more than one
in the case of boundary nodes). More specifically, they are
defined as

8 j (ppp) =

{
Liu (u)Liv (v) , ppp = Te (u, v) ∈ �e, ppp j ∈ 4e

0, ppp /∈ �e.

(20)

D. Time Integration
To compute Nn unknowns x j , j = 1, . . . , Nn , expansion

(18) is first introduced in the weak form (5). Then, by replacing
the generic test function ψ with the basis functions, the fol-
lowing system of Nn second-order-in-time ordinary differential
equations is obtained:

Mẍxx (t)+ Dẋxx (t)+ Kxxx (t)− fff (t) = 000. (21)

In (21), M,D,K ∈ RNn×Nn are, respectively, the mass,
damping, stiffness matrices, and fff (t) ∈ RNn is the forcing
term defined as follows:

M ≜
∫
�

888(ppp)888T (ppp)
ρ (ppp) c2 (ppp)

d ppp

D ≜
∫
�

α (ppp)888(ppp)888T (ppp)
ρ (ppp)

d ppp

+
1
ρc

∣∣∣∣
ppp∈0L

∫
0L

888(ppp)888T (ppp) d ppp

+
1
ρc

∣∣∣∣
ppp∈0R

∫
0R

888(ppp)888T (ppp) d ppp
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K ≜
∫
�

∇888(ppp) · (∇888(ppp))T

ρ (ppp)
d ppp

fff (t) ≜ s (t)
∫
�

888(ppp) δ (ppp − ppps)

ρ (ppp)
d ppp =

s (t)888(ppps)

ρ (ppps)
. (22)

Integrals in (22) are evaluated through the GLL quadrature
method [34]. In conjunction with the use of Lagrangian
interpolants based on GLL nodes, this choice leads by con-
struction to a diagonal mass matrix, which results into a drastic
reduction of both the complexity of the numerical method and
the computational time. No costly matrix inversion algorithm
is indeed needed to compute the solution in time. This is one
of the main differences between the SEM used in this work
and more classical FEMs.

Time discretization of (21) is achieved via an explicit New-
mark scheme [18]. Let 1t be the time integration step. Then,
the approximations xxxk+1 and ẋxxk+1 at instant tk+1 = (k+1)1t ,
k ∈ N+, of xxx and its time derivative ẋxx are computed as

xxxk+1 = xxxk +1tẋxxk +
1t2

2
ẍxxk

ẋxxk+1 = ẋxxk +
1t
2
(ẍxxk + ẍxxk+1) (23)

with the initial conditions

xxx0 = ẋxx0 = 000. (24)

Using (21) for ẍxxk and ẍxxk+1 finally yields the following
discrete-time linear system:

xxxk+1 = xxxk +1tẋxxk +
1t2

2

[
−M−1Dẋxxk

− M−1Kxxxk + M−1 fff k

]
(25a)

ẋxxk+1 =

[
I +

1t
2

M−1D
]−1

×

[(
I −

1t
2

M−1D
)

ẋxxk

+
1t
2

(
−M−1Kxxxk + M−1 fff k

− M−1Kxxxk+1 + M−1 fff k+1

) ]
(25b)

where fff k ≜ fff (tk) = s(tk)ρ−1(ppps(tk))888(ppps(tk)). Equation
(25) are solved sequentially: the discretized acoustic pressure
xxxk+1 is first computed via (25a) and is then inserted in (25b)
to calculate its derivative ẋxxk+1.

To conclude, at each time instant tk = k1t , k ∈ N+,
the pressure signals xxxh

k ≜ col{x(ppph
i , tk)}

Nh
i=1 measured by the

hydrophones at locations ppph
i , i = 1, . . . , Nh , are given by

xxxh
k = CCCxxxk (26)

where the elements of the Nh × Nn matrix CCC turn out to be

Ci j = 8 j

(
ppph

i

)
, i = 1, . . . , Nh, j = 1, . . . , Nn . (27)

IV. SOURCE DETECTION AND LOCALIZATION

A. MM Approach
Relying on the SEM of the previous section, the key

idea for source detection and localization pursued in this

work is to consider multiple hypotheses, one corresponding
to the absence of the source and the others corresponding
to a source located in a generic element of the SE mesh.
In this way, recalling that the source presence/location only
affects the forcing term fff k = fff (tk) in (25), it is possible to
associate an appropriate model to each hypothesis and adopt
a multiple-model filtering approach [35, Ch. 11] to ascertain
which model/hypothesis is more likely with the available
sensor measurements and accordingly decide whether the
source is present (detection) and, in such a case, estimate its
position (localization).

To be more precise, let Ne ⊂ {1, . . . , Nn} denote the subset
of nodes of element e ∈ {1, . . . , Ne} and let e = 0 refer
to the null model/hyphotesis accounting for the absence of
the source in the monitored area. Then, for model/hypothesis
e ∈ {1, . . . , Ne}, the forcing term fff k = fff e

k turns out to be

fff e
k = s(tk)ρ−1 (ppps

k
)
888e (ppps

k
)
, e = 1, . . . , Ne (28)

where

888e (ppp) ≜ col
{
8e

j (ppp)
}Nn

j=1

8e
j (ppp) =

{
8 j (ppp) , j ∈ Ne

0, j ̸∈ Ne
(29)

is the restriction of 888(ppp) to element e for e = 1, . . . , Ne
(source located in �e), while for e = 0 (nonexisting source)
fff e

k is null. Accordingly, the model matched to hypothesis
e ∈ {0, 1, . . . , Ne} consists of the following state equations
for acoustic pressure xxxk and its derivative ẋxxk :

xxxk+1 = xxxk +1tẋxxk +
1t2

2

[
−M−1Dẋxxk

− M−1Kxxxk + M−1 fff e
k

]
+www1,k

(30a)

ẋxxk+1 =

[
I +

1t
2

M−1D
]−1

×

[(
I −

1t
2

M−1D
)

ẋxxk

+
1t
2

(
−M−1Kxxxk + M−1 fff e

k

− M−1Kxxxk+1 + M−1 fff e
k+1

) ]
+www2,k .

(30b)

Furthermore, whenever e ̸= 0 (existing source located in
�e), the dynamical model for the source position ppps

k is

ppps
k+1 = ppps

k +www3,k . (30c)

In (30), www1,k,www2,k,www3,k are process disturbances that account
for uncertainty on pressure, pressure derivative, and source
position, respectively. Such process disturbances can be used
to account for different sources of uncertainty including
parameter uncertainties, time and space discretization errors,
etc. Note that in (30c), the position of the source is assumed
to vary slowly with time and, hence, to follow a discrete-time
random walk.
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Then, each of the above models involves the augmented
state

zzzk =

{
[xxxk; ẋ̇ẋxk] ∈ R2Nn , e = 0[
xxxk; ẋ̇ẋxk; ppps

k
]

∈ R2(Nn+1), e = 1, . . . , Ne.
(31)

In view of (26), the measurement equation turns out to be
independent of e equal to

yyyk = CCCxxxk + vvvk (32)

where ykykyk is the vector of all the measurements collected from
the sensor array and vvvk accounts for measurement noise.

The multiple-model filter for source detection and localiza-
tion runs a bank of Ne + 1 spectral-element nonlinear filters
associated with the above discussed hypotheses (e = 0 for
source absence and e = 1, . . . , Ne for its presence in spectral
element e). To this end, each filter e must propagate in time-
predicted (filtered) estimates ẑ̂ẑze

k|k−1 (ẑ̂ẑze
k|k) of the augmented

state zzzk defined in (31) according to hypothesis e, along with
the probability

µe
k = Prob (ek = e) (33)

that the current mode ek is equal to hypothesis e. Transitions
among hypotheses are modeled, as usual, by means of a homo-
geneous Markov chain with constant transition probabilities

πee′ = Prob
(
ek = e|ek−1 = e′

)
. (34)

Remark 1: The choice of the above transition probabilities
could be related to the ratio r = T/τmin of the filter sampling
interval T to the minimum sojourn time τmin = (1L/vmax) of
the source within an SE, vmax denoting the maximum source
speed. In fact such ratio, satisfying r < 1 for typical values of
(1L , vmax, T ) can be regarded as a probability that the source
leaves an element e′ to enter a neighboring element e; hence, r
should be equally divided among all neighbors e of e′ to define
πee′ and the residual probability be assigned to permanence in
e′, i.e. πe′e′ = 1 − r . In particular, if the source is known to
be motionless (infinite sojourn time), the suggested choice is
πee′ = 1 for e = e′ or πee′ = 0 otherwise.

Remark 2: Tracking of a quickly moving source could be
accomplished in the multiple model (MM) framework by: 1)
adopting suitable higher order kinematic models in place of the
random-walk model (30c); 2) suitably specifying the transition
probabilities in (34); and 3) resorting to an interacting MM
(IMM) approach [35]. It is worth to point out, however, that
the standard IMM filter involves mixing of the MM states and
needs therefore to be tailored to the source tracking case where
the source states of the various models, constrained to belong
to different spectral elements, cannot clearly be mixed. The
extension of this approach to the case of a moving source will
be the objective of future work.

B. Ensemble Kalman Filter
The critical point of this approach is that the state zzzk in

(31) tends to be of very high dimension since it is in the
order of 2Nn . In fact, from (17) it turns out that Nn =

Nξ Nζg2
+ · · · is in the order of Neg

2, where Ne = Nξ Nζ
is the number of elements of the mesh and g is the number

of nodes along each side of the SE, and hence is typically
very large especially when the size of the computational
domain �d increases and/or the mesh resolution 1L gets
finer and/or g increases. In this respect, the cubic compu-
tational complexity and quadratic memory complexity (with
respect to the state dimension n) of any Kalman-like filter
propagating in time the state covariance matrix would become
infeasible. To this end, the so-called ensemble Kalman filter
(EnKF) has been devised [32], [36] to efficiently cope with
problems (e.g., in meteorology, geoscience, oceanography)
that involve a large number of state variables typically arising
from spatial discretizations of PDEs. The idea of EnKF is to
replace the n × n state covariance matrix (where n is the
dimension of the state vector) with an ensemble consisting
of randomly sampled q ≪ n state vectors and to compute
the required statistics for estimation (mean, cross-covariance
between state and measurement, measurement covariance) as
sample averages over the ensemble. This allows to drop the
computational complexity from O(n3) to O(n2q) and the
memory complexity from O(n2) to O(nq) [38, Sec. 4.2], with
significant savings provided that the ensemble size q is much
smaller than the state dimension n.

The pseudocode of a multiple-model spectral-element EnKF
(MM-SE-EnKF) for acoustic source detection and localization
is provided in Algorithm 1. Such algorithm consists of the
following steps.

1) Prediction: First, for each element hypothesis e and
member of the ensemble i , the acoustic pressure field
is predicted by the space–time discretized acoustic wave
propagation model (30a) and (30b), and, if e ̸= 0, the
source position is also predicted by the random-walk
model (30c); then, mode probabilities are predicted by
the Markov chain transition model (34).

2) Correction: The augmented states, for any e and i , and
mode probabilities, for any e, are corrected on the basis
of the available measurements from hydrophones.

3) Source Detection and Localization: The hypothesis e
with highest probability is selected and, if e ̸= 0
(detected source), the source is localized according to
the corrected source position relative to such hypothesis.

MM-SE-EnKF runs a bank of Ne +1 SE-EnKFs each asso-
ciated with a possible hypothesis (mode) e ∈ {0, 1, . . . , Ne}

and propagating in time predicted and filtered augmented
state estimates ẑzze

k|k−1 and, respectively, ẑzze
k|k and the mode

probability µe
k . Each filter can run independently of the others

performing, at each time k, the prediction step (lines 4–25 of
the pseudocode) followed by the correction step (lines 26–47)
and by the source detection and localization step (lines 48–58).
Note that each mode-matched SE-EnKF uses an ensemble
of size q to compute the required joint statistics for the
augmented state zzz and measurement yyy (lines 22, 33, and 34).

Note also that in each EnKF, the model uncertainties
are incorporated through the use of ensemble simulations
to generate multiple realizations of the state vector in the
prediction step to approximate the underlying probability
distribution. Such model uncertainties are quantified in terms
of the variances σ 2

w1
, σ 2
w2
, σ 2
w3

of the process disturbances
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Fig. 3. Resampling for constraint enforcement in the prediction step.

www1,k,www2,k,www3,k which determine the spread of the ensemble
simulations.

C. Constraints in Prediction and Correction Steps
Recalling that filter e, for e > 0, is associated with

the hypothesis that the source is located in �e, then the
source position samples p̂pps,i,e

k|k−1 and p̂pps,i,e
k|k must be enforced to

be in �e.
This can be accomplished in several different ways. For the

sake of computational simplicity, in this article we adopt the
following procedure.

1) In the prediction step, p̂pps,i,e
k|k−1 is resampled until it falls

inside �e (see Fig. 3).
2) In the correction step, any sample p̂pps,i,e

k|k falling outside
�e is projected to the closest point on the boundary of
�e (see Fig. 4).

The reason for this different handling of constraint violation
in prediction and correction steps can be explained as follows.
For source location prediction

p̂pps,i,e
k|k−1 = p̂pps,i,e

k−1|k−1 +www
i,e
3,k−1

starting from p̂pps,i,e
k−1|k−1 ∈ �e and provided that σw3 is

sufficiently small compared with the element size 1L , it is
quite unlikely that p̂pps,i,e

k|k−1 ̸∈ �e for several consecutive draws
of wwwi,e

3,k−1 ∼ G(·;000, σ 2
w3

III ); hence, in this case, resampling
represents a simple and effective solution. On the other hand,
correction (line 37) tends to push p̂pps,i,e

k|k outside �e for ele-
ments e that are far away from the true source position; in such
a case, resampling would be highly inefficient while projection
onto the element boundary is a simple and efficient solution.

D. Computational Complexity of MM-SE-EnKF
It is first worth pointing out that the computational burden

of MM-SE-EnKF is mostly due to the Ne + 1 mode-matched
filters, as the remaining part (lines 48–56) involves a negligible
amount of computation. Moreover, such filters can clearly
run in parallel so that they can be assigned to Np proces-
sors roughly reducing the overall computational load of a
factor Np.

Hence, hereafter the focus is on the computational com-
plexity of the single SE-EnKF (lines 6–46). Recalling that
Nn ≥ Neg

2
≥ Ne and that the ensemble size q must be

Fig. 4. Projection for constraint enforcement in the correction step.

chosen such that Nh ≤ q ≪ Nn for the sake of computational
reduction as well as to guarantee that the Nh × Nh matrix
PPPe

y,k computed in line 33 of Algorithm 1 be invertible,
the most burdensome task of SE-EnKF is for pressure and
pressure derivative prediction which takes in the order of N 2

n q
operations. Conversely, the correction step has O(Nnq Nh)

computational complexity required for the computation of
matrix PPPe

zy,k (line 34). Summing up, the overall computational
complexity of MM-SE-EnKF turns out to be O(N 2

n Neq).
Assigning the various SE-EnKFs to O(Ne) parallel processors,
it is clearly possible to reduce the processing time for a single
recursion of MM-SE-EnKF to O(N 2

n q).

E. Fast MM-SE-EnKF
To further reduce the computational load and thus allow

working at faster sampling rates, a computationally cheaper
version of MM-SE-EnKF referred to as fast MM-SE-EnKF
(FMM-SE-EnKF) has been devised (see the pseudocode of
Algorithm 2) to deal with a motionless acoustic source possi-
bly located in the surveillance area �d .

FMM-SE-EnKF switches between two operating phases.
1) An initial source detection phase that aims to detect the

presence of the source and single out the element �e
where it is located.

2) A source localization phase that aims to accurately
localize the source within �e.

The source detection phase must clearly take into account
all possible hypotheses e ∈ {0, 1, . . . , Ne} but, for the sake
of computational efficiency, each mode-matched filter only
performs prediction (but not correction with the available
sensor measurements) of the pressure field estimate (lines
5 and 6 of Algorithm 2) and exploits the measurements only
to update the hypothesis probabilities µe

k (lines 7–9). This
allows to drop the computational complexity from O(N 2

n Neq)
to O(N 2

n Ne) as no ensemble is required to compute the sample
statistics for augmented state correction. In fact, prediction
(25a) and (25b) involves multiplication of off-line computed
Nn × Nn matrices by Nn × 1 vectors for Ne + 1 models.
Conversely, the subsequent source localization phase only
needs to run a single SE-EnKF for the selected hypothesis
êk resulting from the source detection phase; in this phase,
the computational complexity is just O(N 2

n q), the complexity
of a single EnKF with state dimension 2Nn + 2 = O(Nn)
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Algorithm 1 MM-SE-EnKF at Time k

1: Input: {µe
k−1}

Ne
e=0, {ẑzz

i,e
k−1|k−1}

q,Ne
i=1,e=0, {πee′}

Ne
e,e′=0,

2: σw1 , σw2 , σw3 , σv,CCC, Ne, q, yyyk
3: for e = 0, 1, . . . , Ne do
4: PREDICTION:
5: for i = 1, 2, . . . , q do
6: draw sample wwwi,e

1,k−1 ∼ G(·;000, σ 2
w1

III )
7: compute predicted pressure sample x̂xx i,e

k|k−1 by (30a)
8: ŷyyi,e

k = CCCx̂xx i,e
k|k−1

9: draw sample wwwi,e
2,k−1 ∼ G(·;000, σ 2

w2
III )

10: compute predicted pressure derivative ˆ̇xxx i,e
k|k−1

by (30b)
11: ẑzzi,e

k|k−1 = [x̂xx i,e
k|k−1;

ˆ̇xxx i,e
k|k−1]

12: if e ̸= 0 then
13: Repeat
14: draw sample wwwi,e

3,k−1 ∼ G(·;000, σ 2
w3

III )
15: compute predicted position sample p̂pps,i,e

k|k−1
by (30c)

16: until p̂pps,i,e
k|k−1 ∈ �e

17: ẑzzi,e
k|k−1 = [ẑzzi,e

k|k−1; p̂pps,i,e
k|k−1]

18: end if
19: predict mode probability as µe

k|k−1 =∑NE
e′=0 πee′ µe′

k−1
20: end for
21: compute predicted state and measurement:
22: ẑzze

k|k−1 = q−1 ∑q
i=1 ẑzzi,e

k|k−1
23: EEEe

z,k = [ẑzz1,e
k|k−1 − ẑzze

k|k−1, . . . , ẑzz
q,e
k|k−1 − ẑzze

k|k−1]

24: ŷyye
k = q−1 ∑q

i=1 ŷyyi,e
k

25: EEEe
y,k = [yyyk − ŷyy1,e

k , . . . , yyyk − ŷyyq,e
k ]

26: CORRECTION:
27: compute ensemble sample covariances:

28: for i = 1, 2, . . . , q do
29: draw sample vvvi,e

k ∼ G(·;000, σ 2
v III )

30: end for
31: VVV e

k = [vvv
1,e
k , . . . , vvv

q,e
k ]

32: RRR = (q − 1)−1 VVV e
k(VVV

e
k)

T

33: PPPe
y,k = (q − 1)−1 EEEe

y,k(EEE
e
y,k)

T
+ RRR

34: PPPe
zy,k = (q − 1)−1 EEEe

z,k(EEE
e
y,k)

T

35: LLLe
k = PPPe

zy,k (PPP
e
y,k)

−1

36: for i = 1, 2, . . . , q do
37: ẑzzi,e

k|k = ẑzzi,e
k|k−1 + LLLe

k (yyyk + vvv
i,e
k − ŷyyi,e

k )

38: if e ̸= 0 then
39: position projection:
40: if p̂pps,i,e

k|k ̸∈ �e then project it to the closest
point on

41: the boundary of �e, as shown in Fig. 4
42: end if
43: end if
44: end for
45: compute likelihood as λ

e
k = G(yyyk; ŷyye

k, PPPe
y,k)

46: update mode probability as µe
k = λ

e
k µ

e
k|k−1

47: end for
48: SOURCE DETECTION & LOCALIZATION:
49: find best mode:
50: êk = arg maxe µ

e
k

51: normalize mode probabilities:
52: c =

∑Ne
e′=0 µ

e′

k
53: µe

k = c−1µe
k for e = 0, 1, . . . , Ne

54: if êk ̸= 0 then
55: compute estimated position:
56: p̂pps,i

k|k = [000 III 2]ẑzz
i,êk
k|k for i = 1, . . . , q

57: p̂pps
k|k = q−1 ∑q

i=1 p̂pps,i
k|k

58: end if

Algorithm 2 FMM-SE-EnKF at Time k

1: Input: {µe
k−1}

Ne
e=0, {ẑzz

e
k−1|k−1}

Ne
e=0, {πee′}

Ne
e,e′=0,

2: σw1 , σw2 , σw3 , σv, RRR0 = σ 2
v III ,CCC, Ne, q, ks > 1, yyyk

3: if k̂ ≤ ks then
4: SOURCE DETECTION
5: for e = 0, 1, . . . , Ne do
6: predict pressure x̂xxe

k|k−1 and derivative ˆ̇xxxe
k|k−1 by

7: (25) with source position fixed at the center of �e
8: ŷyye

k = CCCx̂xxe
k|k−1

9: compute likelihood: λ
e
k = G(ykykyk; ŷyye

k, RRR0)

10: update mode probabilities: µe
k = λ

e
k
∑Ne

h=0πehµ
h
k−1

11: end for
12: find best mode: êk = arg maxe µ

e
k

13: normalize mode probabilities:

14: c =
∑Ne

h=0 µ
h
k

15: µe
k = c−1µe

k for e = 0, 1, . . . , Ne
16: if êk ̸= 0 and êk = êk−1 then
17: k̂ = k̂ + 1
18: else
19: k̂ = 1
20: end if
21: else
22: SOURCE LOCALIZATION
23: set êk equal to êk−1
24: only for mode êk , run the SE-EnKF as described
25: in Algorithm 1
26: end if

and ensemble size q . The switching from the initial detection
phase to the localization phase can be performed either after a
prescribed setup time or whenever the selected hypothesis êk
has remained unchanged for a sufficiently high number ks of

consecutive recursions in the detection phase (see Algorithm 2
where the counter k̂ is initialized to 1). Note that Algorithm 2,
wherein the selected hypothesis is held fixed after the switch-
ing, is appropriate for a static (i.e., motionless and always
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Fig. 5. Environment configuration of the waveguide with regular seabed within the domain Ωd. Elements Ωe,l with different side lengths l in meters,
used for the ground truth and filter mesh, are compared.

Fig. 6. Environment configuration of the waveguide with irregular seabed within the domain Ωd.

emitting) source but should clearly be reconceived for the
dynamic source case which, however, is outside the scope of
this article and left for possible future work.

V. SIMULATION RESULTS

We considered two scenarios to characterize the capabilities
of the FMM-SE-EnKF algorithm. The first configuration,
shown in Fig. 5, is used to assess the filter performance.
The FMM-SE-EnKF algorithm is additionally compared with
the minimum variance, distortionless filter MFP (MVDF-
MFP) algorithm proposed by [10]. It is worth emphasizing
that current implementations of MFP are based on normal
modes [1], [37] and are, by construction, applicable only in
depth-dependent media with flat horizontal boundaries. On the
contrary, the present algorithm can be used in more gen-
eral space–time-varying underwater environments involving
complex boundaries. The second scenario, shown in Fig. 6,
is therefore designed to show the FMM-SE-EnKF algorithm’s
performance in the case of a variable seabed.

A. Scenario With Regular Seabed
This first scenario, inspired by a benchmark used in [39],

involves a motionless source emitting a signal of frequency
fs = 100 Hz for a total simulation time of 10 s and time
integration step 1t = 0.23 ms. The source is located within
a shallow water environment with an isospeed water column
(c = 1500 m/s, ρ = 1000 Kg/m3, α = 4 · 10−6 s/m2) of
90 m depth and 1500 m length located at ξ = 1212.5 m
and ζ = 57.5 m. Fig. 5 shows the source position ppps

and the hydrophone positions ppph
i , for i = 1, . . . , Nh , and

provides a comparison between mesh elements �e,l used by
the ground-truth simulator with side length l = 1Lg , and
by the filter with side length l = 1L f within the domain
�d . We set the mesh size ratio (MSR), defined as the ratio
MSR ≜ 1L f /1Lg between the side length of the mesh
element used by the filter and the one used by the ground-
truth simulator, to MSR = 0.5. Mesh parameters of the
ground-truth simulator and the filter are reported in Table I.

Fig. 7. Mode detection trend and distance between estimated source
position p̂pps

k|k and true source position ppps, versus distance provided by
MVDR-MFP algorithm for the scenario with regular seabed.

Filter parameters have been set as reported in Table II. The
filter collects measurements from a vertical array (VA) of
Nh = 20 hydrophones located 1 Km away from the source
in an environment with an SNR of 10 dB. Given the standard
deviation of simulated measurement noise σy , the SNR can be
defined as

SNR ≜ 10log10

(
N−1

N∑
k=1

SNRk

)
(35)

where: SNRk ≜ N−1
h
∑Nh

h=1 σ
−2
y x2

k,h ; xk,h is the acoustic
pressure on the hth sensor at time k; and N is the total number
of time integration steps. In this scenario, the source starts to
emit at time t = 0 s while the data assimilation process is
activated when the array starts to collect data, i.e., at time
t0

= 0.8 s when the acoustic wave has already reached the
VA of hydrophones. Performance of the filter, in terms of
detection and localization, is shown in Fig. 7. It can be seen
how no detection is unveiled until t∗ = 1.516 s, when the
array measurements begin to correctly match the predicted
measurements ŷyye

k generated from the model associated with
es . The mode in operation before t∗ is êk = 0, i.e., the no-
source mode, while êk = es, k ≥ t∗, i.e., the true mode
in operation es is correctly detected starting from time t∗.
Once the source mode is estimated, the localization process
within the source element is activated. Furthermore, in Fig. 7
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Fig. 8. (a)–(c) Position samples p̂s,i,e
k|k (in red), estimated position p̂s,e

k|k (in blue), and true source position ps (in magenta) within the source element
domain Ωes at different time steps for the simulated scenario with regular seabed.

TABLE I
SPECTRAL-ELEMENT MESH PARAMETERS FOR BOTH GROUND-TRUTH

SIMULATOR AND FILTER, IN SCENARIOS WITH REGULAR AND

IRREGULAR SEABED

the distance between the estimated position p̂pps
k|k and the true

source position ppps is plotted versus time, compared with the
distance obtained with the MVDF-MFP for the same dataset.
It can be seen how the proposed algorithm yields better
localization accuracy than the MVDF-MFP over the whole
simulation time. In Fig. 8, we see that when the local EnKF
is activated and the estimation is performed within the selected
element es , the initial distance corresponding to the center of
the element becomes even smaller and the source localization
performance further improves. Indeed, the position samples
p̂pps,i,e

k|k (displayed in red) initially distributed all over the source
element �es , and their average p̂pps

k|k (displayed in blue) gets
closer to the true source position ppps (displayed in magenta)
with a final offset of about 3 m. Fig. 9 provides several plots
comparing the estimated and ground-truth acoustic fields over
the domain �d at different time instants. Such fields can
be compared with the ambiguity surface A(ppps) provided by
MVDF-MFP in Fig. 10 using a grid of Ns = 13 800 possible
source position hypotheses. Note that the maximum value of
A(·), surrounded by a red box, coincides with the estimated
source position provided by MVDF-MFP.

Furthermore, for the same environmental configuration but
with source frequency fs = 30 Hz, 1Lg = 15 m, and 1L f =

30 m, we evaluated the performance of FMM-SE-EnKF in
terms of time-averaged root mean square error of the estimated

TABLE II
PARAMETERS OF FMM-SE-ENKF FOR BOTH SCENARIOS WITH

REGULAR AND IRREGULAR SEABED (T DENOTES THE FILTER

SAMPLING INTERVAL)

TABLE III
RMSEpos VERSUS SNR, Nh , dhs

source position (RMSEpos). Position RMSE is defined as

RMSEpos ≜ N−1
N∑

k=k∗

RMSEpos,k (36)

where k∗ is the discrete time instant corresponding to t∗, and
RMSEpos,k is the error at time k defined as

RMSEpos,k ≜

√√√√M−1
M∑

r=1

(
p̂pps

k|k,r − ppps
)

(37)

with p̂pps
k|k,r being the estimated source position at time k for

the r th Monte Carlo run, and M = 50 the total number
of Monte Carlo runs. Table III reports the position RMSE
performance for five different levels of SNR, a VA of Nh =

20 hydrophones located at a range distance dhs = 1000 m from
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Fig. 9. Comparison of ground-truth simulator acoustic field xxxk (upper plot) and estimated acoustic field x̂xxk|k (lower plot) by the Fast MM-SE-EnKF
algorithm at different times, for the scenario with regular seabed. (a) t = 0.87 s. (b) t = 1.54 s. (c) t = 7.48 s.

Fig. 10. Ambiguity surface A(ppps) for the scenario with regular seabed provided by the MVDF-MFP algorithm where the maximum value is
surrounded by a red box.

Fig. 11. Mode detection trend and distance between estimated source
position p̂pps

k|k and true source position ppps, for the scenario with irregular
seabed.

the source. It can be seen that source localization turns out to
be satisfactory at all levels of SNR. Furthermore, Table III

also provides position RMSE for a VA with a varying number
Nh ∈ {10, 20, 30, 40, 50} of hydrophones, SNR = 10 dB, and
distance from the source dhs = 1000 m. In this case, it can
be seen how performance clearly improves as the number
of sensors increases. Note that the reported simulations also
show how the space between sensors affects performance.
In fact, in the performed Monte Carlo simulations, the Nh
sensors were regularly spaced to span the entire 90 [m] depth
of the surveiled water column so that for each value of
Nh , a different space among sensors of d∗

hh = 90/Nh [m]

is considered. We remark that the choice of varying sensor
number Nh and sensor spacing dhh while keeping constant
the product Nhdhh is motivated by the considerations that:
decreasing the intersensor distance dhh for fixed Nh would
reduce the depth span of the vector array with consequent
deterioration of localization performance; increasing dhh above
d∗

hh would actually reduce the number of effective sensors
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Fig. 12. (a)–(c) Position samples p̂s,i,e
k|k (in red), estimated position p̂s,e

k|k (in blue), and true source position ps (in magenta) within the source
element domain Ωes at different time steps for the simulated scenario with irregular seabed.

Fig. 13. Comparison of ground-truth simulator acoustic field xxxk (upper plot) and estimated acoustic field x̂xxk|k (lower plot) by the Fast MM-SE-EnKF
algorithm at different times, for the scenario with irregular seabed.

leaving some of them out of the water column of interest.
Finally, Table III shows comparison of the position RMSE for
different distances dhs of the array from the source, with fixed
SNR = 10 dB and number of sensors Nh = 20, showing
how localization performance significantly improves when the
sensor array gets closer to the source.

As a final remark, we point out that the model used in
the filter is different from the one used to generate the data
(see the different parameters of the two meshes in Table I),

thus showing that the proposed approach is able to provide
satisfactory performance even under model mismatch.

B. Scenario With Irregular Seabed
This second scenario involves a motionless source located

at ξ = 552.5 m and ζ = 98.5 m (very close to the seabed)
emitting a signal of frequency fs = 100 Hz for a simulation
time of 10 s with step integration time 1t = 0.23 ms,
within a rectangular domain �d with a depth of 100 m, range
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of 1500 m, and irregular seabed. The environment scenario,
depicted in Fig. 6, presents an isospeed configuration (ρ =

1000 kg/m3, c = 1500 m/s, and α = 4 × 10−6 s/m2). Table I
provides the parameters of the mesh for the ground-truth
simulator and the filter. The parameters used for the FMM-
SE-EnKF algorithm are reported in Table II. Also in this case,
as for the previous scenario, we chose the size of the square
mesh element of the filter such that MSR = 0.5. In Fig. 11 the
performance of the filter, in terms of both source detection and
localization, is illustrated. It can be seen how data assimilation
starts at t0

= 0.8 s, and at time t∗ = 1.119 s, the filter is able to
detect the signal and localization is satisfactorily performed as
the mode in operation êk matches the source element es after
the detection of the source signal. Once the source element
�e has been detected, the filter runs a local EnKF for finer
localization within �es . Furthermore, Fig. 11 plots, versus
time, the distance between true, ppps , and estimated, p̂pps

k|k , source
locations. It can be observed how the local run of the EnKF
enhances localization accuracy starting from an initial position
coinciding with the element center. This behavior is verified
in Fig. 12, where we can see the position samples p̂pps,i,e

k|k for
the source mode es moving, within the element �ê = �es

during the data assimilation process, toward the true source
position ppps . Finally, Fig. 13 provides some snapshots of the
estimated field x̂xxk|k compared with the simulated field xxxk at
different time instants.

VI. CONCLUSION

In this work, we proposed a fast multiple model spectral
element ensemble Kalman filter (FMM-SE-EnKF), a new MM
algorithm specifically devised for acoustic USL in shallow
water. Such algorithm combines an SEM-based propaga-
tion model and Bayesian field estimation for large-scale
systems. Unlike approaches based on MFP, the proposed
FMM-SE-EnKF can cope with more general space–time-
varying underwater environments. In this work, it has been
demonstrated how this algorithm can effectively perform
detection and localization in the case of irregular seabed.
Future work will concern extensions to: 1) moving sources;
2) space–time-varying speed of sound and/or density; and
3) 3-D environments.
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