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Secure Cooperative Localization for Connected
Automated Vehicles Based on Consensus

Xin Xia , Runsheng Xu, and Jiaqi Ma

Abstract—In this article, we present secure cooperative
localization for connected automated vehicles (CAVs) based
on consensus estimation through leveraging shared but
possibly attacked sensory information from multiple adja-
cent vehicles. First, the communication topology between
the CAVs, node kinematic model, and node measurement
model for each vehicle are introduced. Then, a consensus
Kalman information filter (CKIF) is applied to fuse the shared
information from connected vehicles. Since the sensory
information might be attacked, an attack detection algorithm
based on the generalized likelihood ratio test (GLRT) is
adopted. A delay-prediction framework is proposed to main-
tain the accuracy and real-time performance of the detection
algorithm. Next, a rule-based attack isolation method is used to defend the attack. Finally, the proposed secure
cooperative localization algorithm is validated in extensive numerical simulation experiments. The results confirm that
leveraging information from multiple vehicles in a cooperative manner leads to better accuracy and resilience for vehicle
localization under attacks.

Index Terms— Attack detection and defense, connected automated vehicles (CAVs), consensus estimation, secure
cooperative localization.

I. INTRODUCTION

CYBER-PHYSICAL vehicular and transportation systems,
enabled by the Internet of Things (IoT) sensing, edge

and cloud computing, 5G communication, advanced control,
and drive-by-wire systems in the vehicles and infrastructure,
offer opportunities to improve the performance of individual
vehicles and traffic. With the development of connected vehi-
cle (CV) and automated vehicle (AV) technologies [1], [2],
[3], [4], [5], [6], cooperative driving automation (CDA) [7],
as standardized by SAE J3216 [8], aims at combining both
technologies in connected automated vehicles (CAVs) to
enable real-time cooperation of equipped vehicles, other road
users, and infrastructure. As outlined in the pioneering review
of AVs and CAVs control [9], CDA technology will further
improve safety, mobility, environmental sustainability, situa-
tional awareness, and operational efficiency of traffic flow.
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Cooperative localization is one of the critical components.
It enables the downstream modules such as planning and con-
trol of CDA by leveraging shared sensory information from the
CVs and infrastructures through vehicle-to-everything (V2X)
communication. For example, aided by the localization infor-
mation, driving safety is effectively ensured through the
proposed sliding mode control algorithm [10]. The cooper-
ation between different vehicles brings the potential to fuse
diverse information to improve the localization accuracy of
CAVs. However, the multimodality sensors or communication
channels for the cooperation also make CAVs vulnerable to
cyberattacks. This raises security issues for the localization
system [11]. Aiming at leveraging the shared multisensor
information from the CAVs in a secure manner, this article pro-
poses a secure cooperative localization method for the CAVs
using a consensus estimation framework with considerations
of cyberattacks on the sensory information.

A. State-of-the-Art
Localization is one of the most basic modules of any

automated driving platform. It has been extensively studied
in the past decades [12], [13], [14], [15], [16]. Based on
diverse sensors such as inertial measurement unit (IMU), mag-
netometer, global navigation satellite system (GNSS), camera,
radar, or light detection and ranging (LiDAR) equipped
on individual vehicles, the multisensor-fusion-based methods
typically are represented by the GNSS/inertial navigation
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system (INS) integration system [13], GNSS/INS/LiDAR
fusion [17], camera/LiDAR-based simultaneous localization
and mapping (SLAM) [18], and map-matching-based local-
ization [19]. These topics have been explored extensively
with much significant progress. With the fast development
of CAVs and intelligent transportation system (ITS), the
cooperation between the system elements (vehicles and infras-
tructure) is enabling more possibilities (e.g., sharing and
using diverse sensory information between vehicles) other
than the individual-vehicle-based localization to improve the
localization accuracy [20]. Also, in the event of cyberat-
tacks, the cooperation provides more flexibility to detect
and defend against the attacks that are injected into the
sensors or the V2X communication to improve the system
security [11].

To address the issue where GNSS fails at places such as
city canyons and indoor parking lots for a short period of
time, the relative distance between CAVs is integrated with the
GNSS position through an extended Kalman filter (KF) in [21],
and [22]. The algorithm relies more on the relative distance
to constrain the localization error when the GNSS fails. When
using the interdistance from radars, due to the different update
rates between the GNSS, radars, and communication units,
a track-matching approach using the chi-square statistic test
method is used to associate the information from multiple sen-
sors [23]. In [24], in addition to the relative distance between
different vehicles from radar, the relative azimuth from the
camera is also used to supplement GNSS in a Bayesian
framework. To fill the gap where GNSS is unavailable, in [25],
the distance between the ego vehicle and roadside unit (RSU)
with a known position is integrated with the onboard sensors.
Then, the algorithm will localize the ego vehicle based on
a weighted linear least square algorithm. With cooperation
between CAVs, the issues coming from the GNSS’s sensitivity
to environments have been addressed to some extent [26].

In terms of sensor fusion framework, a multisensor mul-
tivehicle framework is proposed based on global/centralized
filtering and local filtering using the onboard sensors, GNSS,
and relative distance from other vehicles [26]. Compared with
centralized estimation in [24], and [25], distributed estimation
is implemented on each vehicle. It shows greater resilience to
the vulnerabilities from the failure of the sensors and commu-
nications and requires less energy-consuming communication
and parallel processing [27]. In this sense, it is straightforward
to take advantage of distributed estimation to design the
localization algorithm for the CAVs [28]. Among distributed
estimation methodologies, the consensus KF (CKF) [27],
which has been utilized to localize unmanned aerial vehicles
in a formation and has shown promising performance [29],
is one of the appropriate methods for the localization of CAVs.
Another merit of the CKF is its capability to incorporate shared
information from different CAVs. In addition to the benefits
stated above, it also allows the neighboring estimator to reach
a consensus on the localization [27]. To the best of the authors’
knowledge, the CKF [27] has not been investigated to localize
the CAVs in the literature. This article aims to bridge this gap
while also considering potential cyberattacks on sensors and
communication data for security.

As mentioned above, the information sharing between CAVs
enables them to cooperate with each other for localization.
However, in the meantime, this cooperation makes sensors
or communication vulnerable to attacks [30]. Before fusing
sensors from different sources, i.e., vehicles or infrastructure,
the information should be inspected to detect attacks or other
types of faults [31]. In [28], the velocity and the position
of the CAVs in a platoon are estimated in an unknown input
observer (UIO). A threshold method is adopted to diagnose
the faults/attacks based on the output of the UIO. Once
a fault/attack is declared, the shared information from the
remaining CAVs is used for estimation. In [30], a piecewise-
constant attack injected in the GNSS position measurement
is detected by a scheme based on a modified unbiased finite
impulse response estimator. The scheme is able to generate
an intermediate value only related to the attack for detecting
the attack conveniently. In [31], given the multiple redundant
sensors to measure the same physical variable of the CAV, the
attacks are detected directly if there is a difference between
the measurement from a specific sensor and the averaged
measurement for all the sensors larger than a threshold. In [32],
a drift attack caused by the GNSS spoofing is added to an
optimizer as a variable to be solved. Then, the attack is
diagnosed based on the estimated value of the attack. For the
different attack detection methods in [31], stochastic variables
are generated, and then, one sample or multiple samples
will be used to decide whether an attack occurred [33]. The
detection accuracy relies on the thresholds heavily if only
one sample of the generated stochastic variable is used. This
means that the performance of the attack detector depends
heavily on the threshold selection. If a set of samples from the
generated stochastic variable is used, the detection accuracy is
usually higher. The generalized likelihood ratio test (GLRT)
is a well-developed detection method that is based on a set of
samples [34]. However, the relatively large set (large window
size) can lead to a time delay for the attack detection such
as the case with the GLRT in [34]. This time delay possibly
leaves the system under attack for a short time before the
detection is done. To address the time delay of this kind,
this article proposes a delay-prediction framework to enhance
attack detection.

Once the attack is detected, the failed sensory information
can be discarded in the multisensor-fusion localization algo-
rithms. Specifically, the corresponding node in the CKF can
be adjusted to isolate the attacks in the sensory measurements.

B. Main Contributions
In this article, to achieve the multisensor-fusion localization

given the shared information of CAVs, a Kalman-consensus
information filter (KCIF) is applied and a delay-prediction
GLRT-based attack detection method is presented for improv-
ing the security of the localization system. Specifically, two
main contributions of this article are summarized as follows.

1) To leverage the shared position information from the
CAVs, this article applies a KCIF to fuse the measure-
ments from the ego vehicle and adjacent vehicle(s) with
different communication topologies. Inspired by [24]
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and [26] but differing from them which only consider
how to fuse the shared sensory measurements when
the measurements are normal, our consensus estimation
framework also offers the convenience to accommo-
date the possible attacks properly. To the best of the
authors’ knowledge, no research using the KCIF has
been reported for cooperatively localizing the CAVs
considering the attacks in sensory measurements.

2) For detecting cyberattacks in the sensory measurements,
a GLRT-based method is designed. Compared with the
GLRT-based detection algorithm in [34], our proposed
delay-prediction framework is not only able to detect
the attack but also address the induced temporal latency
of the decision made by the GLRT-based method [33].
It is worth noting that this framework can be gener-
ally integrated with a multiple-sample-based attack/fault
detection algorithm regardless of the specific form of
the detection algorithm to address the temporal delay
issue, which is induced in the detection algorithm. Then,
based on the attack indicator (AI) from the GLRT-
based algorithm, a rule-based attack isolation method
is integrated with the KCIF for isolating the attack data
samples. The secure cooperative localization is validated
via numerical simulation.

The remainder of this article is organized as follows. The
problem studied in this article is formulated in Section II.
The secure cooperative localization method is designed
in Section III. Section IV provides test results in different
communication topology and attack settings and discusses the
findings and performance, and finally, Section V concludes
this article.

II. PROBLEM FORMULATION

In this section, the communication topology for CAV infor-
mation sharing, node kinematic model, and node measurement
model are presented. Based on these models, the cooperative
localization algorithm is designed in the following.

A. Communication Topology
The scenario shown in Fig. 1 is CAV platooning [35], and

without loss of generality, this article will focus on such
scenarios, i.e., longitudinal scenarios. Each vehicle in Fig. 1
is equipped with an IMU, a GNSS receiver, and a sensor such
as radar, LiDAR, or camera, which can measure the relative
distance between the ego vehicle and adjacent vehicles. The
IMU can measure the longitudinal acceleration of the ego
vehicle. The GNSS receiver provides the position of the ego
vehicle, and the radar, LiDAR, or camera measures the relative
distance between the ego vehicle and its neighbor. Vehicles are
also equipped with V2X transceivers [such as cellular V2X
or dedicated short-range communication (DSRC)] to establish
vehicle to vehicle (V2V) communication and enable sharing
of sensory information among adjacent vehicles through a
directed graph Gd = {V, E} or undirected graph Gu =

{V, E} [22]. In the graph, V = {1, 2, . . . , N } is the set of
nodes and E ⊆ V × V is the set of edges in connection. The
adjacency matrix A and the Laplacian matrix D are adopted

Fig. 1. Example scenarios for cooperative localization. Each vehicle is
equipped with an IMU, a GNSS receiver, and a sensor such as radar,
LiDAR, or camera, which can measure the relative distance/velocity
between the ego vehicle and adjacent vehicles. d12 denotes the mea-
sured relative distance between Vehicles 1 and 2 and vx is the velocity
of the traffic flow. Vehicles are able to share sensory information through
V2X communication (such as cellular V2X or DSRC). For the scenario
with directed communication case shown in (a), only the following
vehicle has access to its front neighbor; for the scenario with undirected
communication case shown in (b), the front and the following vehicle
has access to its neighbor. Other communication topologies are also
possible. The GNSS will be exposed to the attacks.

to show the properties of the graph G [36]. The entry ai j of
the adjacency matrix A ∈ RN×N is given as{

ai j = 1, if { j, i} ∈ E
ai j = 0, if { j, i} /∈ E,

i, j = {1, 2, . . . , N } (1)

where, for the directed graph, j, i ∈ E denotes that there is
a directed edge from node j to node i , meaning that node i
has access to the sensory information of node j through V2V
communication for Gd = {V, E}; for the undirected graph,
j, i ∈ E denotes that there is an undirected edge between
nodes j and i , meaning that node i or j has access to each
other’s sensory information through V2V communication for
Gu = {V, E}. Besides, there are no self-loops, and thus, ai i =

0, i = 1, . . . , N . Node j is the neighbor of node i when
ai j = 1, and the neighbor set of node i is denoted as Ni =

{ j |ai j = 1}. Then, the entry of the degree matrix D for this
graph is given as

βi j =

{
0, if i ̸= j∑N

k=1
aik, if i = j,

i, j ={1, 2, . . . , N } . (2)

Accordingly, the Laplacian matrix L ∈ RN×N is given as

L = D −A. (3)

In this article, the secure localization algorithm is tested
based on the communication with both the directed and
undirected graph typologies as two representative scenarios.
There can be, however, more complicated topological sce-
narios. In the case of CAV platooning, there are multiple
possible ways of communication, such as all predecessor and
leader–predecessor [37]. The proposed methodology can be
applied to analyze any type of communication topology since
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it is feasible to add any nodes into the consensus estimation
algorithm as long as the types of measurements, possibly from
different types of sensors, for each node are homogeneous.
A homogeneous node means that the node has the same
capability to sense its neighbor vehicles and communicate
with them such that the node is able to provide the relative
position between itself and neighbor vehicles and then publish
the relative position information to its neighbor vehicles. For
example, the interdistance might come from camera, LiDAR,
or radar sensor. The details are discussed in Section III.

B. Node Kinematic Model
In this article, since the main contribution is the cooperative

localization method design for the CAVs, without the loss
of generality, we simplify the kinematic model with the
assumption that the vehicle is mainly maneuvered in the
longitudinal direction, and therefore, a longitudinal vehicle
kinematic model is used. Another reason for this assumption
is that platooning and similar safety-critical applications are
one of the main the application scenarios of this localization
algorithm since the vehicles in a platoon follow very closely
to each other and any faults and attacks can result in serious
consequences [30]. Note that, although only the longitudinal
vehicle kinematics is considered in this article, the lateral
vehicle kinematics can also be incorporated into the overall
secure localization framework by only changing the node
kinematic model to address the more comprehensive driving
maneuvers.

The longitudinal vehicle kinematic model is presented in (4)
and (5)

v̇ = a + ωa (4)

where v denotes the longitudinal velocity, a denotes the
longitudinal acceleration, and ωa is the random noise of the
accelerometer

ṗ = v (5)

where p denotes the position. By choosing the velocity and
position as the states x = [p v]

⊤, we have the standard state
equation

ẋ = Ax + Bu + 0ω (6)

where A =

[
0 1
0 0

]
is the state matrix, B =

[
0
1

]
is the input

matrix of the vehicle, u = a is the input, ω = ωa is the

noise, and 0 =

[
0
1

]
is the input matrix of the noise. When

estimating the states such as the velocity or the position by
an estimator such as KF, the model described by (4) and (5)
needs to be discretized as in the following equation:

xk+1 = 8k xk + 4k uk + 3kωk (7)

where 8k = eA1T
≈ I + A1T is the state transition

matrix of the system (6) with the discrete-time realization,
4k =

∫ 1T
0 eAt dtB ≈ B1T is the input matrix, and

3k =
∫ 1T

0 eAt dt0.

Remark 1: In the longitudinal vehicle kinematic model,
we made some simplifications such as ignoring the bias
error and gravity component in the longitudinal accelerometer
caused by the nonzero pitch angle of the vehicle body. It is
worth noting that, although these factors are significant for the
localization algorithm development, the estimation of them has
been well addressed in the literature such as [38]. Leveraging
the off-the-shelf algorithms is available to tackle the issues
caused by these errors. Another note is that the model in (6)
is based on the vehicle kinematics, which is robust against the
vehicle dynamic model uncertainties, meaning that the method
in this article will not be affected by the vehicle dynamic
model uncertainties.

C. Node Measurement Model
Given the sensor configuration discussed in Section II-A,

the pieces of information from the GNSS that provides the
global position and radar (or sensors that generate the same
types of measurements) that provide the interdistance between
vehicles are adopted to develop the CAV measurement model.
For the yellow vehicle in Fig. 1, the node measurement model
is derived to implement an estimator to estimate the state of the
vehicle. Through the instrumented GNSS receiver and radar,
the yellow vehicle has access to the position measurement
and relative distance from itself to the green vehicle in Fig. 1.
Through the V2V communication, the ego yellow vehicle can
also request the sensory information of its adjacent vehicles
(green vehicle in Gd , green and red vehicles in Gu , or possibly
other vehicles dependent on the communication topology) to
enrich the measurements. These measurements have the poten-
tial to improve both the accuracy and robustness against the
attacks on the ego yellow vehicle via the proposed consensus-
based estimation. Specifically, for instance, in Gu , the relative
distance d12 and d23 and the GNSS position of the green and
red vehicles are available for the yellow vehicle for enhanced
localization. The measurement model is given by the relative
distance as

pGe = pe + ηGe + fGe (8)

where the subscript e means the ego vehicle, pG is the GNSS
position, p is the true position, ηG is the Gaussian white noise
of the GNSS measurement, and fG denotes the injected attack.

Along with the measurements from the ego vehicle, the
GNSS positions of the adjacent vehicle i ∈ Ni can be
transformed to the position measurements of the ego vehicle
with the relative distance measurements. The GNSS position
of vehicle i obtained through wireless communication has the
same measurement model as (8) and it is given as

pGi = pi + ηGi + fGi (9)

where the subscript i means the adjacent vehicle i . Then,
combining (9) with the transformation given as

dRie = die + ηRie + fRie (10)

where dRie means the relative distance between the adjacent
vehicle i and ego vehicle e measured by the sensors such as
radar, LiDAR, or camera. die means the true relative distance,
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fRie denotes the injected attack in the measurement dRie, and
ηRie means the Gaussian white noise of the relative distance.
Then, the measurement of the ego vehicle position can be
derived as

pei = pi + die + ηRie + ηGi︸ ︷︷ ︸
η

+ fRie + fGi︸ ︷︷ ︸
f

(11)

where pei means the measurement of the ego vehicle e through
its adjacent vehicle i . From (11), it can be seen that both
the attacks from the GNSS fGi and the relative distance fRie
will be propagated to the position measurement pei for the
ego vehicle’s position. In other words, though cooperative
localization can potentially improve accuracy, leveraging the
information from immediately adjacent vehicles or even vehi-
cles further away (via chaining and adding up consecutive
sensor data; see Remark 2) such as the leader of the platoon
that uses a certain communication topology will also incur
more risks due to the propagation and make the ego vehicle
localization more vulnerable to any attack on the surrounding
traffic. This necessitates continuous monitoring of the sen-
sory measurements used for the cooperative localization and
detection of faults and attacks. This in turn allows us to fuse
those measurements from adjacent vehicles cooperatively and
improve the localization accuracy in a consensus framework if
those attacks are detected and isolated properly. This process
of attack isolation will be discussed in Section III-C.

Remark 2: Although, in (11), only the position of the
ego vehicle e and the position of its adjacent vehicle i are
associated in Gd or Gu , more position measurements for the
ego vehicle can be derived from the CVs through the trans-
formation formulated in (10) as long as the communication
topology is able to provide the link between the corresponding
CV and the ego vehicle. In this way, not only the information
from the adjacent vehicle(s) and the ego vehicle can be fused,
but also more information from CVs further away is possible
to be incorporated in our proposed consensus localization
framework. The key to enabling this fusion is having the
bridged communication between the ego vehicle and other
CVs to transfer the sensory information.

Based on (8) or (11), the standard measurement model is
given as

z = H x + η + f (12)

where z denotes the position measurement in (8) or (11),
H = [1, 0], η denotes the Gaussian white noise in (8) or (11),
and f denotes the attack from the position of the GNSS in (8)
or the relative distance (11). For the ego vehicle, the mea-
surements given in (8) and (11) are homogeneous, and then,
the consensus estimation technique such as a CKF is adopted
to fuse the pieces of information from different vehicles to
improve both the position accuracy and the resilience against
cyberattacks.

III. SECURE LOCALIZATION METHOD

Based on the models developed in Section II, in this section,
the framework of the secure cooperative localization algorithm
is first presented, the CKF for fusing the sensory information

Fig. 2. Framework of the secure cooperative localization. The sen-
sory information input to the CKIF includes the IMU information of
the ego vehicle (yellow vehicle), GNSS position of the ego vehicle
and adjacent vehicle(s), and relative distance from the ego vehicle to
adjacent vehicle(s). Each of the positions from the ego vehicle’s GNSS
or derivation given by (11) from adjacent vehicle(s) drives a node in the
CKIF. All the sensory measurements are monitored by the GLRT-based
attack detection method. Once the attack is detected, the corresponding
position measurements are isolated by a rule-based method.

is introduced, the GLRT-based attack detection algorithm is
developed, and the attack defense method is given.

A. Framework
The framework of the proposed algorithm is shown

in Fig. 2. A consensus Kalman information filter (CKIF) is
adopted to fuse the sensory information (i.e., the position
of the GNSS and relative distance from the radar) from
the ego vehicle i and the adjacent vehicles in Ni with the
communication topology Gd or Gu . For each node in the CKIF,
the GLRT-based attack detection will be performed to diagnose
whether the sensory measurement from the ego vehicle or
its neighbor is attacked. Then, based on the attack detection
results, a rule-based delay-prediction method is proposed to
isolate the attack.

B. Consensus Kalman Information Filter
In this section, a CKIF is applied to achieve a consensus

estimation of the states in (7) by fusing the homogeneous
measurements from different vehicles in a platoon [27].
Specifically, for the communication topology with Gd , based
on the adjacency matrix D, the ego vehicle i only has access
to its front vehicle’s sensory measurements such as GNSS
position, and therefore, two nodes are included in the CKIF.
For the communication topology Gu , the ego vehicle has access
to sensory measurements (i.e., GNSS and radar for measuring
the global position and interdistance, respectively) from its
front and rear vehicles, and thus, three nodes are included.
In other words, the difference when applying the CKIF to
estimate the states of the ego vehicle between the communi-
cation topology Gd and Gu is the number of the nodes included
in the CKIF. When more vehicles are connected, i.e., the
homogeneous sensory information can be shared between the
CAVs, more nodes can be incorporated in the CKIF. Therefore,
the CKIF framework can feasibly apply to both Gd and Gu ,
as well as other communication topologies. The two different
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nodes based on the ego vehicle’s or its adjacent vehicle(s)’
information are discussed correspondingly.

1) Node-Based on the Measurement From the Ego Vehicle:
Based on (7), the GNSS position given in (12) can drive one
node in the CKIF to estimate the position. In this node, the
predicted variables (7) will provide the prior information and
the GNSS position from the ego vehicle is explored to provide
the measurement for the posteriori estimation.

2) Node(s) Based on the Measurement From the Adjacent
Vehicle(s): Besides the measurement from the ego vehicle’s
GNSS position, the position measurement from the adjacent
vehicles given as (11) can be leveraged to drive other node(s)
in the CKIF. Based on the node kinematic model (7) for
the ego vehicle and the measurement model (11) from the
adjacent vehicles, for the directed communication topology
Gd , one node beside the node in Section III-B1 can be
formulated, and for the undirected communication topology
Gu , two more nodes beside the node in Section III-B1 are
augmented.

Remark 3: Due to the different number of the nodes in
the CKIF for Gd and Gu , both the localization accuracy and
robustness against the attack will be difference. The intuitive
speculation for the difference is that: to some extent, with
more nodes in the CKIF to come to a consensus estimation,
the position accuracy is higher and the robustness is also better
due to the more redundancy of sensory measurements. This,
however, comes at the cost of additional data communication
and computational loads. In Section IV, this speculation will
be exemplified and discussed.

With the nodes given in Sections III-B1 and III-B2, the CKF
shown in (13) is adopted [39]

x̂i
k|k = x̂i

k|k−1 + K i
k

(
Zi

k − H i
k x̂i

k|k−1

)
+ C i

k

∑
j∈Ni

(
x̂ j

k|k−1 − x̂i
k|k−1

)
K i

k = P i
k

(
H i

k

)⊤
(

Ri
+ H i

k P i
k

(
H i

k

)⊤
)−1

M i
k =

(
Fi

k P i
k

(
Fi

k

)⊤

+ K i
k Ri

(
K i

k

)⊤
)

Fi
k = I − K i

k H i
k, C i

k = γ Fi
k Gi

k

Gi
k = 8i

k M i
k

(
8i

k

)⊤

+ Qi
k + P i

k Si
k P i

k

P i
k+1 = 8i

k M i
k

(
8i

k

)⊤

+ Qi , x̂i
k+1|k = 8i

k x̂i
k|k (13)

where the superscript i denotes node i , x̂i
k|k and x̂i

k+1|k are
estimation and prediction of the state xi

k , and the matrix
inversion lemma (A + BCD)−1

= A−1
− A−1B(C−1

+

DA−1B)−1DA−1 is utilized for computation of K i
k . H i is

the measurement matrix and I is an identity matrix. Ri and
Qi denote the measurement and process noise covariance
matrices, respectively. P i denotes the state covariance matrix,
and 8i denotes the state transition matrix. For the convenience
of implementation, by defining the weighted measurements
yi

k = (H i
k)

⊤(Ri )−1zi
k for node i and the information matrix

ξ i
k = (H i

k)
⊤(Ri )−1 H i

k , the information form of the CKF,

Algorithm 1 CKIF

Input : 8i
k ; zGi (position measurement from ego

vehicle i) and zi j (position measurement
from ego vehicle’s adjacent vehicles j); H ;
Qi ; Ri and R j ; x̂ j

k|k−1 (prediction states of
node j ); initial state xi (0) ;initial state
covariance P i (0)

Output: x̄i
k|k

1 while GNSS updated do
2 Compute the information vector

yi
k = H⊤(Ri )−1zGi +

∑
j∈Ni

(H⊤(R j )−1zi j );
3 Compute the information matrix

ξ i
k = H⊤(Ri )−1 H +

∑
j∈Ni

(H⊤(R j )−1 H);
4 Compute the consensus Kalman state estimation

x̂i
k|k = x̂i

k|k−1 + M i
k( yi

k − ξ i
k x̂i

k|k−1) +

C i
k
∑

j∈Ni
(x̂ j

k|k−1 − x̂i
k|k−1)

M i
k = ((P i

k)
−1

+ ξ i
k)

−1; C i
k = γ Fi

k Gi
k ;

5 Update the state and its error covariance
P i

k+1 = 8k M i
k8

⊤

k + Qi ; x̄i
k+1|k = 8k x̂i

k|k ;
6 end

shown in (14), i.e., CKIF, is applied

x̂i
k|k = x̂i

k|k−1 + M i
k

(
yi

k − ξ i
k x̂i

k|k−1

)
+ C i

k

∑
j∈Ni

(
x̂ j

k|k−1 − x̂i
k|k−1

)
M i

k =

((
P i

k

)−1
+ ξ i

k

)−1

C i
k = γ Fi

k Gi
k

P i
k+1 = 8i

k M i
k

(
8i

k

)⊤

+ Qi

x̂i
k+1|k = 8i

k x̂i
k|k . (14)

Exchanging the prediction of the states, the node based on the
measurement from the ego vehicle and the node(s) based on
the measurement from the adjacent vehicle(s) attempt to reach
a consensus on the (estimated) states from (7). Algorithm 1
represents the CKIF strategy, where nodes i and j denote the
node(s) in Section III-B1 and the node(s) in Section III-B2.

C. Attack Detection and Defense
In Section III-B, the measurements from the ego vehicle and

its adjacent vehicles are fused through the KCIF. In the real
implementation, the GNSS or the radar has the potential risk
to be exposed to two kinds of attacks, including false data
injection or denial of service [40]. For the two sensors, the
most common attack studied in the literature is the false data
injection [30]. The considered attacker, which has the access
to the sensors and compromises them to falsify the data, will
inject false data by adding a drift error or large noisy error such
as outliers into sensory measurements. The latter can usually
be detected by a chi-square method [41] and compensated by
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an adaptive KF [42]. Also, it is more complex to address the
drift attack [33]

Thus, in this section, the drift attack model similar to [30] is
introduced, and then, its detection and isolation method shown
in Fig. 2 is presented.

1) Attack Model: For our study, the false data injection
attack, which is a drift error, is considered. The drift error does
not frequently change and is injected in the original GNSS
position or the interdistance [30], i.e., given ∀k, there exist
∃k1, k2 ∈ N+ such that the attack signal εk

εk = ck, ∀k ∈ [k1, k2] , k2 − k1 ≥ n − 1, n ∈ N+ (15)

where ck is a constant. This kind of error for the GNSS
position or the interdistance is commonly encountered [30]
and is investigated in this article. Note that another common
kind of false data injection attack, which is a large noise error,
will not be discussed because it can be addressed by a method
such as chi-square method and adaptive KF in [42].

2) Delay-Prediction Framework: For the attack detection in
a KF framework, usually, the innovation or residual is used to
determine whether an attack has occurred [33]. In our case,
the residual ε of the CKIF given in (16) is generated for the
attack detector

εk = zk − H x̂k|k (16)

where zk is from (12) and x̂k|k is the estimated state from
the CKIF. As stated in Section I-A, attack detection can be
done based on only one sample [31] or multiple samples of
the residual or innovation [33]. In this work, the GLRT-based
method in [43], which is a multiple-sample-based method,
is adopted to detect the attack due to its high detection
accuracy. However, the tradeoff is that several samples of the
residual or innovation are required.

Fig. 3 shows the delay-prediction-based attack detection
framework. The input uk and measurement zk for the KF are
delayed by τ = υ1T first. The delayed uk−υ and zk−υ are
used to perform the time update and measurement update of
the KF to obtain the estimated states xk−υ . Furthermore, x̂k is
predicted. xk−υ and x̂k are then used to generate the residual
εk−υ and pseudo innovation ζk of the KF. These two variables
will be used as input to the GLRT-based attack detection
algorithm. The detailed process of attack detection is discussed
in the following.

In the real-time implementation, a buffer, such as Buffer 2
in Fig. 3, is used to save the current and historical information,
but this operation will induce a time delay for the decision due
to the moving average effect. This means that given Buffer 2 of
the residual or innovation at time t , the decision made belongs
to time t2 instead of time t . There will be a lag ϱ = t − t2,
which is related to the size of the samples of the residual or
innovation. This lag will prevent us from instantly isolating the
attack, making the estimated states influenced by the attacks
in this delay. Although smaller sets will reduce the time delay,
they will degrade the attack detection accuracy. To explicitly
account for the time delay of the GLRT-based attack detection
algorithm, a delay-prediction framework is proposed.

Given the lag ϱ for the GLRT-based method no matter how
we choose the window size of the samples, we delay the

Fig. 3. Delay-prediction-based attack detection framework.

IMU information, the GNSS position of the ego vehicle, and
the position derived from the adjacent vehicles for a time τ to
estimate the states x̂(t − τ) in (7) of the CAVs by the CKIF
at time t − τ . This active delay will allow us to save the fresh
sensory information from t−τ to t to diagnose the attack in the
measurements as long as we can predict the current estimated
states x̂(t) based on x̂(t − τ) and the fresh IMU information
free from the attacks. Then, using the predicted states and the
fresh measurements from the ego vehicle’s GNSS and adjacent
vehicles, we can generate a set of pseudo innovations and save
it in buffer 2 of Fig. 3 for GLRT-based attack detection. The
decision made based on buffer 2 by the GLRT-based method at
t2 is prior to the states x̂(t −τ) at the time t −τ , and using this
decision, the attack could be isolated instantly by tuning the
measurement covariance matrix in the corresponding nodes in
the CKIF. Then, the time delay issue of the multiple-sample-
based attack detection algorithm could be addressed. However,
this mechanism works when the measurement transits from
normal status to an attacked status but has a deficiency when
the measurement transits from an attacked status back to a
normal status. To tackle this, based on x̂(t − τ), Buffer 1
in Fig. 3 with the residual generated by (16) is also reserved
for another GLRT-based attack decision method. The decision
from this GLRT-based detector tagged to t1 is able to reflect the
status of the measurement at the time t−τ to some extent. Note
that although there is also a latency between t − τ and t1, this
latency will not cause a huge impact because it just delays a
short term to use the normal measurements instead of attacked
ones. Thereby, based on the decisions from the GLRT-based
method using Buffers 1 and 2 in Fig. 3, the attack model
studied in this article can be detected properly.

In the following, the state prediction and pseudo innovation
generation are presented. Based on the estimated states x̂(t−τ)

and the IMU information, the states x̂(t) is predicted by the
following equation [44]:

δ̇ (t) = A (t)
(
x̂ (t − τ) + δ (t) − δ (t − τ)

)
+ B (t) u (t)

x̂ (t) = x̂ (t − τ) + δ (t) − δ (t − τ) (17)

where τ = υ1T is the actual delay time, υ is the window size
of the required innovation for the GLRT-based attack detection
algorithm, x̂(t − τ) is the delayed estimated states, u is the
input in (7), and δ is the intermediate states. From (17), it can
be seen that, given the delay estimated states x̂(t − τ) and
u(t), the states at current timestamp t can be predicted. For
the real implementation, (17) is discretized and we have

δk+1 = 8kδk + A1T
(
x̂k−υ − δk−υ

)
+ 4k uk

x̂k = x̂k−υ + δk+1 − δk+1−υ (18)

where k ≥ υ and x̂k is the predicted states for the current
timestamp k. Once we have the predicted states, a buffer will
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be used to save the predicted states from k + 1 − υ to k + 1.
Then, the pseudo innovation ζ k in (19) will be computed and
tested by the GLRT-based method to determine whether an
attack has occurred shown in the blue blocks in the lower
branch in Fig. 3

ζ k = zk − H x̂k|k−υ . (19)

The term pseudo is used here because, rigorously, the predicted
state used for computing the innovation is the one-step predic-
tion from the KF, which is the condition that the innovation
satisfies the Gaussian noise distribution [45]. The prediction
step size υ used in (18) depends on the buffer size, which will
be used in the GLRT-based algorithm and is larger than one
apparently. On the one hand, the prediction errors have been
proved stable and bounded in [44]. On the other hand, from
our experience, only ten samples of the innovation (around 1 s
in the time domain) are enough for the GLRT-based algorithm
to detect the attack. In this regard, this short-time predic-
tion based on the IMU information will not generate a
large cumulative error in the position [19]. Compared with
the attack, this cumulative error within a short time is
negligible.

In Section III-C3, based on the residual and pseudo
innovation, the GLRT-based attack detection algorithm is
introduced.

Remark 4: In this proposed delay-prediction framework,
the benefit is to maintain the detection accuracy and real-time
performance for the multiple-sample-based method. Although
we combine this framework with the GLRT-based method
in [34], and [43], note that this framework can be generalized
to any multiple-sample-based attack/fault detection method
when a temporal delay is induced, which is meaningful to
the community.

3) GLRT-Based Attack Detection: Given the set of the
residual and innovation from Buffers 1 and 2 in Fig. 3
and motivated by [34], the attack detection is formulated
as a binary hypothesis testing problem, where the detec-
tor can choose between the two hypotheses H0 and H1
defined as

H0 : The attack has occurred
H1 : There is no attack. (20)

Since the residual in (16) or the pseudo innovation (19) will
be used to detect the attack, in order to derive the probability
density function (pdf) for each hypothesis, the attack and noise
model in the residual or pseudo innovation are specified. The
model yk , which represents the innovation ζ k or the residual
εk at the time instance k, is defined as [34]

yk = sk (θ) + ϖk

sk (θ) = sλ
k (θ) , ϖk = ϖ λ

k . (21)

Here, sλ
k (θ) represents the attack signal λ, θ denotes the set of

unknown parameters of the signal, and ϖ λ
k is the noise in λ.

Without the attack signal, the residual becomes noise assumed
to satisfy the Gaussian distributed zero-mean condition [45].
The pseudo innovation is also assumed approximated to this

condition [45]. Then, for the two hypotheses, the following
conditions hold:

H0 : ∃k ∈ �n s.t. sλ
k (θ) ̸= 0

H1 : ∀k ∈ �n s.t. sλ
k (θ) = 0 (22)

where �n = {l ∈ N : n ≤ l ≤ n+ N −1} and N is the window
size of the residual or the pseudo innovation, which is related
to the lag issue mentioned in Section III-C2. From (22), it can
be seen that if there is no attack in the position from the ego
vehicle’s GNSS or adjacent vehicle(s), the signal component
except the noise should be zero. Otherwise, it should be
none zero and can be detected. With (21), the residual or the
pseudo innovation originates from a family of pdfs as in (with
i ∈ {0, 1})

p (zn; θ,Hi ) =

∏
k∈�n

p
(
yλ

k ; θ,Hi
)

(23)

where zn ≜ {yk}
n+N−1
k=n denotes the residual or the pseudo

innovation sequence from time instant n to n + N −1, p(∗; θ)

denotes a pdf depending on the parameter θ , i.e., p(zn; θ,Hi )

means the pdf for the two hypotheses based on the parameter θ

given the residual or the pseudo innovation sequence zn , and
the details of the pdfs are defined as

p
(
yλ

k ; θ,Hi
)
=

1(
2πσ 2

λ

)3/2 exp

(
−

1
2σ 2

λ

∥yλ
k −sλ

k (θ) ∥
2

)
(24)

where σλ denotes the noise variance of the residual or the
pseudo innovation [the noise variance of the position from
the ego vehicle’s GNSS or adjacent vehicle(s)]. Then, the
GLRT [34] is derived to determine whether H1 [there is no
attack in the position from the ego vehicle’s GNSS or adjacent
vehicle(s)] happens when

LG (zn) =

p
(

zn; θ̂1,H1

)
p
(

zn; θ̂0,H0

) > γ (25)

where θ̂1 and θ̂0 are the maximum likehood estimates of
the unknown parameters when H1 is true and the unknown
parameters when H0 is true, respectively, and γ is a threshold.
In the real implementation, γ is a tuning parameter given
the tolerant false alarm probability, i.e., the probability of
deciding on the hypothesis H1 when hypothesis H0 is true.
In the real-world application, we have set the probability of
the false alarm rate as 0.1 and we will have the probability
of the detection accuracy as 0.95, which is sufficient for the
real-world application [34]. In this case, under H0 (there is
an attack), the signal is completely unknown since the CAVs
have no prior information for the attack signal, and then,
θ̂0

= {yk}
n+N−1
k=n and

p
(

zn; θ̂0,H0

)
=

1(
2πσ 2

λ

)3N/2 . (26)

Under the H1 hypothesis, we have

p
(

zn; θ̂1,H1

)
=

1(
2πσ 2

λ

)3N/2 exp

(
−

1
2σ 2

λ

∥yλ
k ∥

2

)
. (27)
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With (25)–(27), an attack in the position from the ego vehicle’s
GNSS or adjacent vehicle(s) H1 can be detected if

T (zn) =
1
N

∑
k∈�n

(
1

2σ 2
λ

∥yλ
k ∥

2

)
< γ ′ (28)

where γ ′
= −(2/N ) ln(γ ). This means that if the energy of

the residual or the pseudo innovation is less than a certain
threshold γ ′, there is no attack considered in the position
measurement. Otherwise, an attack has occurred and an AI is
set. As can be seen in Fig. 3, corresponding to Buffers 1 and 2,
there will be two indicators AI1 and AI2, respectively. Then,
taking AI1 and AI2, we have AI , which could handle the cases
when the position measurement transitions from normal status
to an attacked mode or from an attack mode to a normal status.
The holistic attack detection process is shown in Fig. 3. After
having the AI, a rule-based strategy to defend the attack in the
CKIF is designed and will be discussed in Section III-C4.

Remark 5: In this work, GLRT-based attack detection is
selected for our application due to its high detection accuracy
and conciseness [34]. Other similar multiple-sample-based
methods, such as sequential probability ratio tests, are also
applicable to be integrated with the proposed delay-prediction
framework [33]. Another notice is that the inputs to the
detection algorithm are the residual and innovation. These
pieces of information are the difference between the prior
information provided by the IMU and the actual sensory
measurements. These kinds of inputs are chosen because the
prior IMU information is free from attacks. In other words, due
to the possible attacks in the measurements, it is challenging
to directly design the attack detection method based on the
redundant measurements.

4) Attack Defense Method: In this section, based on the AI,
a rule-based attack isolation method is designed to prevent the
localization results to be affected by the attack.

Once an AI is declared for a certain sensory measure-
ment, the measurement update will be isolated in the CKIF.
Specifically, the isolation will be executed by increasing the
corresponding element in the measurement matrix R to an
infinite value. This operation will prevent the corresponding
node to be affected by the attack. However, in the meantime,
the measurements in the nodes without the attack will be
continuously leveraged for the measurement update. It can be
seen that as long as not all the measurements are attacked,
there always exists the measurement update in the nodes of the
CKIF. The worst case is that all the measurements are attacked,
and then, the CKIF will run in a time update mode, meaning
that the states will be estimated consecutively by integrating
the acceleration from the IMU.

When the attacks disappear, the temporary changes to the
measurement matrix R will be canceled and the CKIF will
run normally. The details of the algorithm of the secure
cooperative localization method are given in Algorithm 2.

Remark 6: It can be seen that the CKIF well fits the
secure cooperative localization problem from the sensor fusion
and attack defense perspectives: not only it can handle the
measurements from different vehicles conveniently, i.e., when
vehicles are connected or disconnected to the ego vehicles,

Algorithm 2 Secure Cooperative Localization Method

Input : 8i
k ; zGi (position measurement from ego

vehicle i) and zi j (position measurement
from ego vehicle’s adjacent vehicles j); H ;
Qi ; Ri and R j ; x̂ j

k|k−1 (prediction states of
node j ); initial state xi (0) ;initial state
covariance P i (0)

Output: x̄i
k|k

1 while GNSS updated do
2 GLRT-based attack detection for the ego vehicle

measurement based on (28);
3 if zGi is attacked then
4 Isolate it from the CKIF by enlarging the

element in the covariance matrix;
5 else
6 for j ∈ Ni do
7 Run GLRT-based algorithm to test the

adjacent vehicle(s) measurement;
8 if zGi is attacked then
9 Isolate it from the CKIF by enlarging

the element in the covariance matrix;
10 end
11 end
12 end
13 Run Algorithm. 1;
14 end

the added or deleted measurement can be accommodated by
adding or removing the corresponding node in the CKIF,
but also it can deal with the attacked sensors by adapting
the measurement covariance matrix. In addition, the proposed
attack detection and defense method improves the resilience
to the attack for the CKIF.

IV. RESULTS AND DISCUSSION

In this section, the proposed secure cooperative localization
method is validated by numerical simulations. The localization
results with the directed or undirected communication and
attack settings are exemplified and discussed.

A. System Requirements and Case Study Settings
In the case study, the CAV platooning application with

four CAVs is considered to show the detailed localization
results. Also, for the statistical analysis, ten vehicles in the
platooning are included to implement the proposed algorithm.
On each vehicle, sensors, including an IMU to obtain the
longitudinal accelerations, a normal GNSS receiver without
differential corrections to obtain the positions, and a LiDAR
sensor to calculate the relative distance between the ego
vehicle and its neighbor(s), are required. For exchanging the
sensor information, an onboard unit (Celluler-V2X or DSRC)
is necessary to transmit and receive the shared information
from the CAVs wirelessly with a directed or undirected com-
munication topology. In addition to that, each vehicle should
be installed with a computer that can process the sensory
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Fig. 4. Acceleration of the leading vehicle. The red line shows the actual
acceleration and the blue line represents the acceleration measurement
from the IMU.

Fig. 5. Velocity of the leading vehicle.

data and run the proposed algorithms. The requirement for
the computer is similar to our previous work in [46].

To simulate the real sensory measurement, noise is added to
these sensors. For the acceleration measurement, it is assumed
the noise satisfies ωa ∼ N (0, (1 m2)2) [47].N (µ, σ 2) denotes
the Gaussian distribution with mean µ and variance σ 2.
In order to simulate the acceleration zero-bias instability of
the IMU, a constant bias error between −0.1 and 0.1 m/s2 is
added to the acceleration (0.05 m/s2 in our case). The noise
of the GNSS position satisfies ηG ∼ N (0, 3 m2) [48].
During the platooning operation, the GNSS of the vehicles
is compromised by a drift attack, which is larger than 3σ of
the noise, at a certain time. The relative distance obtained from
the LiDAR senor has the noise ηR ∼ N (0, 1 m2) [49]. The
following distance of the CAVs in the platoon is 30 m and it
is assumed the controllers in the CAVs can make the vehicles
keep the same longitudinal acceleration. Note that although,
in the real platoon application, there will be transient response
between vehicles, as long as the sensory information between
CAVs can be measured and shared, the control behavior
will not affect our cooperative localization algorithm. The
acceleration of the leading vehicle (green vehicle) in Fig. 1 is
shown in Fig. 4. The red line represents the actual acceleration
of the leading vehicle and the blue line shows the noisy
acceleration measured by the IMU. First, in t = 0–4 s, the
formation accelerates at 3 m/s2 and the velocity will reach
12 m/s shown in Fig. 5. After that, the formation will keep
this velocity until t=20 s. Then, between t = 20 and 23 s, the
formation starts to decelerate at −4 m/s2 and the CAVs will
stop at t = 23 s.

TABLE I
ATTACKS INJECTED IN THE POSITION MEASUREMENTS

Fig. 6. Position of CAVs. Vehicles 1–4 mean the CAVs from the green
vehicle to the blue vehicle in Fig. 1 driven with the acceleration in Fig. 4.

B. Results
1) Localization With Directed Communication Topology: The

secure cooperative localization results of the CAVs with the
directed communication are discussed in this section in terms
of the attack detection and the position estimation results.

First, in order to simulate the drift attacks in the measured
position, an offset position error is added to the GNSS position
measurement at certain intervals during the platooning. Note
that, since in (11), the attacks from the GNSS position of other
adjacent vehicles or the relative distance result in the attacks f ,
the contributions from the attacks with different sources to
the position measurement are the same. For attack detection,
as long as there is an attack in f from the GNSS position
or relative distance, it can be detected without knowing that
it comes from the GNSS position or relative distance. Thus,
to make the validation concise, only the attacks in the GNSS
position are used in the case study. The attacked GNSS
position measurements are shown in Fig. 6. The curves of
Vehicles 1–4 represent the position measurements from the
GNSS of all vehicles in Fig. 1. The GNSS in Vehicles 1–3
is attacked and the injected attacks are shown in Table I. The
attacks from communication and sensors are considered. For
simulating the attacks such as data tampering in the commu-
nication, the GNSS position of Vehicles 1–3 in the platoon is
attacked by adding a drift error. Regarding the attacks for the
sensors, the GNSS in a certain region is spoofed such as in
t = 10–13 s, both Vehicles 2 and 3 are attacked.

The actual position of Vehicles 1–4 is represented by the
center black lines in each colored curve in Fig. 6. The attack
detection results are shown in Fig. 7, the black dashed line
gives the actual status if an attack occurs, and the red line
means the detected AI α for Vehicles 1–3. To be specific,
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Fig. 7. Attack detection results. AI denotes the attack indicator and veh
means vehicle.

for instance, the partial enlargement views in Fig. 7 provide
the exact moments when the attacks happen or disappear for
Vehicle 1. Since the time delay τ or the prediction horizon
in our delay-prediction framework is set as 0.1 s, for our
implementation, we can see that α veh 1 for both the reference
and detected is behind the actual moment when the first
attack occurs at t = 8 s given in Table I. However, α for
Vehicle 1 (red line) can be set prior to the reference (black
dashed line), meaning that the delayed estimator (KCIF) can
be notified in advance when the attack is going to occur.
This is because based on Buffer 2 in Fig. 3, the attack can
be detected. Then, the delayed estimator KCIF is able to
isolate the attack ahead. Also, from Fig. 7, it can be seen
that the attack can also be detected accurately without any
false positive. When the GNSS measurement transits from an
attacked status to normal status (t = 14 s and t = 19 s
in Fig. 7), it can be seen that the detection is behind the
reference for a short term (less than 0.1 s) due to using
Buffer 1 in Fig. 3 for the recovering process. The cost of
this delay is that the KCIF continues to keep in the attack
isolation mode for a short term without leveraging the valid
GNSS measurement during this delay. However, the cost is
negligible since, in the isolation mode, the corresponding
node in the KCIF will run in the time update mode based
on the IMU information and the cumulative error is small.
Similar attack detection results can be seen for Vehicle 2
(α Vehicle 2) and Vehicle 3 (α Vehicle 3) with drift errors with
different magnitudes. In addition, during t = 10–13 s, when
both the GNSS measurements in Vehicles 1 and 2 are attacked,
the attack detection algorithm can still provide the accurate
detection results. Then, based on these estimated states in the
KCIF, through (18), the states at the current moment can be
predicted by using the information from the IMU. Thereby,
the attack detection results demonstrate that the latency issue
of the GLRT attack detection has been addressed and our

Fig. 8. Position error of Vehicles 2 and 3 with directed communication
topology. MSMV, KF, and KCIF mean the results of the state-of-the-art
cooperative localization method MSMV in [26], the normal KF, and the
KCIF, respectively. Veh means vehicle.

proposed delay-prediction framework can detect the attack
accurately.

After having the attack detection results, the KCIF is
able to defend the attacks by the rule-based attack isolation
approach as in Section III-C4 and estimate the position of the
CAVs. The localization results and the partial enlargement for
Vehicles 2 and 3 are given in Fig. 8 to show the performance
of the consensus estimation framework. For the comparison
purpose, the position results from a normal KF, which is based
on the sensors in an individual vehicle, and a state-of-the-art
approach multi-sensor multi vehicle (MSMV) in [26] are also
presented. To implement the KF and MSMV, both of them
are integrated with the proposed attack detection algorithm.
Note that the normal KF can only fuse the information from
an individual vehicle, but the CKIF and MSMV can leverage
the information from both the ego vehicle and other CAVs.
This is the major difference between the normal KF and the
other two methods. From Fig. 8(a), it can be seen that both
the positions from the KF, KCIF, and MSMV follow well with
the reference to some extent because both the methods have
been integrated with our proposed attack detection method,
preventing them from being attacked. In another aspect, in the
partial enlargement figure shown in Fig. 8(b), we can see that
the attack in the raw position does not affect the estimated
position of KF, KCIF, and MSMV. From the position error
in Table II and Fig. 9, differences can be identified between
the KF and the cooperative localization approaches, including
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TABLE II
LOCALIZATION ACCURACY COMPARISON

Fig. 9. Position error of Vehicles 2 and 3 with directed communication
topology. Veh means vehicle.

KCIF and MSMV. For Vehicle 2, it can access the sensory
measurements of its front vehicle (Vehicle 1), which include
the position from the GNSS in Vehicle 2 and (11) based on
the relative distance obtained from the sensor and the GNSS
sensors in Vehicle 1. They can be leveraged in the KCIF
and MSMV to estimate the position when there is a certain
sensor attacked. Thus, the absolute mean error (AME) and
RMSE of the position from both KCIF and MSMV are smaller
than that from the KF. In t = 10–13 s, both the GNSSs
in Vehicles 1 and 2 are attacked, and therefore, the position
errors for the KF, KCIF, and MSMV are similar and drift a
bit because there are no measurements to correct the errors
coming from the IMU. However, in t = 20–23 s, due to the
attack in Vehicle 2, the KF runs in a time update mode without

Fig. 10. Position error of Vehicles 2 and 3 with undirected and fully
connection communication topology. KF, MSMV Un, and KCIF Un mean
the results of the normal KF, the state-of-the-art cooperative localization
method MSMV in [26] with the undirected communication topology, and
the KCIF with the undirected communication topology, respectively.

measurement updates and the position error starts to drift due
to the acceleration bias error in the IMU. For the KCIF and
MSMV, since the GNSS in Vehicle 1 is not attacked in t = 20–
23 s, this information could still be leveraged in the KCIF to
correct the errors from the prediction process. For Vehicle 3,
the position error drifts for the KF when there is an attack
in t = 2–5 s and t = 13–16 s but for the KCIF and MSMV
since there is no overlap when the attacks happen between
Vehicles 2 and 3, which can be inferred from Table I. The
measurement updates continue all the time to correct the errors
from the prediction process. Based on the comparison between
the KF and the cooperative localization methods (KCIF and
MSMV), it can be seen that exhausting the information
cooperatively from the ego vehicle and its adjacent vehicle
in a directed communication topology in the KCIF improves
the redundancy for the localization algorithm and makes it
more secure regarding the attacks. Comparing the KCIF and
MSMV, we can see that the KCIF method shows superior
performance regarding AME and RMSE. This is because
KCIF is a suboptimal version of the Kalman-consensus filter
in [27], which has shown better performance than the existing
distributed KFs such as the MSMV in [26].

2) Localization With Undirected Communication Topology:
To further investigate the performance of our method in cases
where more vehicles cooperate with each other, localization
results for the CAVs with undirected communication are
presented. Under the undirected communication topology, the
CAV can not only share information with its front CAV
cooperatively but also with its rear CAV, meaning that more
information can be fed into the KCIF and MSMV. From
the position errors shown in Fig. 10, it can be seen that in
t = 10–13 s, although the GNSS in Vehicles 1 and 2 is
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attacked, the derived position from Vehicle 3 is leveraged in
the KCIF and MSMV and the drift error in Fig. 9 has been
compensated. With more vehicles connected, the security of
our localization algorithm is improved because there is more
redundant information that can be fused to compensate for
the influence of the attacks. From another aspect, for the
localization accuracy, it can be seen from Table II that, from
the KF to the KCIF with undirected communication Gu , the
accuracy increases in terms of AME and RMSE. With more
information from the vehicles that are used, from Table II,
the AME and RMSE of both KCIF and MSMV with Gu
decrease to some extent compared with those of the KF.
In addition, the proposed secure cooperative localization in
cases with more CAVs totally connected in Gt (4–10 CAVs)
is tested. From Table II, the accuracy in terms of the AME
and RMSE in Gt where the sensory information from all
ten vehicles is used in our estimation algorithm improves by
35.4% and 36.6%, respectively, compared with the one in Gd
where sensory information from only two vehicles is used.
It is worth noting that, with the number of vehicles increasing
from four to ten, it can be found that the difference between the
KCIF and MSMV decreases. It is possible because the random
noise in the position can not only be compensated by the filter
algorithm but also by the average effect. Therefore, it shows
that when more vehicles share information cooperatively, both
localization accuracy and security can be advanced further.

Please note that in this article, it is assumed that the shared
information can be provided by radar, camera, or LiDAR
through V2V/V2X communication. However, in a real appli-
cation, due to the limitation of sensor range or occlusion
issues of these sensors in some scenarios such as roads with
high traffic density, the object cannot be detected, and thus,
the interdistance between the vehicles is not accessible if a
traditional object detection algorithm based on sensors in an
individual vehicle is used [49]. Accordingly, in this case, the
CAV may not be able to share the interdistance between itself
and its neighbor CAVs and the communication edge in the
cooperative localization algorithm needs to be disconnected.
The consequence of this issue is similar to a measurement
that has been attacked. However, in our recent paper [49], if a
V2V-based object detection algorithm is used, the limitation
of sensor range and occlusion issues can be resolved, and thus,
the robustness of our cooperative localization can be enhanced
further.

V. CONCLUSION

In this article, a secure cooperative localization method for
the CAVs is proposed and validated by numerical simulations.
It can be concluded from the following results.

1) The sensory information from the ego vehicle and the
cooperation with its adjacent vehicle(s) in a directed or
undirected communication topology can be well lever-
aged by the consensus estimation. To some extent, more
nodes in the CKIF enable the algorithm to have higher
localization accuracy and better security.

2) The injected attacks in the sensory measurement can
be detected accurately by the GLRT-based method and
the temporal lag for the decision from the GLRT-based

method has been resolved. With the detection results,
the proposed secure cooperative localization has shown
resilient performance to the attacks. Both the security
and the localization accuracy have been improved com-
pared with a normal centralized KF.
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