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Abstract—The proliferation of vehicles and a subsequent
increase in traffic accidents have led to a heightened
focus on driving safety. As a result, various researchers
have been examining ways to enhance driving safety in
daily life by implementing smart car technology. In-vehicle
sensing utilizing radar technology has emerged as a leading
method for monitoring the driver’s health, emotions, and
attention, owing to its numerous advantages over traditional
sensors, including the ability to detect subjects through
nonmetallic surfaces and the inherent privacy-preserving
mechanisms. In recent years, in-vehicle sensing through
radar has undergone significant advancements. This article
aims to provide a comprehensive survey of the applications,
system-level design, and signal processing of in-vehicle
sensing through radar. The published works in this field are
categorized into three main groups: occupancy detection,
gesture recognition, and occupant status monitoring. This
article will discuss the highlighted works and their respective
advantages and limitations in terms of applications.

Index Terms— Advanced driving assistant systems
(ADASs), artificial intelligence, drowsy/distracted driver
detection, frequency-modulated continuous wave (FMCW)
radar, gesture recognition, left-behind children detection,
millimeter-wave radar, occupancy detection, radar signal pro-
cessing, smart car, vital sign monitoring, wireless sensing.

I. INTRODUCTION

THE field of in-cabin monitoring is rapidly emerging
as a crucial aspect and popular area of study in the

realm of smart car technology, both in terms of comfort and
safety. This is primarily driven by the increasing amount of
time we are spending on our daily commutes. As evidenced
by statistics from 2016 to 2017, 87.3% of Americans (age
16 and over) spend an average of 51 minutes per day driving.
[1]. This highlights the need for implementing measures to
monitor the vital signs and physiological state of drivers and
passengers, such as the breathing rate (BR) and the heart rate
(HR). Several innovative monitoring technologies have been
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proposed and developed in recent years. One such technology
is radar-based monitoring, which offers two major advantages
over conventional camera-based/optical sensors: the ability to
detect and monitor subjects through nonmetallic objects [2]
and the inherent privacy-preserving nature of its operation [3].

These benefits can be leveraged for applications beyond
safety-related ones by continuously monitoring the postures
and vital signs of vehicle occupants, such as airbag
deployments or the detection of children left behind. This
technology can also be used for functionalities such as
controlling the air conditioning, gesture recognition for the
human–machine interface of the vehicle infotainment system,
and advanced health monitoring [3], [4], [5].

There are several technologies available for in-vehicle
occupancy detection, among which mechanical sensors that
can measure weight, force, acceleration, or pressure are
the most commonly used. These sensors can detect the
presence and position of the occupants in the vehicle and
can also be used to adjust the vehicle’s settings, such as
airbag deployment, seat belt tension, and climate control
[6], [7]. Mechanical sensors can be divided into three
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TABLE I
DIFFERENT IN-CABIN MONITORING APPLICATIONS BY RADAR

Fig. 1. Distribution of different applications in recent in-cabin indexed
papers on Google Scholar by radar over the years.

common categories, including resistive [8], inductive [9], and
capacitive [10]. Both resistive and inductive sensors have
difficulty discriminating between humans and objects [3].
Capacitive sensors that can detect the dielectric dispersion
effects on human tissues are prone to high false detections
[18]. Camera vision [108], [109] and infrared (IR) sensors
[110] are also commonly used. Although these sensors are
more reliable, they lead to privacy issues. Moreover, they are
sensitive to sunlight and illumination levels. To overcome these
issues, radar can be employed.

As noted earlier, radar-based sensors are one of the most
promising ways to address the issues of dead spots in camera
vision and dependence on environmental factors. This is why
radars are now often explored to monitor people in different
places, such as elderly homes, vehicle cabins, and hospitals
[111], [112], [113]. In automotive, Hyundai and Toyota have
reportedly developed a radar-based monitoring system able

to detect in the rear seat dead spot whether children have
been left behind [114], [115]. The consumer electronics show
in 2023 showed a trend of many new radar variants under
development for in-cabin sensing.

Table I represents various key applications of radar inside
a vehicle based on the indexed papers and patents found on
Google Scholar. Fig. 1 also displays the distribution of indexed
papers on Google Scholar across different applications.
The number of papers on occupant status monitoring and
occupancy detection has increased in recent years. Occupant
status monitoring is the most studied application as research
on driver health monitoring can help prevent car accidents. The
primary approach in this application is to estimate BR and HR.
Most studies have focused on accurate BR and HR estimation.
However, making a decision after BR and HR estimation can
be more beneficial. One of the benefits of in-cabin radars is
to detect drowsy drivers by identifying low BR or apnea [83],
[86], [107]. According to statistics, almost 30% of fatal car
accidents involving deaths are caused by drowsy drivers [83].

In the application of occupant status monitoring, the
estimation of BR is a crucial aspect. As depicted in Fig. 2,
two different types of techniques can be employed: contact
and noncontact techniques. Different contact and noncontact
techniques, as well as their technologies, are demonstrated in
Fig. 2. For more details, refer to [116] and [117]. Contact
techniques, such as sound sensing, which is one of the
earliest forms of contact-based medical tests, suffer from a
lack of accuracy and are unable to provide proper continuous
monitoring [118], [119]. Another technique for BR estimation
using contact sensors is the temperature sensing approach,
which measures the temperature differential between the air
being inhaled and exhaled by a person. One way to implement
this approach is by using a thermistor, a type of resistor that
changes its resistance with temperature, placed under the nose
of the person [120]. Another approach that can be used to
estimate BR is the pressure-sensing approach, which leverages
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Fig. 2. BR monitoring techniques [116], [117].

the changes in air pressure caused by breathing around the
nose. In this approach, a pressure sensor is placed near the
nose, and as the person breathes, the airflow causes the sensor
to deform, resulting in a variation of its resistance and a
corresponding linear change in the sensor output voltage. This
change in voltage can then be used to estimate the person’s BR
[121]. In another method, the amount of carbon dioxide (CO2)

that a person has exhaled will be used for BR estimation. The
most used technique for calculating the quantity of CO2 in
gas samples is IR spectroscopy [122]. Another contact-based
technique for estimating BR is based on the comparison of
the humidity levels between inhaled and exhaled air. In this
approach, a humidity sensor is positioned close to the patient’s
nose or mouth. The exhaled air is more humid than the inhaled
air, and by monitoring the changes in humidity levels, the
sensor can estimate a person’s BR [123]. To estimate chest
movements, a thin sheet of the piezoelectric substance can
be used to quantify how much the body volume changes
while breathing [124]. An additional approach for estimating
chest wall activity using contact sensors is the use of an
accelerometer. By using the accelerometer and/or gyroscope
sensors, it is possible to track the movements of the thoracic
and/or abdominal cavities to identify breathing activity. The
output of the accelerometer is typically a time series of
the acceleration of the chest in three dimensions, which
can be processed to extract breathing-related information,
such as BR, breathing depth, and breathing patterns [125].
A noncontact, noninvasive technique used to measure blood
perfusion across tissues is known as photoplethysmography
(PPG). In this technique, IR light is used to illuminate blood
vessels, typically by shining it through a patient’s finger. The
amount of IR light that is reflected or absorbed by the blood is
then measured by a PPG sensor, which provides information
about changes in blood volume. This information can be used
to estimate HR and other vital signs, and to detect changes in
blood flow caused by various physiological and pathological
processes. PPG is a widely used technique in medical research
and clinical practice, and it has been implemented in a variety
of devices, including pulse oximeters, wearable devices, and
remote monitoring systems [126]. Electrocardiography (ECG)
that tracks the electrical field in the chest that the heart
and breathing make [127] is another common contact-based
approach.

Noncontact sensors are the second type of sensor used
to estimate BR accurately. One such approach is IR
thermography, which is a noncontact method of measuring
BR. The temperature near the nostrils changes during the
breathing cycle, and IR thermography can detect these changes
in temperature. Specifically, the temperature near the nostrils
is 31.17 ◦C during inspiration and 31.44 ◦C during expiration.
By tracking these temperature changes, IR thermography can
be used to estimate BR. This method is nonintrusive and can
be used to measure BR in a variety of settings, including in
vehicles [128]. Analysis of chest movements in various regions
of interest on an image recorded by a video camera can be
used to estimate BR [129]. However, this approach triggers
numerous privacy concerns.

Another noncontact-based technique for estimating BR is
ultrasound. This technique utilizes the sensor’s attenuation
characteristics to calculate the sensor’s distance from the
subject, and the phase of the detected peak is then used
for the BR estimation. Ultrasound is a noninvasive method
that uses high-frequency sound waves to measure distance
and detect changes in the position of a subject. It can
be used to estimate BR by measuring the expansion and
contraction of the chest caused by breathing, medical facilities,
and in other environments where contact-based sensors may
not be practical or desirable. Ultrasound acoustic waves are
unfortunately unable to travel over great distances and can
be quickly disrupted by mechanical motion [130]. Hence,
ultrasound is not a good selection for in-cabin monitoring
applications.

The reflected signal from the human torso can be processed
to estimate chest wall vibration without any devices attached
to the human body [131], [132]. This level of comfort
is a key benefit of contactless sensors over contact ones.
In general, contact sensors require a smart wristband, chest
straps, or compression garments to be worn. Wearable devices
are less convenient because they must always be attached
to the human body. As a result, contactless solutions, most
of which employ ambient wireless signals [62], are more
comfortable for long-term health monitoring [81].

Table II compares different BR monitoring techniques. This
evaluation is based on some factors that can be applied for
continuous monitoring. In [82], it is concluded that a radar
sensor is the best solution inside a vehicle, especially because
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TABLE II
COMPARISON BETWEEN DIFFERENT BR MONITORING TECHNIQUES [116]

of its comfort level and protection of privacy. The phase shift
of Doppler radars can detect human body vibration. As a
result, chest wall displacement caused by breathing and heart
vibrations can be sensed to monitor people’s health inside a
car.

Several review papers on healthcare applications of radar
exist. In [116], various breathing monitoring techniques are
investigated, and the advantages of using radar technology over
other types of contact and noncontact sensors are explained.
In [133], [134], [135], [136], and [137], a comprehensive
study on vital sign monitoring by radars is provided, and the
challenges in signal processing algorithms and hardware are
discussed. In [138], recent papers on vital sign monitoring
by multi-input–multi-output radars are reviewed, and the
challenges of different environments are discussed. In [136],
recent papers on self-injection locked radars for vital sign
monitoring are surveyed. In [139], state-of-the-art radar
papers for obstructive sleep apnea detection are reviewed,
particularly system fundamentals and signal processing. To the
best of our knowledge, although there are several review
papers on recently published vehicular radar papers [140],
[141], [142], [143], [144], [145], [146], none of the recent
review papers have studied state-of-the-art papers for in-
cabin applications. This article reviews recent investigations
and industries into different applications of radar in a
vehicle, particularly in-cabin applications, and discusses their
advantages and limitations in various subjects. This review
may help researchers analyze the limitations and gaps in these
methodologies, allowing for additional research opportunities.

The remainder of this article is organized as follows.
Section II introduces related radars in the market. Section III
discusses different applications of radars for inside vehicle
monitoring. Finally, we conclude this article in Section IV.

II. AVAILABLE RADARS IN THE MARKET

Different companies employ several distinct types of radar
systems in various noncontact sensing applications. Among
those that make use of frequency-domain-based systems
are continuous wave (CW) [147], frequency-modulated CW
(FMCW) [148], [149], [150], or time-domain-based systems
invoking ultrawideband (UWB) signals [151], [152], [153],
[154], [155], [156], [157]. These systems are frequently

utilized in various noncontact sensing situations [158], [159],
[160]. FMCW radar has gained popularity in different
applications inside or outside of vehicles in recent products
mainly due to its low-cost architecture [148], [149], [150].

The utilization of compact radar systems in various
companies globally is demonstrated in Table III. This table
highlights the utilization of three primary frequency bands,
namely, 24, 60, and 77 GHz, for both internal and external
cabin applications. Of these frequencies, 24 and 77 GHz are
commonly utilized in external cabin applications. In recent
years, there has been a shift toward the utilization of
77-GHz FMCW radar systems, as they provide a wider
bandwidth, enhanced range and velocity resolution, and a more
compact antenna array in comparison to 24-GHz systems.
This trend is indicative of the industry’s inclination toward
the implementation of 77-GHz radar technology [161]. The
utilization of 60-GHz radar technology is primarily confined
to applications within the cabin. The utilization of distinct
frequency bands for internal and external cabin applications
is a strategic measure to mitigate the potential for interference
and ensure optimal performance of the radar systems.

III. DIFFERENT APPLICATIONS OF
RADARS INSIDE A VEHICLE

A. Occupancy Detection
The importance of occupancy detection by radar is further

accentuated within the context of a vehicle. The detection of
occupants is a crucial step as it enables other applications
such as status monitoring to be activated [3]. This is due
to the high computational cost associated with vital sign
estimation. Therefore, when a seat is unoccupied within a
vehicle, it is unnecessary to apply vital sign estimation,
reducing computational cost and increasing system efficiency.

Researchers have proposed some assumptions for occu-
pancy counting by radars. Most in-use systems have been
evaluated with groups of individuals that were well-spaced
apart from one another in a wide area. In addition, the locations
of the individuals were not determined, and some systems
could only estimate the number of people. Hence, most
existing approaches for estimating the population in a large
space using radars need quite complicated signal processing
techniques that result in high computational costs [3].
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TABLE III
DIFFERENT RADAR COMPANIES FOR INSIDE AND OUTSIDE OF CABIN

A simple approach by radar for occupancy detection is to
count individuals entering and leaving at the entrance. In [162],
[163], and [164], it is demonstrated how to count several
persons moving through a broad entrance or passageway
at once. Their suggested approaches relied on patterns of
received signals according to the population, while the radar
was mounted at a height of 2.3 m on the roof to cover a
large area. This methodology employs a simpler approach to
counting occupants.

There are three main approaches by radar inside a
vehicle cabin for occupancy detection. In the most common

approach, researchers rely on the extracted features from
micro-Doppler signatures [3], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21]. This approach employs
artificial intelligence to detect and classify occupied seats after
feature extraction. In fact, these features are fed to artificial
intelligence to be used in classification. These signatures can
also appear in different other types of data like time–frequency
[12], [13], [14], [19], [21].

On the other hand, other researchers employed the reflected
energy to detect occupancy. The most common usage for
this approach is the left-behind children detection to save
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TABLE III
(Continued.) DIFFERENT RADAR COMPANIES FOR INSIDE AND OUTSIDE OF CABIN
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TABLE III
(Continued.) DIFFERENT RADAR COMPANIES FOR INSIDE AND OUTSIDE OF CABIN

children and pets, and avoid death in excessively hot or cold
conditions [2], [14], [35], [36], [37], [38], [39], [40], [41],
[42], [43]. Some studies have used this approach to detect
a single occupied seat [62]. These studies focused on driver
detection before vital signal monitoring. Finally, in the third
approach, researchers proposed to use vital sign signals to
count occupied seats [19], [49]. This approach presents the
most reliable solution for the left-behind problem.

There are some factors for sensor selection in occupancy
detection by radars inside a vehicle. One of the most important
factors is frequency selection. As seen in Fig. 3, most in-cabin
sensing investigations by radar for occupancy detection have

Fig. 3. Distribution of recent studies in frequency selection for
occupancy detection inside a vehicle by radar over the years indexed
on Google Scholar.
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TABLE IV
COMPARISON BETWEEN THE DIFFERENT IN-CABIN PUBLISHED PAPERS FOR OCCUPANCY

DETECTION BASED ON SETUP FREQUENCY AND METHODOLOGY BY RADAR

used millimeter-wave radar (60 GHz and over). As we
discussed earlier, millimeter-wave radar has several benefits
over centimeter-wave radars and low carrier frequency radars.
Regarding sensor placement, because the radar should be

placed under the car roof in occupancy detection applications,
the dimensions of the radar package are less important in
comparison to vital sign monitoring applications. More details
about the recent works can be found in Table IV.
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TABLE V
COMPARISON BETWEEN THE DIFFERENT IN-CABIN PUBLISHED PAPERS FOR OCCUPANCY

DETECTION BASED ON THEIR ACCURACY OR ADVANTAGES AND LIMITATIONS BY RADAR

There are three main approaches by radar inside a vehicle
cabin for occupancy detection. In the most common approach,

researchers rely on the extracted features from micro-Doppler
signatures [3], [11], [12], [13], [14], [15], [16], [17], [18],
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[19], [20], [21]. This approach employs artificial intelligence
to detect and classify occupied seats after feature extraction.
In fact, these features are fed to artificial intelligence to be
used in classification. These signatures can also appear in
different other types of data like time–frequency [12], [13],
[14], [19], [21]. On the other hand, other researchers employed
the reflected energy to detect occupancy. The most common
usage for this approach is the left-behind children detection
to save children and pets, and avoid death in excessively hot
or cold conditions [2], [14], [35], [36], [37], [38], [39], [40],
[41], [42], [43]. Some studies have used this approach to detect
a single occupied seat [62]. These studies focused on driver
detection before vital signal monitoring. Finally, in the third
approach, researchers proposed to use vital sign signals to
count occupied seats [19], [49]. This approach presents the
most reliable solution for the left-behind problem.

Table V compares the various in-cabin published papers
on occupancy detection using radar, based on their accuracy
and advantages and limitations. All the recent investigations
have reported accuracy levels above 90%; however, some
limitations have been identified, which should be addressed
in future publications. One of the most significant limitations
is the utilization of inappropriate methods for estimating vital
signs in the context of occupancy detection. In [19] and [21],
the assumed HR does not cover children’s HR properly. The
HR of children can be more than 120 beats per minute [49].
In [19], the BR is also considered to be less than 18, while it
can be higher for children [49].

One of the issues in using artificial intelligence is the split
of the data set into a test set and a training set. In [3] and [12],
to train the artificial intelligence approach, all gathered data
are pooled and shuffled. This method offered high accuracy.
However, Abedi et al. [5] mentioned that the evaluation
method cannot be used for new measurements. Since radar
has a high frame rate, combining all frames and selecting a
part of them to test would not guarantee that the test set was
fully invisible to the model.

B. Gesture Recognition
Potential distracting factors for drivers have increased due

to crowded roads in addition to the enhanced infotainment
functionality and vehicle’s ability to interact with its driver.
Visual, cognitive, physical, and auditory factors are among
the main causes of driving distraction. Visual and physical
distractions, when combined, have the biggest impact on
driving performance [53]. Researchers have conducted exten-
sive studies to address the aforementioned issues. Noncontact
human–computer interaction has been proposed and developed
recently, and the topic of contactless human–computer
interaction using hand-based gesture recognition has been
extensively explored recently.

Several sensors can be employed in hand-based gesture
recognition. Camera-based sensors raise privacy concerns
and have high computing costs due to considerable signal
processing and are sensitive to changes in background color
and light intensity [218], [219]. In very dim light conditions,
the accuracy rate decreases by 30% [54], [220]. IR sensors
can also be employed for hand gesture recognition inside

the vehicle. However, they do not preserve privacy and are
sensitive to illumination levels [221]. Depth-based sensors are
excellent at sensing location changes, but they are unable to
identify hand forms or orientations [222]. Wearable technology
restricts system input to the person who is wearing the
device [53]. Alternatively, radars can identify particular hand
and finger movements, and are unaffected by illumination
variations while effectively ensuring in-cabin privacy [58].
Recent radar-based gesture recognition investigations have
relied on micro-Doppler signatures. These investigations
employed either range-Doppler [53], [54] or time–frequency
[52], [55], [56], [57], [58], [59].

Despite the benefits of radars, the fundamental issue with
radar-based gesture detection systems is their dependence on
distance and direction [58]. In [58], the time of arrival (TOA)
information has been fed to a learning approach to address this
issue, while, in [52], different angles and ranges have been
examined. The maximum tilt from the perpendicular angle
and the maximum range to have reliable results are 15◦ and
100 cm, respectively.

The choice of a particular radar system has a direct impact
on the efficiency of radar for hand-based gesture recognition.
For example, the number of receivers in the radar system
determines the angular resolution of the radar. More receiver
channels will result in better angular resolution and better
discrimination. Lim et al. [11], [20] and Song et al. [21]
could use more channels to have better angular resolution
and reliable results. However, they have employed a radar
sensor with only one receiver to collect data. By one receiver,
the FMCW radar cannot discriminate targets located in the
same range even at different angles accurately [223]. Another
important parameter is the carrier frequency. Recent papers
mostly have used millimeter-wave radar to achieve accurate
detections. As seen in Table VI, higher frequencies are more
sensitive to small radar cross section changes and would have
better results [52]. The range resolution of radar is also one
of the key factors since better range resolution will result in
better discrimination [155].

Gesture recognition becomes more challenging with more
gestures. According to studies in Table VI, there are typically
seven to eight features for classification and identification.
Another important element is the distance of the hand from
the radar.

C. Occupant Status Monitoring
Recent investigations mostly focused on occupant status

monitoring due to several reasons. Status monitoring is a major
factor in assessing a person’s health and detecting emergencies
due to respiratory distress and heart attacks. Monitoring
vital signs such as BR can also reveal crucial information
about a person’s well-being and may reveal a variety of
medical conditions [224]. As the body tries to maintain the
amount of oxygen available to the tissues, a change in BR
is typically the first indication of a health issue [225], [226].
As driving is increasingly becoming an inevitable part of our
day, monitoring a driver’s vital signs can allow early detection
of health issues. This can lead to improved road safety.
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TABLE VI
COMPARISON BETWEEN DIFFERENT IN-CABIN PUBLISHED PAPERS FOR GESTURE RECOGNITION FOR HUMAN–CAR INTERFACE BY RADAR

Monitoring a driver also can warn them if they are
experiencing stress or sleepiness, which can impact the risk
of an accident. [62]. There are some ways to determine if the
driver is sleepy. Most papers used HR and BR monitoring.
An abrupt decrease in BR and HR is a sign of a drowsy driver
[82], [83], [84], [85], [86]. On the other hand, head motion
and eye blink frequency also can be monitored to detect sleepy
drivers [96], [97], [98], [102], [103], [104], [105], [106], [107].
Recent investigations have mostly used the extracted features
from micro-Doppler signatures. In [103] and [105], a 77-GHz
radar has recorded signals from eyeblink. They have used
ensemble empirical mode decomposition (EEMD) to remove
unnecessary information. Based on useful information, the
signals were reconstructed and fed to a short-time Fourier
transformation. Finally, a cell-average constant false alarm
rate (CFAR) has been applied to detect eye blinks. In [106],
heartbeat and respiration have been filtered before applying
CFAR.

There are many ways to identify distracted drivers by
radars. The most common solution is the use of micro-
Doppler signatures, especially head motions [90], [91], [92].
In [92], different head motions have been classified based
on velocity–time maps by a neural network generated from

a millimeter-wave radar at 77 GHz placed in front of the
driver. In [90], the range-time maps have been utilized to
monitor head movements by a 60-GHz radar. Another common
distraction is mobile usage. The distracted driver by mobile
can be recognized by scanning the reflected energy over
time [76]. Anger issues can also be addressed by radars.
Leem et al. [82] have focused on detecting an angry driver.
They rely on changes in breathing rhythm and HR. If the
detected anger exceeds the threshold value, the device sends
a signal to the voice device mounted on the vehicle to play
music to relieve anger.

It can be seen in Table I that a large number of recent works
focused on measuring BR and HR accurately. Mahler et al.
[60], Xu et al. [61], Lazaro et al. [62], Leonhardt et al. [63],
Yang et al. [64], Broto [69], and Park et al. [227] used different
methods to reach this objective. When it comes to pulmonary
diseases, respiratory rates may be used together with breathing
patterns to both diagnose and track a person’s health concerns.
While the average resting respiratory rate varies from person
to person, it generally ranges between 12 and 20 breaths
per minute [228]. Apnea (cessation of breathing), bradypnea
(low respiratory rate), and tachypnea (high respiratory rate)
are the three types of abnormal respiratory rates [229].
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TABLE VII
COMPARISON BETWEEN THE DIFFERENT IN-CABIN PUBLISHED PAPERS FOR VITAL SIGN MONITORING BASED ON THEIR SETUP, INCLUDING

SENSOR PLACE, FREQUENCY, GROUND TRUTH, AND RADAR BRAND AND/OR PACKAGE SIZE

Fig. 4. Radar setup in [11]. Seats 3 and 4 have the same time distance
from the radar. The discrimination of these two seats is possible by
having more than one receiver.

Other atypical breathing patterns have been documented
in [224].

Table VII compares different recent works according to
their setup for in-cabin radar applications to monitor vital
signs. These papers are compared based on the following
criteria: sensor place, frequency, ground truth, and radar brand
and/or package size. As apparent from the table, the rear
view mirror is the most common place to attach the radar in
recent studies. In [78], there is also a deep investigation into
sensor placement. The findings indicate that the best place to
monitor the driver’s BR is in the rearview mirror, as can be
seen in Fig. 5.

Most recent works have developed systems to monitor
drivers’ BR. Hence, the sensor placement is investigated to
estimate the BR and HR of drivers accurately. As shown in

Table VII, the rearview mirror is the most common place to
attach the radar in recent studies. In [78], there is also a deep
investigation into sensor placement. The findings indicate that
the best place to monitor the driver’s BR is in the rearview
mirror, as can be seen in Fig. 5.

Frequency selection is also a crucial task to have accurate
BR and HR estimations. There are some significant factors
in frequency selection. Body surface reflection is the most
significant one. Less penetration can reveal better information
in vital sign monitoring by radar. In [78] and [230], it is
demonstrated that the higher frequencies can penetrate less in
the human body. Various experiments were conducted, and it
was demonstrated that body motion at high frequencies has a
greater impact on signal reflection than the impedance change
of the skin surface [107], [231].

In addition, the higher the carrier frequency, the higher the
sensitivity of radar on small movements [232]. Hence, radar
can estimate human body vibration accurately. However, phase
wrapping is more possible in higher frequencies resulting in a
more complicated signal processing chain. When the phase of
the slow-time signal exceeds the phase range (−π , π), phase
wrapping occurs. Since the chest wall displacement can reach
12 mm and the wavelength of the most commonly used carrier
frequency, 60 GHz, is almost 5 mm, this problem can occur
frequently [223].

Fig. 6 depicts the distribution of recent studies in frequency
selection for vital sign monitoring inside a vehicle by
radar over the years indexed on Google Scholar. Recent
studies employed millimeter-wave radar (60 GHz and over
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Fig. 5. Different radar placements inside a vehicle for driver’s BR estimation [78]. The rear mirror (D) has the best results.

Fig. 6. Distribution of recent studies in frequency selection for vital sign
monitoring inside a vehicle by radar over the years indexed on Google
Scholar.

frequencies) to monitor vital signs inside a vehicle. It is
mentionable that the Federal Communications Commission
(FCC) is currently emphasizing the 60-GHz band to be used
in life-saving applications [233].

Another important factor in sensor selection is package size.
The small dimensions of radar for in-cabin applications are
essential due to the low space inside a vehicle. Hardware
integration is an important consideration to reduce package
dimensions. Smaller devices and circuit components can be
made by higher carrier frequencies increasing the possibility
of hardware integration [234]. Small package radar with
dimensions less than 50 × 70 mm was employed in recent
investigations. Fig. 7 depicts the board and radar setup inside
a vehicle for vital sign monitoring of the driver [83].

Different investigations used different types of ground truths
to assess their proposed algorithms for vital sign monitoring
inside a car. As can be seen in Table VII, the most common
ground truth for the evaluation of estimated HR is pulse
oximetry. Fig. 8 shows the pulse oximeter used in [83]. It is
a nonintrusive way to measure oxygen saturation, which can
lead to estimating BR and HR [89], [235].

There are many considerations to consider while attempting
to improve vital sign monitoring accuracy. These include
signal processing chain, human body motion cancellation,
vehicle vibration cancellation, clutter removal, multipath
removal, beam steering, phase unwrapping, and harmonic
analysis. Table VIII compares different in-cabin published

Fig. 7. X4M300 used in (a) radar board and (b) radar setup inside a car
for vital sign monitoring of driver [83].

papers for vital sign monitoring regarding their signal
processing chains.

To improve the quality of vital sign signals inside a
vehicle, random human body cancellation has been studied
[62], [80], [94]. A slow-time envelope modulation results
from the breathing-related vibrations of the chest and the
random human body motion. The breathing signal can be
filtered to prevent significant frequency interferences, but,
if there are a lot of random human body motions, the
interferences will appear in the breathing frequency range.
Intermodulation distortions can also occur in this frequency
range [236]. In [94], the driver’s motions are calculated
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TABLE VIII
COMPARISON BETWEEN THE DIFFERENT IN-CABIN PUBLISHED PAPERS FOR VITAL SIGN MONITORING IN THE SIGNAL PROCESSING CHAIN

Fig. 8. Pulse oximeter used in [83].

from the Doppler-time map and used to develop a signal
distortion compensation. This measure helps to remove the
signal distortion that the driver’s motions make while driving.
In recent studies, the human body motion whether by simple
filtering [49], [78] or a specific filter design [62], [80], [82],
[91], [92], [94] cannot be removed reliably when the human
body motion is within the breathing spectrum, which is less
than 0.5 Hz [237]. In [238], the use of a camera system
that comes with a microwave sensor has been investigated to
develop a random body movement cancellation approach. The
phase shift in the radar sensor was made up for using the
random body motions that the camera captured.

The main cause of car body vibrations in a moving vehicle
is the changes in the road surface. Depending on the type of
vehicle, the power spectrum density (PSD) has a significant

amount of content in the range between 1 and 100 Hz
[239]. A mathematical framework was proposed in [91] and
[92], whereby an accelerometer was attached to a RADAR-
based sensor, allowing for the recording of acceleration.
By reconstructing the movement of the seat and the passenger
using these data, the corresponding Doppler was calculated.
The signal received by radar was then denoised using the
Doppler that resulted from the unwanted vibrational motion.

The clutter inside a vehicle reflects signals similar to a
human, but it remains stationary over time. Therefore, clutter
cancellation for UWB radars is crucial as these radars measure
human body displacements based on the amplitude of signals.
Strong clutter reflections can affect human body displace-
ments in UWB signals. Clutters are typically suppressed
using filtering techniques, such as motion filter [113], IIR
moving average filter [82], [240], and pseudo-bi-dimensional
EEMD [71].

Due to the confined space inside a vehicle, there are
multipath signals. This issue is addressed rarely because
most studies are focused on the vital sign monitoring of
drivers. As radars can be installed close to the driver, the
multipath effect is insignificant. Few studies on multiple target
monitoring have mentioned this issue. In [90], the correlation
coefficients between obtained vital signals in various locations
are analyzed to choose the corresponding vital signs. In [241],
the proposed method was able to distinguish the respiration
signals of five participants seated close to one another using
the DeepBreath subjects [90]. In this approach, each seat has a
specific distance from the radar, which is different from other
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TABLE IX
COMPARISON BETWEEN THE DIFFERENT IN-CABIN PUBLISHED PAPERS FOR VITAL SIGN MONITORING BASED ON FOUR IMPORTANT FACTORS,

INCLUDING THE SELECTED VITAL SIGNS, ACCURACY OR ADVANTAGES, LIMITATIONS, AND THE NUMBER OF SUBJECTS

seats. Hence, the radar should not be placed on the line of
symmetry of the car. Yang et al. [78] conducted extensive
research on sensor placement to improve vital sign monitoring
accuracy for a driver.

HR estimation by radar suffers from multiple challenges.
The most important one is the higher harmonics of breathing
vibrations. This issue becomes prevalent as this indicator
interferes with the heartbeat signal. One solution to recognize

HR from higher harmonics of breathing is harmonic analysis.
It is based on the pulse train theory [232]. Estimating HR
without harmonic analysis produces inaccurate and unreliable
figures; this is because breathing harmonics can have stronger
amplitudes than the HR peak in the frequency domain [232].
It has also been demonstrated that the heart vibrations in the
frequency domain can be between two sequential harmonics
of breathing vibration and have less amplitude. This creates
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TABLE IX
(Continued.) COMPARISON BETWEEN THE DIFFERENT IN-CABIN PUBLISHED PAPERS FOR VITAL SIGN MONITORING BASED ON FOUR IMPORTANT

FACTORS, INCLUDING THE SELECTED VITAL SIGNS, ACCURACY OR ADVANTAGES, LIMITATIONS, AND THE NUMBER OF SUBJECTS

difficulty in HR estimation. Some studies have used simple
filtering to remove breathing harmonics [49], [79], [80], [82],
[84], [89], [90], [227], [242].

Some studies developed approaches to detecting abnormal
breathing. In [237], the human vibration signal has been
filtered up to 0.5 Hz, or 30 breaths per minute, to estimate the
breathing signal. This indicates that the estimation technique
only considers the primary peak. As a result, higher frequency
information is omitted in the reconstructed breathing signal
after filtering, and the breathing signal resulting from abnormal
breathing with sharp peaks will be smoothed. Consequently,
a level of conflated difficulty is added to the detection of this
abnormal breathing.

The suppression of breathing vibrations, in service of
garnering accurate HR estimation, has been studied exten-
sively. Lin et al. [234] have employed EEMD and principal
component analysis (PCA) to reduce the breathing vibration
effect on heart vibrations. An iterative notch filter has also
been utilized to suppress breathing harmonics [232], [243].

The fast Fourier transform (FFT) and continuous wavelet
transform (CWT) are regarded as highly fundamental
techniques for obtaining the BR [244], [245], [246], [247],
[248], [249], [250], [252], [252]. With respect to the peak of
the spectrum in a certain frequency band, these techniques can
estimate the BR. For vital sign monitoring inside a vehicle,

the most common estimation technique is the peak of the FFT
of the target’s vibration. The HR can also be estimated from
its peak after taking FFT [231]. As discussed before, due to
the presence of breathing harmonics close to the HR peak
and other interferers, harmonic analysis is required for in-
cabin applications [232]. Other estimation techniques, such as
the maximum likelihood estimator (MLE), can be employed
to estimate BR [253]. Cyclostationary is also a different
method to improve the radar sensor’s ability to detect vital
signs [249], [254].

Table IX compares in-cabin published papers for vital
sign monitoring under four important factors, including the
selected vital signs, accuracy or advantages, limitations, and
the number of subjects. The results of different papers
demonstrated that up to two breaths’ error was acceptable.

IV. CONCLUSION

In this article, the most recent advances in radar-based
in-vehicle sensing technology were surveyed. It showed
how radars could be used in occupancy detection, gesture
recognition to assist drivers, and occupant status monitoring.
We discuss the main approaches used in each application,
explain how these approaches are used, and thoroughly
examine the benefits and limitations. The most used main
approach is BR and/or HR estimation, which is mostly
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employed for occupant status monitoring. Future works,
particularly those involving millimeter-wave radars, will
benefit from a high-level discussion of signal processing
techniques, radar placement, and frequency selection in
various applications. In terms of signal processing, phase
unwrapping and harmonic analysis have been discussed as
critical challenges in recent studies.
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