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Abstract—Research and development efforts on sustain-
able and intelligent transportation systems are accelerating
globally as the transportation sector contributes significantly
to environmental pollution and produces a variety of noise
and emissions that impact the climate. With the emergence of
ubiquitous sensors and Internet-of-Things (IoT) applications,
finding innovative transport solutions, including adequate
climate change mitigation, will all be vital components of
a sustainable transport future. Thus, it is essential to con-
tinuously monitor noise and exhaust emissions from road
vehicles, trains, and ships. As a contribution to addressing
this as part of an effort of the European Union project called
“NEMO: Noise and Emissions Monitoring and Radical Mitiga-
tion,” in this article, we propose the design and development
of a real-time noise and exhaust emissions monitoring for
sustainable and intelligent transportation systems. We report real-world field testing in some European cities where
vehicle noise and exhaust emissions data are gathered in the cloud-enabled Nautilus platform and evaluated using
artificial intelligence (AI) algorithms to determine their categorization into different classes of emitters and, thereby,
enabling the infrastructure managers to define logic and actions to be taken by high emitters in near real time. We outline
the creation of a complete NEMO solution to monitor and reduce noise and emissions in real time for sustainable and
intelligent transportation systems.

Index Terms— Artificial intelligence (AI), emission, exhaust, Internet of Things (IoT), monitoring system, noise,
sensors, smart cities, sustainable, transportation.

I. INTRODUCTION

ENVIRONMENTAL noise is still one of the main drivers
of environmental pollution in Europe although several
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attempts have been made to lower the noise levels. The
European Environmental Agency’s most recent report esti-
mates that solely road traffic noise affects 113 million people,
but that transportation noise affects more than 20% of the
European Union’s (EU) population in general [2]. According
to a growing body of research, transport noise may disrupt
sleep, lead to cardiovascular illness, hormonal imbalances,
and psychological issues, and even lead to early mortal-
ity [3], [4], [5]. Studies on long exposure to noise have
found cognitive decline and a lower quality of life among
young children [6]. Moreover, compared to other energy
end-use sectors, the transport sector’s share of global energy-
related CO2 emissions has grown rapidly. In particular, the
transportation sector causes 29% of global CO2 emissions [7],
and reducing its impact is an important step in any climate
change mitigation plan. Therefore, transportation noise and
exhaust emissions are considered one of the major threats
to people’s health and quality of life [8], [9], [10]. Indeed,
vehicle noise and exhaust emissions will continue to increase
in scale and intensity due to population expansion, urbaniza-
tion, and unprecedented growth associated with vehicle use if
there are no intelligent methods to monitor and detect these
pollutants [11], [12].

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2142-9522
https://orcid.org/0009-0001-2440-5737
https://orcid.org/0009-0008-9965-312X


25498 IEEE SENSORS JOURNAL, VOL. 23, NO. 20, 15 OCTOBER 2023

According to recent scientific studies, nearly 80% of the
pollution produced by road traffic is due to the highest emitter
vehicles [13], [14]. These small number of high-emitter road
users who make excessive noise and exhaust emissions are
receiving more and more attention. Several European munic-
ipalities have stated that they intend to use noise measures
to keep loud show-off vehicles and motorbikes with illegal
exhausts out of the city center and off of scenic backroads [15].
Cities are establishing low-emission zones (LEZs) to control
access to older high-emission vehicles while avoiding punitive
measures against more recent automobiles that are within
the prescribed threshold limit of noise and emissions [16].
LEZs are essentially metropolitan districts that require certain
types of vehicles, such as heavy goods trucks (HGVs), deliv-
ery vehicles, buses, taxis, and private automobiles, to meet
certain emission standards in order to enter free of charge
or to avoid paying a fee [17], [18], [19]. Therefore, it is
necessary to regulate better the actual emissions generated
by vehicles in urban areas. Because of this, there is a great
interest in broadly identifying these high emitters (HEs) in
real time in order to be prepared to control and reduce noise
and exhaust emissions. This class of high-emitting vehicles
must be adjusted; therefore, accurate measurements of their
noise and exhaust emissions under actual driving conditions
are required. Furthermore, for Europe to become the first
climate-neutral continent in the world, emissions from the
transportation sector must be monitored and reduced further
and quickly.

With the rapid advancement in the Internet of Things (IoT),
artificial intelligence (AI), and remote sensing technologies,
it is now possible to sense and analyze various environmental
events in real time for a variety of the Internet-of-Vehicles
(IoV) applications [20], [21], [22], [23]. With the advent
of advance AI, IoT, IoV, and remote sensing technologies,
it is possible to measure road traffic emissions on a large
scale, effectively, and inexpensively. With these technologies,
communities may more effectively and fairly enhance their
noise and air quality by identifying high-emitting individ-
ual vehicles and, thereby, improving traffic decision-making.
Leveraging cutting-edge remote sensing technology and exten-
sive real-time sensor data analysis, researchers are now aiming
to implement effective monitoring and mitigation methods
to significantly decrease noise and exhaust emissions for all
modes of transportation.

An assessment of the measurement performance of remote
sensing devices (RSDs) to screen vehicle emissions was car-
ried out in [24]. The main focus was on gaseous pollutants
such as nitrogen oxide (NO), nitrogen dioxide (NO2), and
carbon monoxide (CO) from light-duty vehicles. The find-
ings suggested RSDs as a potential technique for screening
automobile emissions to determine which vehicle types and
which vehicles are high or low polluters under a particular
set of driving conditions. Similarly, it has also been reported
in [25] that using on-road remote sensing equipment as part
of an enforcement campaign to enhance urban air quality
can quickly, accurately, and affordably identify high-emitting
vehicles. Moreover, there have also been some projects such as

Life GySTRA1 that used RSDs to detect HEs on the road and
then be checked for accuracy at a well-equipped inspection
station [13]. By taking such measures, their emissions may be
brought down to levels that are typical for vehicles, which
would greatly reduce overall road transport emissions and,
in turn, the health problems that air pollution brings about.
Data-driven analysis was used in [26] to assess how the electri-
fication of the city of Rome’s public transportation system and
private vehicle fleet will affect energy demand, climate change,
and air pollution emissions. However, all of these studies
focused on monitoring vehicles’ gaseous (exhaust) emissions
and identifying HEs. In addition, research has been done on
mapping, modeling, and measuring the amount of traffic noise
in urban areas such as [27], [28], [29], [30], and [31].

Even though there is research on the noise and exhaust
emissions of vehicles, these systems are either ineffective
at measuring actual driving conditions or require a single
vehicle to be installed intrusively and used for a long period
to collect reliable data. Therefore, it is obvious that real-time
measurements of the different types of vehicle noise and
exhaust emissions are not readily available. This makes it
challenging to accurately analyze and estimate the noise and
exhaust emissions from various types of vehicles in real time.
In addition, real driving emissions (RDEs) refer to the emis-
sions produced by vehicles in real-world driving conditions.
This type of testing accurately assesses vehicle emissions
on an individual basis, while they are actually being driven.
Unlike traditional laboratory testing, RDE testing evaluates
vehicle emissions beyond controlled settings, taking into
account various factors, such as speed, payload, and driving
behavior. The primary goal of RDE tests is to verify that
vehicles meet the emission standards as stated on paper when
operating on the road. Hence, there is a need for standardized
assessment techniques to improve the validity of the data
gathered and the efficacy of the ensuing awareness-raising
and mitigation measures. Systems built into the transportation
infrastructure can assist in identifying high-emitter vehicles
that do not respect the prescribed limits and, therefore, restrict
their access to designated LEZs.

This work outlines the design and implementation of a
real-time monitoring system for noise and exhaust emissions
for intelligent and sustainable transportation systems, includ-
ing road vehicles and trains, as an effort of the EU project
called “NEMO: Noise and Emissions Monitoring and Radical
Mitigation.”2 During the pilot testing in multiple European
cities such as Rotterdam (The Netherlands), Barcelona (Spain),
Florence (Italy), and the Austrian village Teesdorf, real-world
sensor data from various vehicles and trains are monitored and
gathered to effectively test the NEMO system and identify the
HEs (both in terms of noise and exhaust emissions) in real
time. We have developed a complete application that enables
an analyst and an infrastructure manager to track real-time
sensor data related to the noise and gaseous emissions of
road vehicles and trains. The data on individual road vehicles

1https://lifegystra.eu/en/home/
2https://nemo-cities.eu/
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and trains are collected in the cloud platform, assessed, and
classified as high, medium, low, or normal emitters using
AI-enabled classification algorithms. Through novel RSD
technologies and NEMO system implementation, this article
aims to provide a holistic solution to identify HEs in real
time to simultaneously monitor noise and exhaust emissions
for sustainable and intelligent transportation systems.

A. Comparative Analysis
In our comparative analysis of the NEMO system, it is

important to highlight the novelty of our proposed solution.
We have conducted a comprehensive evaluation of existing
systems, and we have found that there are no comparable
alternatives to the NEMO system currently available. While
there are some solutions, such as the Hydra system developed
by Bruitparif [32], which share certain functionalities with the
NEMO system, it is essential to note the distinct capabilities
and limitations of each.

In comparison to the Hydra solution, which primarily
focuses only on tracking excessively noisy road vehicles, our
NEMO system offers a more comprehensive approach. Unlike
the Hydra system, the NEMO system is designed to detect,
classify, and analyze both noise and exhaust emissions from
road vehicles and also from trains. This distinction highlights
the significant advantage of the NEMO system over existing
competitors, as it provides a more comprehensive and accurate
understanding of the impact of road vehicles and trains’
noise and exhaust emissions. The NEMO system’s advanced
capabilities position it as an innovative and powerful tool
for different stakeholders in addressing noise and pollution
challenges in urban environments.

B. Article Contributions
In summary, the major contributions of this article can be

outlined as follows.
1) In pursuit of the EU’s commitment to monitoring noise

and exhaust emissions, we present the NEMO system,
a totally new autonomous remote sensing technology
to accurately and cost-effectively identify and classify
transgressing noisy and high exhaust emitter vehicles
(including road vehicles and trains) in near real time to
control noise and air quality and mitigate detrimental
impacts on public health and the environment.

2) We have integrated different sensors to effectively mea-
sure noise and emissions of road vehicles and trains in
the existing infrastructures, which enables the NEMO
system to identify noise origin in a dense traffic stream
and localize HEs in real time.

3) Moreover, we have also created a complete software and
communication infrastructure, such as infrastructure-to-
infrastructure (I2I) and infrastructure-to-vehicles (I2Vs)
based on remote sensing data to enable different infras-
tructure integration options.

4) Data from real-world field testing of individual road
vehicles and trains in European cities such as Rotter-
dam and the Austrian village Teesdorf are collected in
the cloud platform and evaluated using our AI-based

classification algorithm to accurately detect and classify
them as high, medium, and normal emitters.

5) Finally, we present the development of a comprehen-
sive NEMO solution. The appropriate traffic regulating
agencies and stakeholders may use our NEMO system
to put notification systems in place to address noise and
pollution challenges in urban environments.

C. Article Organization
The rest of this article is organized as follows. Section II

describes the NEMO system model. The NEMO system’s
functional architecture is briefly presented in Section III. The
noise source detection and localization algorithm is described
in Section IV. The AI-enabled classification model is presented
in Section V. NEMO system deployment and its field testing
results are explained in Section VI. The NEMO CDS system
for real-time communication between the NEMO system and
vehicles is detailed in Section VII. Section VIII outlines
the NEMO system’s graphical user interface (GUI) platform
for road vehicles, and trains and provides the data analysis.
Finally, conclusions are drawn, and future works are proposed
in Section IX.

II. NEMO: NOISE AND EMISSIONS MONITORING
AND RADICAL MITIGATION SYSTEM MODEL

In this section, we present our NEMO system that can mea-
sure noise and exhaust emissions from individual road vehicles
and trains, and identify the HEs in real time. By empirically
evaluating individual vehicles, applying customized tariffs on
the most polluting vehicles, and blocking their entry to LEZs,
our NEMO system seeks to develop cutting-edge RSD-based
solutions to reduce emissions and noise from the transporta-
tion industry. The NEMO monitoring system model and its
dataflow diagram are shown in Fig. 1.

Nautilus, an integral software infrastructure component of
the NEMO system model, seamlessly merges remote sensing
and data processing to effectively categorize the noise and
exhaust emissions of road vehicles and trains. As illustrated
in Fig. 1, Nautilus comprises four major components: the
Synchronizer, the Data Hub, the classification Dialog system
(CDS), and the Analytics components. In the subsequent
section, we will delve into a comprehensive explanation of
each of these components and their respective roles.

To facilitate the measurement of noise and exhaust emis-
sions, remote sensing technology is strategically deployed
at various locations, such as tolling stations, roadsides, and
railway lines. At each site, the diverse sensor arrays capture
raw measurement data, which is subsequently synchronized
by the Synchronizer to obtain a holistic representation of
the vehicle’s noise and exhaust emissions. For illustrative
purposes, we will primarily focus on road vehicles throughout
our discourse. However, it is important to note that the
design and interfaces of the Synchronizer can be appropriately
adapted for train-specific applications by substituting relevant
terminologies, such as “road,” “rail,” “lane,” and “wagon.”

Upon successful synchronization of the raw data, the Syn-
chronizer interfaces with a comprehensive vehicle registry
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Fig. 1. NEMO monitoring system model.

database to retrieve crucial vehicle characteristics necessary
for the subsequent classification process. These characteris-
tics encompass aspects, such as fuel type, noise emission
type, approval limits, and other pertinent details. Subse-
quently, this amalgamated dataset, comprising the sensor
data and the aforementioned vehicle characteristics, is trans-
mitted from the sensing site to a centralized Data Hub
module. The transfer process is facilitated through a mech-
anism known as the “pass-by report,” which allows the
Data Hub to diligently store the pass-by report information,
thereby generating a comprehensive registry for each passing
vehicle.

Using the power of AI, the Data Hub employs an AI-enabled
classification model, which is expounded upon in Section IV,
to categorize the noise and exhaust emissions of vehicles.
This classification process involves comparing the emissions
of each vehicle with those of similar vehicles, as well as
with the applicable type-approval limits or high-emitting
thresholds (based on type-approval or local emission limits
stipulated by the relevant authorities). Upon classification,
vehicles exceeding the defined thresholds are flagged as HEs.
The classification logic employed in this process can be
customized to align with the specific requirements of the site,
road authority, or the legislative framework of the respective
jurisdiction. The resultant classifications are stored within the
Data Hub for future reference.

Following the classification process, the Data Hub promptly
notifies the CDS, which subsequently communicates the
classification results back to the remote sensing site (I2I).
In addition, the CDS conveys the classification outcomes to
the respective vehicle or owner (I2V) through the HE message
in near real time. Consequently, this streamlined flow of
information ensures that all relevant stakeholders are promptly
informed of the vehicle’s emission categorization.

Finally, the Analytics component serves as an invaluable
data analysis platform, facilitating in-depth studies of noise
and exhaust emissions. This enables infrastructure managers
and internal NEMO users to gain comprehensive insights,
which can be utilized to refine the criteria for identifying high-
emitting vehicles, particularly in the context of LEZs.

III. NEMO SYSTEM FUNCTIONAL ARCHITECTURE

In this section, we present a comprehensive overview of
the functional architecture of the NEMO system, focusing on
the Synchronizer, the design of the Data Hub, and the main
interfaces for the Nautilus platform components.

A. Synchronizer
The Synchronizer serves as a vital link between the NEMO

system and the sensors, enabling the acquisition of sen-
sor results. By establishing direct communication with the
sensors, the Synchronizer facilitates the retrieval of sensory
data related to passing vehicles. This interaction takes place
through various interfaces within the measuring infrastructure,
as illustrated in Fig. 1. Furthermore, the Synchronizer utilizes
internet sources, such as the vehicle registration database
(VRDB) service, to obtain vehicle characteristics based on
identification details such as license plates or train wagon
numbers, as depicted in Fig. 1. Once all the necessary data
is gathered, it is consolidated into a pass-by report and
transmitted to the Data Hub.

The Synchronizer constitutes a site-specific component of
the Nautilus platform, tailored to a specific type of transport
(road/rail) and a particular arrangement of sensors and their
placement. While the fundamental operation of the Synchro-
nizer remains consistent across various transport modes and
measurement sites, this article focuses on describing the design
and interfaces of the Synchronizer for the test site in Teesdorf,
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TABLE I
SYNCHRONIZER COLLECTED DATA

Austria, where Kapsch TrafficCom operates a test site. Thus,
this design serves as a reference for all sites. For the design and
interfaces of a railway-specific Synchronizer, terminologies
such as road, rail/train, lane, and car can be substituted
accordingly.

The Synchronizer process comprises several subprocesses.
1) Collect data.
2) Synchronize collected data (to a pass-by report).
3) Provide a pass-by report to the Data Hub.
4) Additional functionality and design considerations.

These subprocesses are explained briefly here.
1) Collect Data: The subprocess of collecting data entails

the Synchronizer gathering information during a vehicle
passage. The Synchronizer’s responsibilities within this sub-
process include triggering sensors and systems to enable the
measurement and data collection of passing vehicles (particu-
larly in pilot tests where self-triggering of sensors is utilized,
synchronized based on time stamps). In addition, the Syn-
chronizer receives data from autonomous sensors and systems.
Table I presents the sensors and systems that the Synchronizer
interfaces with, accompanied by a brief description of the data
they collect. The table also indicates whether the Synchronizer
is triggered by the sensor/system or if it triggers them.

To initiate the sensors and systems, the Synchronizer ini-
tially needs to be notified of the vehicle’s passage. The
TollingModule pushes the information about the vehicle pas-
sage, serving as the initial step in the data collection process.
Subsequently, depending on timing and vehicle type, fur-
ther data collection takes place. The minimum set of sensor
modules required to classify all vehicle emissions includes
the VehicleIdentificationModule (e.g., the TollingModule at
the Teesdorf test site), NoiseModule, ExhaustModule, and
VRDBService module.

2) Synchronize Collected Data: Within this subprocess, the
Synchronizer generates a single pass-by report for each pass-
ing vehicle and consolidates all the collected sensor and
system data into this report. The synchronization process
employs different criteria to match the data to the pass-by
report of the vehicle passage, depending on the specific
sensor/system and triggering type. The matching criteria used
are outlined in Table II.

3) Provide Pass-By Report: During the subprocess of pro-
viding the pass-by report, the Synchronizer transmits the
created pass-by report to the Data Hub. In addition, the
Synchronizer sends a pass-by report to the Data Hub if one
of the following conditions is met: the pass-by report is

TABLE II
SYNCHRONIZER MATCHING CRITERIA

completed (i.e., all data are merged), or the pass-by report
time-out is reached. The time-out mechanism is necessary
since the Synchronizer lacks awareness of the functional state
of the sensors and systems that it interfaces with. In the event
of an error with a sensor or system, the Synchronizer must
not wait indefinitely for a result. By adhering to the time-
out threshold, the Synchronizer ensures the timely provision
of pass-by reports to the Data Hub, avoiding any backlog.
Moreover, the time-out feature enables the realization of the
use case for vehicle-to-infrastructure (V2I) communication
within the constraints of the vehicle passage. The time-out
value is configurable within the Synchronizer.

4) Additional Functionality and Design Considerations: In
addition to the provisioning of pass-by reports, the Synchro-
nizer is capable of capturing additional information, such
as images or sound clips, during a vehicle passage. While
not strictly necessary to fulfill the NEMO use case, these
data can assist operators in error assessment and situational
analysis at the measurement site. The Synchronizer operates on
hardware situated at the measurement site, ensuring minimal
network latency and facilitating swift communication with
road/trackside sensors and systems. Furthermore, the Synchro-
nizer incorporates a data cleanup mechanism to comply with
the General Data Protection Regulations (GDPRs). To achieve
accurate matching of sensor and system data, the Synchronizer
and all sensors and systems on the measurement sites synchro-
nize their clocks using a common network time protocol (NTP)
service.

B. Data Hub
The Data Hub in the cloud provides support to the following

subprocesses.
1) Receive incoming pass-by reports.
2) Store the pass-by reports.
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Fig. 2. Interactions between the various components of the Data Hub.

3) Classify the emission of the individual vehicle pass-by.
4) Store the classification reports.
5) Notify the CDS of a new classification report.
6) Provide a Query Interface for analytics to access pass-by

and classification data.
7) Receive incoming health messages from the different

modules.

The Data Hub encompasses various modules responsible for
executing the subprocesses, as depicted in Fig. 2. Each mod-
ule’s role is elaborated upon in the following subsections.

1) Receive Incoming Pass-By Reports: In this subprocess,
the Collector module receives the data. If vehicle information
is not available, the Pass-By Enricher module attempts to
query it from the vehicle registry. Subsequently, either the
Collector or the Pass-By Enricher forwards the pass-by report
to the Pass-By Queue for further processing. To ensure privacy,
vehicle registration data are pseudonymized, removing any
sensitive information.

2) Store the Pass-By Reports: Each pass-by report received
by the Pass-By Store module from the Pass-By Queue is stored
in the database for future retrieval. Separate storage areas exist
for road and rail pass-by reports.

3) Classify the Emission of the Individual Vehicle Pass-
By: Within this subprocess, the Emission Classifier module
receives each pass-by report from the Pass-By Queue. Based
on the site identifier in the pass-by report, the Emission
Classifier applies the appropriate classification model and
generates a Classification Report. This report is then enqueued
in the classification queue for further processing.

4) Store the Classification Reports: The Classification Store
module receives each classification report from the classi-
fication queue and stores it in a database for later access.
Similar to pass-by reports, road and rail classifications are
stored separately.

5) Notify the Classification Dialog System of a New Classi-
fication Report: The Classification Notifier module receives
each classification report from the classification queue and
forward/pushes it to the CDS. The CDS, equipped with various
communication channels, such as vehicle onboard unit (OBU)
(V2X OBU), email, short message service (SMS), and mobile
application, facilitates communication with multiple sites.

6) Provide a Query Interface for Analytics to Access Pass-By
and Classification Data: The Query Interface module serves
as a gateway for external Analytics components to request
data. Upon receiving a data request, it retrieves the relevant
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TABLE III
SENSOR–SYNCHRONIZER INTERFACES

TABLE IV
SYNCHRONIZER–DATA HUB INTERFACE

information from the pass-by and/or classification stores and
provides it, subject to the requester’s appropriate access rights.

7) Receive Incoming Health Messages: The Collector mod-
ule also receives health messages from different sensors. Each
sensor periodically sends messages indicating its current state,
whether healthy, or degraded.

8) Additional Functionality and Design Considerations: To
ensure scalability, the Data Hub is designed as a collection of
loosely coupled modules capable of interacting through simple
protocols, such as hypertext transfer protocol (HTTP)3 and
advanced message queuing protocol (AMQP).4 This design
allows individual modules to be containerized using Docker5

and deployed through container orchestration platforms, such
as Kubernetes.6

C. Interfaces
This section elucidates the principal interfaces utilized in the

Nautilus platform. The underlying data model and interfaces
shared by all modules are described using the OpenAPI7

specification.
1) Sensors to Synchronizer: This section elaborates on the

interfaces between the Synchronizer and the sensors/systems
responsible for gathering data related to vehicle passages.
The Synchronizer interfaces aim to standardize communication
technologies, minimizing operational costs. Details regarding
these interfaces are presented in Table III, including interface
identification, communicating entities, and a brief description

3https://developer.mozilla.org/en-US/docs/Web/HTTP
4https://www.amqp.org/
5https://www.docker.com/
6https://kubernetes.io/
7https://www.openapis.org/

of the scope and data exchanged. The interface naming con-
vention follows the pattern: “three-letter abbreviation sender
system”—“3-letter abbreviation receiver system”—“interface
identifier” (e.g., SYN-DAH-1). Two different technologies are
employed for data exchange. The sensors and systems at the
measurement site employ the ZeroMQ message transport pro-
tocol (ZMTP),8 while the central system components utilize
an REST9-based data format over HTTP.

2) Sensor Fusion: In the sensor fusion process, the Syn-
chronizer receives image triggers from the roadside station
and subsequently requests weather and noise measurement
data from the corresponding stations and modules. The
VRDB-Service is queried for vehicle registration information
based on the license plate, which is then added to the road
pass-by report upon receiving the image result [automatic
number plate recognition (ANPR)]. The Exhaust and V2X
modules independently provide their data, triggered by their
respective systems. Once all data are fused and added to the
report, or a sensor timeout occurs, the road pass-by report is
sent to the Data Hub.

3) Synchronizer to Data Hub: The interface from the Syn-
chronizer to the Data Hub is specified using the OpenAPI
document. Table IV provides an overview of the Synchronizer
and Data Hub interface. Once the Synchronizer synchronizes
the sensor data for a pass-by on-site, all relevant pass-by data
are posted to the Data Hub as a JavaScript object notation
(JSON)10 document. The Data Hub’s Collector API exposes
POST interfaces for vehicle pass-bys and a generic inter-
face for sending media files related to pass-bys. In addition,

8https://rfc.zeromq.org/spec/23/
9https://www.ibm.com/cloud/learn/rest-apis
10https://www.json.org/json-en.html
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TABLE V
PASS-BY REPORT HANDLING INTERFACE

TABLE VI
CLASSIFIER INTERFACE

TABLE VII
CLASSIFICATION REPORT HANDLING INTERFACE

TABLE VIII
CLASSIFICATION REPORT NOTIFYING INTERFACE

TABLE IX
QUERYING INTERFACE

an interface is available for sensors to send their health
information.

4) Pass-By Report Handling: Table V presents the pass-by
report handling interface. Pass-by reports are stored in a
PostgreSQL11 database, which supports JSON format. This
allows querying of pass-by reports based on their individual
attributes.

5) Interaction With Classifier: A Classifier interface is out-
lined in Table VI. The Emission Classifier module manages
all processes related to emission classification. It receives
new pass-bys from the pass-by queue and autonomously
initiates the sound and exhaust classification processes. Once
completed, the classifications are gathered, and a classification
report is generated and sent to the classification queue.

6) Classification Report Handling: The classification report
handling interface is provided in Table VII. When a new
classification report becomes available in the classification
queue, it is processed by the classification notifier. Similar

11https://www.postgresql.org/

to pass-by reports, classifications are stored in a PostgreSQL
database, enabling searching based on individual classification
characteristics.

7) Data Hub to the CDS: The Classification Notifier informs
the CDS about new classifications. The classification report
handling interface is presented in Table VIII.

8) Data Hub and Analytics Interaction: The Query Interface
module facilitates the receipt of pass-by and classification
reports from the Data Hub. It utilizes GraphQL12 to define
and respond to queries flexibly. The Query Interface directly
retrieves data from the PostgreSQL databases. Table IX pro-
vides an overview of the Query Interface module.

IV. NOISE SOURCE DETECTION AND LOCALIZATION
USING MICROPHONE ARRAY IN

DENSE TRAFFIC STREAMS

In this section, we present an algorithm designed to address
the accurate identification and localization of high-emitting

12https://graphql.org/
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Algorithm 1 Noise Source Detection and Localization
using Microphone Array in Dense Traffic Streams
Input : Microphone data: A sequence of audio

samples collected from the microphone array
Output: Corrected peak sound pressure level: A

numerical value representing the corrected
peak sound pressure level

Start
Initialization:
• Initialize the microphone array and configure the
beamforming algorithm;

Data Collection:
• Collect audio data from the microphone array
and store it in the variable audioData;

Position Estimation:
• Estimate the position of the vehicle using the
beamforming algorithm on audioData;

• Store the estimated position in the variable
estimatedPosition;

Pass-by Trajectory Calculation:
• Calculate the pass-by trajectory angle based on
the estimatedPosition;

• Store the pass-by trajectory angle in the variable
passByTrajectory;

Noise Interference Removal:
• Obtain a list of surroundingPeakLevels;
for each surroundingPeakLevel in
surroundingPeakLevels do

if the peak of interest value is at least
6 decibels below the smallest value
in-between peak of interest and
surroundingPeakLevel then

• Retrieve the model curve corresponding
to the vehicleSpeedCategory from
the pre-trained dataset;

• Overlay the neighbouring peak with the
model curve for the specific vehicle speed;

• Determine the contribution of the model
curve at the peak of interest;

• Subtract the contribution from the
surroundingPeakLevel to obtain the
corrected peak of interest level;

return correctedPeakLevel;
end

end

Stop

vehicles within dense traffic streams. Our approach utilizes
a microphone array comprising two side microphones per
lane strategically placed in close proximity to the vehicles.
The primary objective is to leverage these microphones to
detect and locate vehicles emitting high levels of noise. The
algorithm, referred to as “Noise Source Detection and Local-
ization using Microphone Array in Dense Traffic Streams,” is

outlined in Algorithm 1. The algorithm begins by employing
a beamforming technique to detect the primary sound source
and estimate the position of the vehicle [33]. Specifically,
the side microphones, positioned at a height with a distance
of approximately 20 cm in the driving direction, play a
key role in localizing the vehicles. The determination of
the source direction is derived from the signals captured by
the microphones. These microphones are positioned along a
horizontal array that is designed to encompass the horizontal
plane. Let sm0,l represent the measured sound signal of the
first microphone in the lth frame, l = 1, 2, . . . , L , and s∗

m1,l
represent the complex conjugate of the measured sound signal
of the second microphone in the lth frame, l = 1, 2, . . . , L .
Now, the cross correlation of the lth frame is computed by the
summation, as elaborated on in the following equation:

cl =



N∑
n=1

sm0,l(n + k−(N−1)) · s∗

m1,l(n)

...
N∑

n=1

sm0,l(n + k(N−1)) · s∗

m1,l(n)


(1)

where k represents the time shift between two signals,
n pertains to the running index inside the specific frame of
the microphone, n = 1, 2, . . . , N , and k = (−(N − 1), . . . ,

(N − 1). Now, the algorithm performs the maximization
of cl in (1) over all the values of k and applies the following
transformation to obtain the direction of the sound source as
the horizontal angle:

αl = arcsin
(

dτ

dmic

)
, l = 1, 2, . . . , L (2)

where dτ = (l/ fsl ) · c0, c0 = 343 m/s is the speed of sound,
fsl is the “sampling frequency” denoting how many frames
are in one second, and dmic is the distance between the two
microphones.

In (2), this angle αl of the source signal resembles the
arctan() function, spanning a range from −90◦ to 90◦. The
algorithm estimates the position by processing this angle,
commonly known as the “pass-by trajectory.” In this context,
an angle of 0◦ signifies the position directly in front of the
array, while angles of −90◦ and 90◦ represent the scenario
where the vehicle is located at a far-away distance. However,
an inherent challenge arises due to the potential interference
caused by nearby vehicles, which can impact the accurate mea-
surement of noise levels. To address this issue, our algorithm
introduces a method called “peak level correction” [34]. This
method adopts a data-driven approach to correct the measured
noise levels of individual vehicles by considering the contri-
butions of nearby vehicles. The algorithm collects data from
single pass-bys and generates characteristic mean level-time
curves corresponding to different vehicle speed categories to
achieve this. These curves serve as models to estimate nearby
vehicles’ contribution and correct the measured noise levels
accordingly. Let us denote the model curve for a specific
vehicle speed category as M(v), where v represents the speed
category of the vehicle (e.g., 30, 50, and 75 km/h).



25506 IEEE SENSORS JOURNAL, VOL. 23, NO. 20, 15 OCTOBER 2023

The peak level correction method is applied by examining
the behavior of the noise level toward surrounding peaks. Let
P be the set of detected peaks and pi represent the i th peak
in P . Initially, the algorithm checks if the noise level exhibits
a decrease of at least 6 decibels (dB) from the peak of interest
pi toward the minimum in between pi and any surrounding
peak p j . Let 1S(pi , p j ) represent the difference in sound level
between peaks pi and the corresponding minimum of the pair
(pi , p j ), where p j is a surrounding peak

1S(pi , p j ) ≥ 6 dB ∀p j . (3)

If such a decrease is observed as represented in (3), it suggests
that the nearby vehicles’ contribution is insignificant, and no
further correction is necessary. However, when the decrease
is below the specified threshold of 6 dB, the algorithm over-
lays the neighboring peak p j with the corresponding model
curve based on the specific vehicle’s speed. Let O j (pi , M(v))

represent the overlaid curve of the model curve M(v) on
peak p j surrounding the peak of interest pi . To calculate the
contribution of the model curve M(v) at peak pi , we find
the difference between the overlaid curve O j (pi , M(v)) and
the actual sound level curve s(ti ) at the peak time ti of pi . Let
C j (pi , M(v)) represent the contribution of the overlaid curve
O j (pi , M(v)) at peak pi . The corrected sound level at peak pi ,
denoted as CS(pi ), is obtained by subtracting the contribution
C j (pi , M(v)) from the sound level s(ti ) at peak time ti . Hence,
the correction calculation can be expressed as

CS(pi ) = s(ti ) −

∑
j

C j (pi , M(v)). (4)

As shown in (4), this correction process is performed for all
surrounding peaks contributing to the disturbance, resulting
in a corrected maximum sound pressure level in identify-
ing high-emitting vehicles within dense traffic streams. The
proposed algorithm has been applied successfully during our
testing in Rotterdam and Teesdorf (explained in Section VI).

V. AI-ENABLED CLASSIFICATION
MODEL IN THE DATA HUB

The classification of vehicles as HEs or not is achieved using
an AI-enabled model. This model tackles a supervised learning
problem, where each vehicle measurement must be labeled
during training. However, such labels are not readily available
in the data configuration. Moreover, existing regulations do
not provide a straightforward assessment of excessive noise
based on a single pass-by measurement. A sound expectation
model (SEM) has been developed to overcome this, leveraging
available data and making certain assumptions to predict the
expected noise level for each vehicle pass-by.

The fundamental principle underlying the SEM is character-
ized as follows: through the utilization of measured parameters
encompassing noise levels, vehicle velocity, and engine speed
during both cruising (crs) and acceleration (acc) phases, three
distinct constituents are computed. These components encom-
pass the expected tire–road surface noise level (LTR_EXP), the
expected powertrain noise level (LPT_EXP), and the expected
dynamic noise level (LDYN_EXP).

Expected Tire Road Surface Noise Level: This component
pertains to the noise generated as a result of the interaction
between the vehicle’s tires and the road surface. It considers
factors such as the speed of the vehicle and the characteris-
tics of the road, contributing to the estimation of the noise
produced by the tire–road interface.

Expected Powertrain Noise Level: This component relates
to the noise that originates from the powertrain of the vehicle,
including the engine and other relevant mechanical compo-
nents. It takes into account the engine speed and potentially
other powertrain parameters to predict the noise produced by
these elements.

Expected Dynamic Noise Level: This component captures
the dynamic noise variations that occur due to changes in
the vehicle’s operational conditions, such as acceleration.
It accounts for the dynamic aspects of the vehicle’s movement
and how they influence noise generation.

The collective interplay of these three facets results in an
overall projected noise level. Of particular significance within
the SEM framework are two pivotal components contribut-
ing to generating vehicle-specific outcomes. Primarily, the
calculated parameters, as delineated, are uniquely tailored to
each vehicle category and characterized by their own distinct
parameter set. Second, a key aspect entails the incorpora-
tion of two discrete engine speed values: one relevant to a
stable vehicular velocity scenario and another corresponding
to acceleration conditions. This dichotomy arises due to the
fact that the tire–road surface sound component is ascer-
tained under constant vehicle speed conditions, while the
powertrain sound component is derived during acceleration
episodes.

The determination of the expected tire rolling sound com-
ponent, denoted as LTR_EXP, is contingent upon the attained
vehicle speed (vmeas) during measurement. Specifically, for
vehicle speeds equal to or below a reference velocity (vref),
L−

TR_EXP is evaluated using the following formula:

L−

TR_EXP = θTR_LO × log
(

vmeas

vref

)
+ L ref_TR (5)

where vref = 50 km/h, L ref_TR = 10 × log(x × 100.1×Lmeas_crs),
Lmeas_crs is measured sound pressure level, x refers to a param-
eter applicable to tire rolling sound energy fraction of Lmeas_crs,
and θTR_LO is low tire rolling sound slope parameter and is
taken in accordance with the relevant vehicle characteristics.

For vehicle speeds exceeding Vref, L+

TR_EXP is computed
as

L+

TR_EXP = θTR_HI × log
(

vmeas

vref

)
+ L ref_TR (6)

where θTR_HI is high tire rolling sound slope parameter.
The projected powertrain base mechanical sound compo-

nent, denoted as LPT_EXP, hinges upon the attained engine
speed (ηmeas) during measurement. Specifically, for engine
speeds equal to or below a critical engine speed (ηmeas_crs),
L−

PT_EXP is computed as follows:

L−

PT_EXP = θPT_LO × log
(

ηmeas + ηSHIFT_PT

ηmeas_crs + ηSHIFT_PT

)
+ L ref_PT (7)
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where L ref_PT = 10 × log((1 − x) × 100.1×Lmeas_crs), θPT_LO is
low powertrain sound slope parameter, and ηSHIFT_PT is the
form factor for the logarithm function of the mechanical sound
model.

Similarly, for engine speeds exceeding ηmeas_crs, L+

PT_EXP is
computed as follows:

L+

PT_EXP = θPT_HI × log
(

ηmeas + ηSHIFT_PT

ηmeas_crs + ηSHIFT_PT

)
+ L ref_PT (8)

where θPT_HI is high powertrain sound slope parameter.
The expected base dynamic sound component LDYN_EXP

is calculated dependent on the achieved engine speed ηmeas
during the measurement. For engine speeds up to and inclusive
ηmeas_acc, L−

DYN_EXP is calculated by

L−

DYN_EXP = θDYN_LO × log
(

ηmeas + ηSHIFT_DYN

ηmeas_acc + ηSHIFT_DYN

)
+ L ref_DYN (9)

where L ref_DYN = 10 × log((1 − x) × 100.1×Lmeas_acc), θDYN_LO
is low dynamic sound slope parameter, and ηSHIFT_DYN is the
form factor for the logarithm function of the dynamic sound
model.

Similarly, for engine speeds exceeding ηmeas_acc, L+

DYN_EXP
is computed as follows:

L+

DYN_EXP = θDYN_HI × log
(

ηmeas + ηSHIFT_DYN

ηmeas_acc + ηSHIFT_DYN

)
+ L ref_DYN (10)

where θDYN_HI is the high dynamic sound slope parameter.
The dynamic delta sound component, denoted as

1LDYN_EXP, is calculated through the following equation:

1LDYN_EXP = 1LDYN + 0.3 (11)

where 1LDYN = 10 dB.
The outcome of each component’s calculation contributes

to determining the expected sound level for a particular
measurement. This anticipated sound level is subsequently
compared to the maximum measured sound pressure level.
The methodology employed in this SEM draws inspiration
from the formulas utilized in the new draft-type approval
test for vehicle noise under real driving conditions, part
of the Additional Sound Emission Provisions (ASEPs) in
UNECE Regulation 51 [35]. To establish a reference noise
level for “normal” vehicles, we adopt an approach based on
the vehicle’s speed and acceleration. We aim to determine the
reference noise level, denoted as LAmax,ref, by fitting a function
to the data. The function is defined by the following equation:

LAmax,ref(v, a) = c0 + cv · v + ca · a (12)

where v represents the vehicle speed in km/h, a represents the
acceleration in m/s2, and c0, cv , and ca are coefficients specific
to each vehicle category (such as M1 and N1). By finding the
appropriate values for these coefficients, we can establish a
reliable reference noise level that accounts for the vehicle’s
characteristics and contribute to the accurate identification and
categorization of vehicles based on their noise emissions. This
computational scheme produced a calculation model based
on laws governing vehicle noise as a function of vehicle

Fig. 3. Maximum noise level (LA,max) versus speed for individual vehicle
pass-bys. Colors indicate engine speed (rpm). Vehicles classified as
HEs are indicated with stars.

characteristics and driving parameters (speed, acceleration,
and engine speed), including tire/road and propulsion noise
separately. Each pass-by is given a label by comparing the
expected level with the actual measured sound level, i.e., if the
difference between the measured and expected sound level is
more than 8 dB(A), the pass-by is considered an HE. Hence,
the available data can then be used to create and train a
supervised AI-enabled classification model using this labeling
of HEs. Please refer to [15] for more details on the SEM used
for our NEMO system.

In order to optimize the performance of the AI-enabled clas-
sification model, data preprocessing and filtering techniques
were employed to separate relevant data from irrelevant data.
After evaluating eleven different AI models and consider-
ing their scores, advantages, and disadvantages in terms of
accuracy and computation time, it was decided to proceed
with a neural network, specifically a multilayer perceptron
classifier [36]) as an AI model for classification. This was
done over continuous testing of AI models with the data. More
details on the evaluation of different classification models and
selecting the AI-enabled classification model can be found
in [15]. The TensorFlow API13 was utilized to develop the final
model, which was rigorously assessed using separate training
and test data to mitigate overfitting. Hyperparameter tuning
was also conducted to further reduce the risk of overfitting.
The resulting AI-enabled classification model was deployed
in the Nautilus cloud platform, demonstrating accurate classi-
fication of high-noise emitters. It should be noted that this
model specifically addresses high-noise emitters and does
not encompass exhaust emissions. Furthermore, it is site-
specific and can be customized based on regulations governing
vehicle noise, pavement type, the influence of nearby reflecting
objects, and exhaust emissions.

Fig. 3 illustrates the outcomes of vehicle classification
using AI algorithms based on measurements conducted

13https://www.tensorflow.org/
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Fig. 4. Overview of the deployment of the NEMO Nautilus platform with different modules at Teesdorf.

in Rotterdam. The findings in this figure unveil a noteworthy
trend: vehicles tend to be categorized as illicit HEs when
operating at reduced and lower engine speeds. This occurrence
can be attributed to the type approval system, which grants
vehicles the leeway to generate amplified noise levels at
elevated engine speeds. However, if the objective is to evaluate
and subsequently modify driver behavior, an alternative classi-
fication methodology can be employed. This approach not only
recognizes vehicles as high-noise producers due to aggressive
driving styles but also endeavors to influence drivers toward
adopting a more considerate approach on the road.

VI. NEMO SYSTEM DEPLOYMENT AND TESTING

In order to test the NEMO system to identify the high
emitters, the system was successfully deployed in Rotterdam,
Florence, and Teesdorf. Owing to space constraints and for the
sake of brevity, we only explain here the deployment of
the NEMO system in Teesdorf. However, the deployment
of the NEMO system will be more or less the same in
other testing locations as well, subject to the adjustments
of placement of cameras, microphones, and installations of
different sensors.

The NEMO Nautilus platform was deployed partly on-site
and partly in the Google cloud.14 The measurement-specific
parts, such as the sensor-communication modules and Syn-
chronizer, are deployed at the sensing site. These components
need to be deployed on-site to ensure low-latency communi-
cation. The Data Hub is also deployed on the Google cloud.
The VRDB service that interfaces between the Synchronizer
and the vehicle registry databases of various authorities is also
deployed as a cloud solution. A simplified overview of the
deployment for the Teesdorf (Austria) test setup with different
modules is shown in Fig. 4.

The Synchronizer services are deployed on a dedicated
computer system on the measurement site. The Data Hub

14https://cloud.google.com/

module (including the VRDBService module) is a collection
of Linux Docker containers orchestrated via Kubernetes. The
communication between the on-site and cloud components
within Nautilus is done via a site-to-site virtual private network
(VPN). This adds a layer of security and obviates the need
for an extra layer of authentication and authorization between
different modules. The Analytics module provides access to
the data inside the Data Hub. The Analytics module handles
the authentication and authorization of users, and the Data Hub
trusts the Analytics module. An NTP server is made available
for time synchronization between on-site sensors and systems.

A. Teesdorf Hardware Setup
A hardware setup illustration and a Teesdorf test site setup

for testing the NEMO system are shown in Fig. 5. The figure
clearly shows the planned hardware setup that illustrates the
required equipment and rough location. Next to hardware
equipment, the figure shows configured trigger lines for vehi-
cle detection and the zone for V2X vehicle data readout.
It also represents the NEMO installation integrated into an
enforcement station for a highway installation. The station
spans three lanes, two driving lanes, and one hard shoulder.
The hard shoulder is not subject to testing and is not fully
equipped with NEMO or tolling sensors. For safety reasons,
the road is delimited with concrete jersey barriers. To support
motorcycle use cases, rear cameras are needed to read the
license plates. The equipment installed at the Teesdorf test
site for testing the NEMO system is outlined in Table X.

B. NEMO System Testing
Several tests were executed at the Teesdorf test site in

Austria to check the performance of our NEMO system in
identifying HEs and communicating the classification message
in real time. For instance, tests were performed for a road
pass-by car with a vehicle speed of 70- and 50-km/h honking.
In the first test case, the passenger car was equipped with a
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Fig. 5. NEMO system hardware and Teesdorf test site setup.

TABLE X
TEESDORF HARDWARE SETUP LIST

V2X OBU and passed the test gantry at a speed of 70 km/h,
where we tested the vehicle for high noise and high exhaust
emission. The test was done to check if our NEMO system
could detect and perform the correct classification for the
vehicle. The test case is considered passed as a V2X message
with a resultId of 3 was received. Please refer to Table XI
for different resultId and their corresponding descriptions. The
resultId “3” was part of the solution space and indicated a
high noise and high exhaust emission. This was correctly
reflected by the V2X OBU screen, as shown in Fig. 6(a). In the
second test case, the passenger car with a V2X OBU passed
the test gantry with a 50-km/h speed. The car accelerated to
the target speed and rolled through the gantry. Thus, neither
engine exhaust emissions nor engine noise emissions were
generated. Only rolling noise was generated. To generate addi-
tional noise, honking throughout the passage was performed.
The expected result was a high-noise emitter message. The
test case is considered passed as a V2X message with a
resultId of 1 was received, matching the expectation. The
resultId “1” was also part of the solution space and indicated
a high noise. The V2X OBU screen correctly reflected this,
as shown in Fig. 6(b). Similarly, several other test cases were
executed with passenger cars and motorcycles under different

TABLE XI
resultId AND THEIR CORRESPONDING DESCRIPTION AND THEIR

CORRESPONDING DESCRIPTION AND THEIR

CORRESPONDING DESCRIPTION

driving conditions to test the NEMO system for correctly
detecting and identifying HEs (both in terms of noise and
exhaust emissions), and their corresponding classification data
were recorded in the Data Hub for further analysis. The
pilot testing of the NEMO system at Teesdorf and Rotterdam
successfully detected and identified the HEs in real time under
different driving conditions. Also, real-time classification mes-
sages from the CDS system were tested and are explained
in Section VII.

VII. CLASSIFICATION DIALOG SYSTEM

The main aim of the CDS is to inform the results of
the pass-by classification to the vehicle owner or directly to
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Fig. 6. Testing and identification of different types of HEs in real time using NEMO system. (a) Road pass-by car with high noise and high exhaust
emission. (b) Road pass-by car with high noise only.

the driver in real time. The communication’s ultimate goal,
whether it be purely informative or regulatory (such as a mes-
sage restricting entrance to an LEZ), is a political decision and
is, therefore, outside the scope of this article. The appropriate
traffic regulating agencies and different stakeholders may use
these developments to put notification systems in place for any
purpose they see necessary.

A. General Considerations for CDS
The CDS system aims to promptly notify vehicle owners of

real-time pass-by classification results. To achieve this, a CDS
server based on NodeJS15 has been deployed on the Google
Kubernetes Engine (GKE). When the vehicle classification
results reach the CDS classification endpoint, it triggers an
emitter message for V2X OBU communication. In addition,
a separate communication channel has been established for
mobile applications, email, and mobile messages to receive
the classification and emitter messages from the CDS in real
time.

The CDS system also considers tolling fee calculations
based on vehicle emission classifications, which are com-
municated via email and mobile messages. The following
conditions serve as an example for tolling fee calculation and
communication in real time.

1) If the vehicle is classified as an HE for both noise and
exhaust emissions, then CDS will calculate tolling fees
of 3C.

2) If the vehicle is classified as a low emitter for noise and
an HE for exhaust emission, then CDS will calculate
tolling fees of 2C.

3) If the vehicle is classified as an HE for noise and a low
emitter for exhaust emission, then CDS will calculate
tolling fees of 1C.

4) If the vehicle is classified as a low emitter for both noise
and exhaust emissions, then CDS will calculate tolling
fees of 0C.

For V2X OBU communication, the CDS sends the emitter
message containing the corresponding resultId as soon as
classification messages are received. The resultId and their

15https://nodejs.org/en/

Fig. 7. NEMO dashboard.

descriptions implemented in the CDS for the Teesdorf test
site are listed in Table XI.

B. I2V Communication
The NEMO classification outcome is communicated directly

to the vehicle through the I2V communication channel. The
CDS determines the feasibility of I2V communication based
on the presence of a V2X OBU passage indicated in the road
pass-by report. When the I2V communication channel is avail-
able, the CDS generates the emitterMessage, which includes
an identifier and the corresponding resultId as specified in
Table XI. The identifier is a temporary V2X OBU ID extracted
from the road pass-by report being classified.

The CDS identifies the target roadside station for delivering
the emitterMessage and transmits it to the I2V communication
module. From there, the emitterMessage is passed to the
V2X module, which, in turn, sends it to the V2X OBU. The
V2X OBU, upon receiving the emitterMessage, searches for
customized pictograms and text associated with the result code
and presents the classification outcome to the driver through a
display. To display the message correctly, the V2X OBU relies
on the resultId provided. Fig. 6 illustrates a successful test of
the I2V communication from the CDS at the Teesdorf test site,
demonstrating the practical implementation and functionality
of the system.

C. Email and SMS Communication Channel
Email and mobile SMS are widely recognized and com-

monly used digital communication methods. In our system,
vehicle owners receive timely updates via email and SMS,
including relevant vehicle information, tolling fees, and
classification results from the CDS. To facilitate this com-
munication, we have implemented an email server using
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Fig. 8. Analytics module with different options for the vehicle dash-
board.

Fig. 9. Vehicle–road data results (medium–high emitters) from the
Rotterdam test site.

Fig. 10. Vehicle–road data results from the Teesdorf test site.

Nodemailer16 in NodeJS, enabling the successful delivery of
detailed information from the CDS through emails. In addition,
the CDS NodeJS server utilizes the Twilio17 API to send
real-time notifications via mobile SMS to vehicle owners as
soon as classification results are received.

The successful testing of the email and real-time mobile
message (SMS) communication path at the Teesdorf test site
demonstrates the effective functioning of these communication
channels. When classification data reaches the CDS classi-
fication endpoint, an email is promptly sent to the vehicle
owner, and a near real-time SMS notification is also dispatched
from the CDS. This ensures that vehicle owners are promptly
informed of the relevant information related to their vehicles.

D. Mobile Application
A mobile application specifically designed to relay classi-

fication results, particularly for vehicles identified as HE, has

16https://nodemailer.com/about/
17https://www.twilio.com/

Fig. 11. Vehicle–classification results based on site ID and HEs.

Fig. 12. Comparison of LA,max for normal–medium–high emitters
against the speed of the vehicle at the Rotterdam site.

been developed. The mobile app notifies the vehicle owner
when their vehicle has been classified as an HE. Consequently,
the owner will be informed that entering certain zones is
prohibited. In addition, the owner will be prompted to inspect
their vehicle for any malfunctioning components, such as
through a periodical technical inspection (PTI) check.

Considering the legal restrictions on reading phone mes-
sages while driving, the mobile app utilizes mobile messages
as a non-real-time communication channel between the vehicle
owner and the driver. This ensures that important information
can be conveyed without compromising safety regulations.

VIII. NEMO GRAPHICAL USER INTERFACE

The Analytics component of the NEMO system serves
as a powerful data analysis platform for both internal use
and the infrastructure manager. It enables the comprehensive
examination of recorded noise and emission levels stored in
the Data Hub. This functionality proves valuable for local
transport authorities and councils, as it allows them to establish
appropriate thresholds for high-emitting vehicles.

In compliance with the European GDPRs, the NEMO
system has implemented measures to safeguard privacy during
both system implementation and roadside sound disturbance
(RSD) measurements. Close collaboration with privacy spe-
cialists from city councils and the NEMO project’s privacy
officer resulted in the following steps.
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Fig. 13. Comparison of different classes of emitters. (a) Comparison of normal–medium–high emitters at Rotterdam. (b) Comparison of normal–
medium–high emitters at Teesdorf.

1) The ANPR device employs real-time text recognition on
camera photos, ensuring that original video images are
not retained. This approach prevents the identification of
vehicle drivers or any other individuals.

2) Audio recordings are subjected to direct evaluation using
various metrics, such as dB levels, spectra, and promi-
nence. The original recordings are promptly deleted to
prevent inadvertent capture of private audio information,
including speech.

The NEMO system’s NAUTILUS platform supports the anal-
ysis of noise and exhaust emissions from both road and
rail vehicles. To access pass-by and classification data, the
Analytics module verifies the credentials provided by the
Query Interface. This interface, implemented using Hasura
GraphQL,18 requires the retrieval of an initial token by
the Analytics module. The Data Hub employs OAuth 2.019

authorization with bearer tokens, which are provided by
auth0.com. An automated machine-to-machine authentication
process facilitates secure communication between the Analyt-
ics module and the Query Interface.

For user access to the Analytics user interface, a dashboard
with a login page and protected routes has been developed.
Only authorized NEMO infrastructure managers or expert
users are given credentials, such as a predefined username and
password, to gain entry into the NEMO GUI dashboard.

A. Graphic User Interface for Road Infrastructure
As shown in Fig. 7, the NEMO expert user can click on

the vehicle dashboard to view the results related to vehicle
data after successfully logging in. The expert user can learn
the high noise and exhaust emission vehicle classification by
using the querying interface with different vehicle attributes.
The query’s outcome will be returned, and the outcomes will
be shown in the form of tables and charts. An expert user
such as an infrastructure manager has different options, for
example, based on normal/high/medium emitters, site ID, and

18https://hasura.io/
19https://oauth.net/2/

so on, to choose from to view the classification results as
shown in Fig. 8.

For instance, data pertaining to medium–high emitters at
the Rotterdam test site from February 22, 2022, to February
25, 2022, are displayed in a table format for enhanced visu-
alization (see Fig. 9). The table shows the first ten rows,
but additional data can be accessed by clicking the “Next”
button. Sorting the table can be done by clicking on the
column headers, providing direct insights into the classification
of HEs. Moreover, the table data can be downloaded as
a comma-separated value (CSV) file, enabling infrastructure
managers to perform further analytics and visualizations. The
CSV format facilitates analysis using tools, such as Microsoft
Excel, MATLAB, and Python.

The dashboard tables offer the infrastructure manager the
ability to query specific data using search fields. For example,
Fig. 10 presents data from the Teesdorf test site, where the
infrastructure manager can view information solely on vehicles
fueled by diesel. The table in Fig. 11 showcases data filtered
by site ID and HE classification for both noise and exhaust
emissions. This table provides a clear overview of HEs within
the Teesdorf test site.

In addition, real-time vehicle data can be displayed using
charts. For this, Chart.js,20 a free and open-source JavaScript
library, is employed. It offers various chart formats, such as
bar charts, line charts, and 3-D charts, along with animations.
Fig. 12 illustrates the initial vehicle test classification trials,
comparing L A,max (Y -axis) for normal–medium–high emitters
against vehicle speed (X -axis) at the Rotterdam test site.
It is important to note that the classification criteria for
low, medium, and high emitters can be adjusted based on
guidelines set by relevant authorities, such as city councils or
transportation and environment ministries. Therefore, Fig. 12
serves as an illustrative example of the comparison between
L A,max values for different emitter classes and vehicle speed.

The GUI also allows the infrastructure manager to view
and analyze the information in the form of different charts,
such as pie charts and doughnut charts. A comparison of

20https://www.chartjs.org/
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Fig. 14. Doughnut chart for comparison of HE vehicles based on fuel
type at the Rotterdam site.

Fig. 15. Comparison of HE vehicles based on different vehicle models
at the Rotterdam site.

Fig. 16. NEMO train site setup.

different classes of emitters from Rotterdam (query period:
October 8, 2021, to August 10, 2022) and Teesdorf (query
period: April 22, 2022, to July 1, 2022) test sites is shown
in Fig. 13. From Fig. 13, we can see that, out of nearly
315 000 vehicles at the Rotterdam test site, 74% vehicles were

Fig. 17. Comparison of LA,EQ for normal–low–medium–high emitters
against the speed of train.

Fig. 18. 3-D pie chart for comparison of normal–low–medium–high
emission rating for train vehicles.

classified as normal emitters, and 7% and 19% of the vehicles
were classified as high and medium emitters, respectively.
However, at the Teesdorf test site, out of nearly 250 pass-
by test vehicles, 58% of them were classified as HE vehicles
as we intentionally tested the vehicles to be HEs and tested
them for real-time V2X communication from the CDS system.
Similarly, a comparison of high-emitter vehicles based on
different fuel types can also be intuitively visualized in the
form of a doughnut chart, as shown in Fig. 14. It can be seen
that 55.4% of HE vehicles were of petrol type, 37.7% were
of diesel type, 6.3% were of a hybrid type, and so on. This
entire collection of data provides a thorough overview of the
classification findings on the NEMO GUI dashboard.

Moreover, the dashboard also gives the option to the infras-
tructure manager to sort the data of HEs based on different
types of vehicle models. A comparison of high-emitter vehi-
cles based on different vehicle models for the Rotterdam test
site (query date: February 22, 2022, to February 25, 2022)
is shown in Fig. 15. This type of analytics can be further
improved or modified as desired. For instance, in the LIFE
GySTRA project, a methodology to define high-emitting
vehicle models has been proposed. They proposed the “high-
emitter tendency,” a ratio that calculates how many times a
vehicle model is a high emitter divided by the share of that
vehicle model in the analyzed fleet. This eliminates the bias
that the more a vehicle model is measured, the more HEs
there are. Other similar statistics can also be calculated with
this NEMO Analytics dashboard GUI platform, showing it
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Fig. 19. Train data results from the NEMO test site.

TABLE XII
TRAIN SOUND EMISSION RATING CLASSIFICATIONS. (a) WAGON TYPE AND THRESHOLD LEVEL. (b) CRITERIA AND RATINGS

can be scaled and customized for any application or potential
customers.

B. Graphic User Interface for Rail Infrastructure
A site for measuring train noise emissions has been built

to test the NEMO system, as indicated in Fig. 16, similar to
how road infrastructure is set up. The train measurements are
also recorded on the Nautilus platform. The NEMO expert user
can query the rail data and analyze the information by clicking
on the railway dashboard, as shown in Fig. 7. At the time of
writing this article, sound classifications based on ratings such
as high, medium, low, and normal were made available on the
Data Hub. Currently, each train wagon’s recorded noise levels
are compared to the threshold limit as defined in Table XII to
determine its sound emission rating.

A comparison of L A,EQ values of different classes of
emitters against the speed of the train is shown in Fig. 17.
It should be noted that most trains with high and medium noise
ratings have L A, EQ values exceeding 85 dB(A) and travel at
speeds between 90 and 100 km/h. Similarly, for more intuitive
visualization, a 3-D pie chart for comparison of normal, low,
medium, and high emission ratings for train vehicles is shown
in Fig. 18 where we can observe that 16% of the trains
were rated as HEs, while 46% were rated as low emitters

according to our NEMO classification model for trains. The
train authority, railway ministry, and environmental protection
agencies can utilize these details to establish rules relating to
the various types of emissions from train vehicles. In Fig. 19,
the train data with different available parameters from the
NEMO train site “nemo1” for the query period December 5,
2021, to December 13, 2021, is displayed in the form of a table
for analysis in the NEMO dashboard GUI. Similar to NEMO
road infrastructure GUI, the train data can also be sorted based
on the “Emission Rating,” “Train Type,” “Wagon Type,” and
so on, and the respective data can be visualized, as shown in
Fig. 19.

In addition to the vehicle dashboard and railway dash-
board, the expert user or infrastructure manager also has the
option to see different sensors’ health information, such as
their degraded or healthy state. The expert user or infras-
tructure manager can also communicate with the vehicle’s
owner through registered email and mobile messages from the
NEMO dashboard, as indicated in Fig. 7.

IX. CONCLUSION AND FUTURE WORKS

A sustainable transportation future will depend on finding
new and intelligent transportation solutions, including effec-
tive climate change mitigation. Therefore, it is imperative to



RAUNIYAR et al.: NEMO: REAL-TIME NOISE AND EXHAUST EMISSIONS MONITORING 25515

constantly monitor train and vehicle exhaust emissions and
noise levels. Real-time access to comprehensive measurements
of different vehicle noise and emission types remains challeng-
ing, impeding accurate analysis, and estimation. Therefore,
to accurately and affordably identify transgressing noisy and
HE vehicles (including road vehicles and trains) in near real
time, in this article, we proposed and outlined the design
and implementation of the NEMO system as part of an
EU effort.

Our proposed NEMO system is a new autonomous remote
sensing technology to accurately and cost-effectively iden-
tify and classify transgressing noisy and HE vehicles, which
enables the NEMO system to identify noise origin in a dense
traffic stream and localize HEs in real time. We explained the
development of the cloud-enabled, highly adaptable Nautilus
platform of the NEMO system that collects data from internet
sources such as VRDB service, individual road vehicles, and
trains. The NEMO system has been thoroughly tested for I2I
and I2V communication in the field in European cities, such as
Rotterdam and the Austrian village Teesdorf, which uses our
AI-based classification algorithms on real-time sensor data for
noise and exhaust emissions to evaluate and accurately classify
the vehicles and trains as high, medium, and normal emitters.
The developed NEMO GUI served as a good visualization
platform to analyze classification results of road pass-by
vehicles and trains that can help infrastructure managers
and stakeholders develop policies on the HEs. In addition,
real-time communication of classification results from the
developed CDS system via different communication channels,
such as V2X OBUs, email, SMS, and mobile application,
serves to communicate the classification results in real time.
We also describe the creation of an all-encompassing NEMO
solution that can be integrated with already-existing intelligent
transportation systems. We hope that the NEMO system will
serve as a tool for enforcement against HEs in LEZs and other
sensitive regions.

As part of our future work, we plan to explore the applica-
tion of the NEMO system in analyzing noise and emissions
from ships. Innovative machine learning and edge computing-
enabled-data processing and decision-making solutions at the
edge of the network, as well as using future sixth-generation
(6G) communication technology further to reduce latency and
notification time to the vehicle, are potentially interesting for
our future works.
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array based automated environmental noise measurement system,” Appl.
Acoust., vol. 141, pp. 106–114, Dec. 2018.

[34] N. Kirchhoff, H.-A. Müller-Straße, M. Männel, and M. Ertsey-Bayer,
“Advancements in autonomous detection of high noise emitters in road
traffic,” in Proc. 51st Int. Congr. Expo. Noise Control Eng. (InterNoise),
Glasgow, U.K., 2022.

[35] T. Schindele, “Vehicle noise emission legislation-opportunity for inno-
vative exhaust system solutions,” in Proc. Inter-Noise Noise-Con Congr.
Conf., vol. 255, no. 5, 2017, pp. 2095–2102.

[36] A. Debnath, P. K. Singh, and S. Banerjee, “Vehicular traffic noise mod-
elling of urban area—A contouring and artificial neural network based
approach,” Environ. Sci. Pollut. Res., vol. 29, no. 26, pp. 39948–39972,
2022.

Ashish Rauniyar (Member, IEEE) received the
master’s degree in IT convergence engineering
from the Kumoh National Institute of Technol-
ogy, Gumi, South Korea, in 2015, and the Ph.D.
degree in computer science from the University
of Oslo, Oslo, Norway, in 2021.

He was a Graduate Research Assistant with
the Wireless Emerging Networking System
(WENS) Laboratory, Kumoh National Institute of
Technology. He is currently a Research Scientist
with SINTEF Digital, Trondheim, Norway. His

main research areas include fifth-generation (5G)/sixth-generation (6G)
signal processing, autonomous systems and networks, the Internet
of Things, machine learning, wireless communications, and computer
networking.

Dr. Rauniyar was a recipient of the Best Paper Awards at the
2020 IEEE 43rd International Conference on Telecommunications and
Signal Processing (TSP), Milan, Italy; the 28th IEEE International
Telecommunication Networks and Applications Conference (ITNAC),
2018, Sydney, NSW, Australia; and the AI-DLDA 2018 International
Summer School on Artificial Intelligence, Udine, Italy, 2018. He won
the European Satellite Navigation Competition (ESNC) in 2017. He was
also selected for the Top 200 Young Researchers in Computer Science
& Mathematics and invited to attend the Heidelberg Laureate Forum,
Heidelberg, Germany, in 2017, and the Global Young Scientist Summit,
Singapore, in 2020.

Truls Berge received the Civil Engineering
degree in acoustics from the Norwegian Uni-
versity of Science and Technology (NTNU),
Trondheim, Norway, in 1977, and the M.Sc.
degree in sound and vibration from the Uni-
versity of Southampton, Southampton, U.K.,
in 1981.

Since 1982, he has been with the Environ-
mental Noise Group, SINTEF Digital, Trondheim,
with road traffic noise as the main research
area. He is currently a Research Scientist with

SINTEF Digital. He has specialized in noise related to vehicles, tires,
and road surfaces, and has been a project manager and a participant in
a wide range of international projects, including standardization work.

Ard Kuijpers received the master’s and
Ph.D. degrees in mechanical engineering
from the Eindhoven University of Technology,
Eindhoven, The Netherlands, in 1994 and 1999,
respectively.

He has been with M+P, Aalsmeer,
The Netherlands, since 1999, where he is
currently a Senior Consultant and a Managing
Director. He is responsible for all research
and development (R&D) activities at M+P. His
professional interest lies in the vibroacoustics

of tire/road and wheel/rail interaction: to understand the processes
with the aid of physical and statistical modeling and machine learning
and to develop dedicated measurement systems to characterize the
sources and parameters that play a role in road and railway traffic noise.
Besides working on the fundamentals of rolling noise and vibrations,
he is active in designing and developing practical software systems to
estimate, monitor, control, and mitigate the impact on society of noise
and vibration from road and rail transport. He is a strong advocate of a
holistic approach to scientific and engineering problems and, as such,
has made valued contributions to various technical and legislative
working groups and consortia on national and European levels.

Paul Litzinger received the master’s degree in
intelligent transportation systems from FH Tech-
nikum Wien, Vienna, Austria, and the University
of Linköping, Linköping, Sweden, in 2011.

After a glimpse into test automation, he shifted
his attention to tolling solutions. He has been
employed at Kapsch TrafficCom, Vienna, since
2012. He started as a system engineer man-
aging requirements and specifying interfaces.
He later became the solution architect of the
Global Navigation Satellite System (GNSS)-

based tolling solutions. Since 2015, he has been a lead system engineer
managing the design and delivery of various national tolling solutions.

Bert Peeters received the master’s degree in
applied physics from the Eindhoven University
of Technology, Eindhoven, The Netherlands, in
2003.

He is skilled in acoustics and engineering, with
his largest expertise in road noise abatement at
the source: vehicles and tires. He has been a
Senior Consultant and a Researcher with M+P,
Aalsmeer, The Netherlands, since 2003, working
mainly on road, rail, and air traffic noise with an
additional focus on air quality and sustainability

aspects. His day-to-day activities cover a wide range, from data science
and modeling to legislation and health impacts. Also, he is experienced
in noise policy on national and international (EU) levels. He is a lecturer
on the road, rail, and air traffic noise for postacademic students.

Mr. Peeters is a member of the Noise Expert Group of the European
Commission DG Environment and the Dutch Acoustical Society.



RAUNIYAR et al.: NEMO: REAL-TIME NOISE AND EXHAUST EMISSIONS MONITORING 25517

Erik van Gils received the Bachelor of Applied
Science degree from the Fontys University
of Applied Sciences, Venlo, The Netherlands,
in 2008.

He is currently a Senior Consultant with M+P,
Aalsmeer, The Netherlands, an engineering firm
that studies and develops noise, vibration, and
air quality solutions. He works on projects that
require expertise in both noise and software
development. In the Noise and Emissions Mon-
itoring and Radical Mitigation (NEMO) project,

he was involved in the development of the DataHub, a system that
facilitates the storage, data enrichment, classification, and near-real-
time querying of the measurements.

Nikolas Kirchhoff received the bachelor’s and
master’s degrees in electrical engineering and
information technology from the Technical Uni-
versity of Munich, Munich, Germany, in 2017 and
2020, respectively.

He is currently a Consulting Engineer and
a System Developer with Müller-BBM Industry
Solutions GmbH, Planegg, Germany. His spe-
cialization is rooted in classical signal process-
ing, while his competence expands to acoustic
signal processing and psychoacoustics.

Jan Erik Håkegård (Senior Member, IEEE)
received the Sivilingeniør (M.Sc.) degree from
the Department of Electronical Engineering and
Informatics, The Norwegian Institute of Technol-
ogy (NTH), Trondheim, Norway, in 1990, and
the Docteur (Ph.D.) degree in electronics and
communications from ENST, Toulouse, France,
in 1997.

Since 1997, he has been with SINTEF Digital,
Trondheim, working on research and develop-
ment projects related to various types of wireless

communication systems. He is currently leading SINTEF activities within
the satellite and terrestrial communication systems.


