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Abstract—With the increasing proliferation of embedded
sensors in wearable devices, there is potential for modeling
individual emotional and mental state variations. The popular
measure for the quantification of emotions outlines the affec-
tive states of arousal and valences, with high and low being
the discrete categories of interest. Recent works explore
the discernability of digital behavior differences between
groups with and without mental disorders. However, the
interaction between physiological states and affective states
within a predominantly depressive population remains to be
studied with the aid of wearables. Despite the pervasive-
ness of emotional state inference through the tracking of
ubiquitous physiological trackers, such as heart rate, blood
volume pulse, skin conductance, and motion, a dearth of
work is noted in the exploration of physiological markers in
single-modal and multimodal settings. This work provides an extensive evaluation of a convolutional neural network
with an attention mechanism ensembled with a random forest algorithm to effectively leverage multiple raw signal-to-
image transformations as feature inputs to predict depression severity and affective state. The proposed models are
assessed on the Daily Ambulatory Psychological and Physiological recording for Emotion Research (DAPPER) dataset
and achieve the sensitivity: specificity scores of 58.75%:45.59%, 62.34%:43.41%, and 49.43%:51.70% for predicting
depression, valence, and arousal with a mixture of unimodality and bimodality applying continuous wavelet transforms
and short-time Fourier transform to motion and skin-conductance readings, respectively. This work is envisioned as
a preliminary study to contribute toward the monitoring of affective states among a depressed population by utilizing
low-frequency sensor recordings with the DAPPER dataset.

Index Terms— Affective computing, deep learning, depression, galvanic skin response (GSR), heart rate (HR) sensors,
motion sensors, multimodal, unimodal, wearable devices.
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I. INTRODUCTION

THE affective states are often largely affected by interindi-
vidual differences in prior prevailing mental conditions

and personalities, reflect responses to events and contextual
stimuli, and offer a way of quantifying emotional dysreg-
ulation. There is also the rampant issue of true emotion
concealment or suppression by individuals during subjective
questionnaires, speech, and/or facial cue analysis, making it
a challenge to diagnose during early stages [1]. To help with
detection, many prominent biomarkers have been studied in
relation to mental health, such as brain connectivity and heart
rate (HR) variability [2], [3].

The constant observation and collection of this data with
external disparate sensors pose a hurdle for patients’ daily
activity. In addition to the need for unobtrusive constant
monitoring techniques, the utilization of long-term passive
readings through a single wearable device is relatively indirect
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Fig. 1. Russell’s 2-D valence-arousal affect model [10].

and more appealing to general users. Thus, this topic presents
an interesting research challenge to undertake, where we
study the underlying interplay between motion, HR, and skin
conductance in predicting emotional states.

Multimodally studying seemingly orthogonal, yet related,
markers brings extra dimensions for insight-enhancing anal-
ysis and diversity. Diversity is a conceptualization for the
principle of multimodal intelligent systems representing the
increase in gleaned insights in proportion to the increase in
unique modalities [4]. Heart activity captured from wearables
is hypothesized to encapsulate the following behavior [5].
Acute stress increases HR and respiration activity, triggering
the fight-or-flight response of the autonomic nervous system
(ANS). Skin-conductance sensors are expected to measure
the level of sweat secretion through transient changes in the
skin conductance brought about by affected mood and once
again influenced by the sympathetic activation of the ANS.
One study details how balance, stability, and posture quality
degrade, during movement, with the rise of depressive symp-
toms [6]. Many exhibiting symptoms of depressive disorder
tend to have impaired psychomotor skills and often fall into
sedentary lifestyles [7], [8]. It also has been shown that a
light increase in physical activity and physiotherapy has been
proposed to alleviate mild to moderate depressive cases. This
interplay, recorded in literature, between features of motion
and depression gives ground to the utility of movement as a
marker for depression.

Monitoring depression solely is not sufficient to attain
a complete overview of an individual’s mental state. The
monitoring of immediate psychological affect, valence, and
arousal is equally as essential. Affective valence is the measure
of how positive or negative an experience is subjectively
perceived, while affective arousal rates the activation level of
the sympathetic nervous system or an approximation of the
level of engagement when self-reported, which is illustrated
in Fig. 1 [9].

Psychological affect can also be reliably monitored through
motion expression and body movement quality [11]. Some
subtle gestures like how a person shrugs their shoulder have
been shown to relay affective information [12]. The work
in [13] highlights the strong correlation between motion and
valence/arousal by monitoring the affect conveyed by dancers

Fig. 2. Flow diagram of end-to-end process.

through minute movements captured using motion capture
technology.

For unobtrusive constant monitoring of mental state, we pro-
pose the instrumentation of a framework that uses motion as
the sole marker to derive a comprehensive overview of an
individual mental health state using wearable sensors. Wear-
able sensors confer objectivity in naturalistic settings, which
is paramount for a more accurate and complete representation
of subconscious reactions and behaviors.

In summary, the primary contributions of this work are given
as follows.

1) We aim to quantify and contrast the utility of unimodal
and multimodal inference from wearables in providing
insight relating to an individual’s mental state in terms of
high/low valence, high/low arousal, and moderate/severe
depression within naturalistic settings.

2) We compare and contrast multiple raw signal-to-image
transformations on 30-min long motion data preceding
the ESM sampling questionnaire to leverage the spa-
tiotemporal dependence characteristics of the signals.

3) We utilize a convolutional neural network (CNN) with
an attention mechanism to highlight regions of interest
in the extracted feature maps, connected to a random
forest (RF) algorithm for the binary classification to
avoid overfitting in the presence of scarce data.

This article is organized as follows. Section II explores
the materials and methods. Section III presents the results.
Section IV discusses the findings. Section V concludes the
work and suggests possible future research directions.

II. MATERIALS AND METHODS

Recent research has studied the connection between mood
and the product of emotional states, such as creativity [14]
using the popular experience sampling method (ESM) and
daily reconstruction method (DRM) techniques. However, it is
limited by the relative scarcity of physiological motion data
to find relations between different states of emotions.

Fig. 2 summarizes a pipeline with the data extraction, data
processing, data analysis, and evaluation stages part of this
work.

A. Dataset
Our work utilizes the Daily Ambulatory Psychological and

Physiological recording for Emotion Research (DAPPER)
dataset [15] that is a collection of self-reported psycholog-
ical data and physiological recordings through smartphone
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Fig. 3. ESM event count in different environment settings.

Fig. 4. ESM event count based on activity types.

apps and wearable wristbands to explore daily emotional
experiences. It aims to actively encourage the study of
emotions based on natural real-life scenarios as opposed to
predetermined lab experiments. Laboratory-based methods for
studying the psychological and physiological basis of human
emotion are not authentic enough to simulate real-life scenar-
ios in day-to-day activities. The conventional practice is to use
images, videos, or text in controlled environments, which is
not ideal to monitor individuals in a naturalistic setting over
an extended period of time.

Data were collected during natural everyday activities
from participants over a period of five consecutive days
(9 A.M.–11 P.M.).

Based on the distribution of ESM events, as depicted by
Fig. 3, the most common settings were dormitories, class-
rooms, and department buildings. Furthermore, the frequency
of events was shown to be mainly personal, as demonstrated
in Fig. 4, with the majority being related to low arousal,
both moderate and severe depression, and both high and low
valence.

It is assumed that participants have answered the question-
naires honestly without any bias, and the data collected were
based on answers evoked by everyday activities instead of
outlier events

The data were modeled with the following assumptions.
1) For binary segregation of arousal and valences, the

Likert-scale reported scores of 1 and 2 are treated as

low, whereas 3, 4, and 5 are considered as high. This
threshold is in alignment with the works reported in [16]
and [17].

2) Depression as per the Beck Depression Inventory-II
(BDI-II) scale had scores in the range [20, 28] or
[29, 63], corresponding to the categories of moderate
and severe, respectively.

3) Signals of 1-Hz frequency are employed for robust
and efficient performances in continuous monitoring
situations.

Statistical analysis was performed to ascertain the differ-
ences between the groups belonging to high and low valence,
high and low arousal, and moderate and severe depression
with respect to place and activity. The null hypothesis is
rejected if the p-value < 0.05 (i.e., the population does not
have statistically significant differences) in the subsequent
calculations. Groups belonging to all six classes for place
are observed to deviate from the Gaussian distribution as per
the Shapiro–Wilk test for normality. Thus, the nonparametric
Wilcoxon rank sum test was applied, and differences were
noted between the populations. Groups belonging to all six
classes for activity are observed to follow the Gaussian dis-
tribution as per the Shapiro–Wilk test for normality. Thus,
the parametric independent t-test was applied, and differences
were noted between the populations. The alternate hypothesis
was accepted in both cases.

The authors of DAPPER proposed to record psychological
data through ESM and DRM surveys on the participant’s
mobile phone and assess it based on different scales, such
as the positive and negative affect scale (PANAS), valence,
and arousal. In addition to that, record physiological data
through a custom-designed wristwatch, and organize it based
on three-axis acceleration (ACCEL), galvanic skin response
(GSR) signals, and photoplethysmography-derived HR
(PPG-HR) signals. As mentioned in [15], the overall mean
of physiological data (HR, GSR, and ACCEL) over the
period of five days was steady throughout the day. The
units of ACCEL, GSR, and PPG-HR are root mean square
(rms) in m/s2, micro-Siemens µS, and beats per minute
(BPM), respectively. It was also validated through bivariate
correlation matrices between emotion categories that there
are similar patterns between the ESM and DRM data, which
concurs with previous studies, as seen in [14] and [18].
The correlation between emotion categories and motion
signals further adds to the validity of the data (for example,
the positive correlation between PPG-HR fluctuations and
inspired category).

The main observations of Shui et al. [15] can be summa-
rized as follows.

1) The presentation of the DAPPER dataset that supports
emotion research in authentic daily settings. DAPPER
consists of the following.

a) ESM Data: Self-reported thoughts, emotional sen-
timents, and actions over an extended period of
time.

b) DRM Data: Collection of how the participants
spent their time and the emotions experienced dur-
ing various activities from their day-to-day lives.
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c) PPG-HR Data: Determined by photoplethysmog-
raphy signals.

d) GSR Data: Determined by electrodermal activity
sensors.

e) ACCEL Data: Triaxial accelerometer data that
determine changes in speed in relation to the
Cartesian coordinate axes.

2) The association between psychological recordings
(ESM) and physiological recordings (PPG-HR and GSR)
that were collected through day-to-day activities over
a long period of time was depicted through bivariate
correlation matrices.

The data collection procedure followed to capture data from
the participants is given as follows.

1) Pretest: The patients were asked to take a pretest to
evaluate their traits before the start of the main experiments.
The pretest was conducted using the WJX survey platform and
was organized into the following sections: BDI-II, PANAS,
and others.

2) Psychological Recordings: The psychological recordings
were recorded on smartphones on the Psychorus questionnaire
app. ESM and DRM were both utilized, and the questionnaires
were sent to the participants’ phones as push notifications.

The ESM questionnaire was divided into the following:
daily event information, participants’ personal assessment,
a five-item ten-item personality inventory (TIPI-C) for person-
ality, a ten-item PANAS scale, valence, and arousal. This was
sent to participants at random time periods between 9 A.M.
and 11 P.M. with a minimum 90-min break, six times per
day. They were asked to fill up the questionnaire based on the
events/activities in the last 30 min. The DRM questionnaire
also had the ten-item PANAS scale, valence, arousal, and
an additional section to describe events. This was sent to
participants at 11 P.M. every night.

The ten emotional categories chosen for both questionnaires
were active, afraid, attentive, determined, nervous, inspired,
ashamed, alert, hostile, and upset.

3) Physiological Recordings: The physiological data were
recorded by a custom wristband manufactured by Psychorus.
ACCEL data were collected at 20-Hz across the x-, y-, and
z-axes using an accelerometer sensor embedded in the wrist-
band. Similarly, PPG-HR data were collected with a green
light of 532-nm wavelength at 20 Hz. GSR, however, was
sampled at a higher frequency of 40 Hz.

To minimize noise artifacts, allow for faster computation,
and level data representation, the final signals were downsam-
pled to 1-Hz rms using the 10-s time windows for PPG-HR
downsampling and using the mean square of the triaxial raw
ACCEL.

Both the psychological and physiological recordings were
collected over a period of five days from Monday to Friday
during the winter season. The participants’ gender split was
64 male and 78 female, and the average age was 21.5
(between 18 and 31). Out of 142 patients, 88 participants
recorded physiological data. Out of 88 records, one record
was missing (i.e., invalid). The ethical approval process was
Helsinki Standard, approved by the Local Ethics Committee

Fig. 5. Sample instances of PPG-HR representing the binary classes
(x-axis: BPM against y -axis: time in seconds).

Fig. 6. Sample instances of GSR representing the binary classes (x-
axis: conductance in µS against y -axis: time in seconds).

Fig. 7. Sample instances of ACCEL representing the binary classes
(x-axis: rms in m/s2 against y -axis: time in seconds).

of the Department of Psychology, Tsinghua University, and
written consent was given by all the patients.

Initially, the dataset consisted of 2249 signals, with an
average duration of 1713.4 s. Since the ESM sampling method
requires strictly considering the 30 min preceding the question-
naire, signals not meeting these criteria were discarded. This
included signals with missing segments and shorter duration.
The final number was 2034 signals with an average duration
of 1800.00 s (30 min). To mitigate the amplitude scaling
issue commonly prevalent in wearable devices’ acquired sig-
nals, the Z -score normalization is performed on the signals,
using the equation described in [19]. Sample instances of
PPG-HR, GSR, and ACCEL data that represent each of the
binary classes are illustrated in Figs. 5–7.
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Fig. 8. Signal-to-image transformations for arousal (negative, positive), valence (negative, positive), and depression (moderate, severe) binary
classes.

TABLE I
ESM EVENT COUNT

Postpreprocessing of the raw data, the distribution of ESM
events based on valence, arousal, and depression is presented
in Table I.

B. Preprocessing
Other than dropping erroneous records, the data had to

be prepared for our inference framework. In this section,
we describe the techniques used to extract the underlying
signal features necessary for inference, and the output rep-
resentations are shown in Fig. 8.

We rationalize the conversion of time-series signals into
image-like representations of the time and frequency domains
based on the following assertions. First, neural network archi-
tectures developed for computer vision achieved great success
in classification performance by virtue of exploiting transla-
tional invariance through automated feature maps’ extraction
by receptive fields and learning with weight sharing [20].
By considering signals in such a way, we seek to leverage
the abilities of CNNs. Second, a single derived image repre-
sentation of fixed dimensions can implicitly capture spatial and
temporal characteristics for the duration of 30 min (duration of
one event preceding the ESM valence/arousal questionnaire).
This adds elements of intensity, mean power, and dynamic
ranges at different time points within a single window, which
can be advantageous for improved classification discernability.
Finally, the application of similar methods for capturing time
and frequency relationships for human activity recognition
from sensor data in [21], [22], and [23] encourages the
exploration of these in our work.

1) Short-Time Fourier Transform (STFT): STFT is a method
for performing time–frequency analysis of a time-domain
signal by dividing signals into shorter windows and computing
Fourier Transform on each window (256 segments in this
work, with an overlap of 128) separately then subsequently
aggregated [24]. We represent STFT numerically, with x(t) as
the original signal, while w(t − T ) as a t-centered window
tapering function [25]

X (τ, ω) =

∫
∞

−∞

x(t)w(t − τ)e−iωt dt. (1)

2) Continuous Wavelet Transform (CWT): CWT, like STFT,
allows for time–frequency analysis of time-domain signals
through the shifting of predefined analytic wavelets across
the time axis of the original signal. Alongside the varying
of the shifting parameter, the scale of the wavelets is varied
for optimal capturing of frequency characteristics of a signal.
The morl wavelet is used in this work. CWT is expressed
mathematically using the following equation [26]:

Xw(a, b) =
1

|a|1/2

∫
∞

−∞

x(t)ψ̄
(

t − b
a

)
dt. (2)

3) Hilbert–Huang Transform (HHT): HHT performs power
distribution analysis on a given signal through its decompo-
sition, within the time domain, to its intrinsic mode func-
tions (IMFs), using empirical mode decomposition (EMD).
Instantaneous frequency, defined in the following equation,
is obtained through the application of Hilbert spectral analysis
(HSA) on each IMF, ultimately preserving signal spectral
characteristics [27]:

ω(t) =
dϕ(t)

dt
. (3)

4) Gramian Angular Summation/Difference Fields
(GASF/GADF): Unlike the mathematical tools discussed
above, GASF/GADF is a framework to encode time-series
data as images for better time-series feature extraction
in CNNs. The first step is to normalize the time-series data
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Fig. 9. Architectural pipeline of the proposed model (unimodal).

then to represent the data in polar form to preserve temporal
relations by using the angular cosine on the normalized data
to get the angle, while the radius is the timestamp of the
particular datapoint (divided by a constant factor N ) [20]

x̃ i
0 =

xi min(X)
max(X)− min(X)

(4)

φ = arccos (x̃i ) , 0 ≤ x̃i ≤ 1, x̃i ∈ X̃ , r =
ti
N
, ti ∈ N.

(5)

Finally, GASF is defined by the trigonometric summing of all
points, while GADF is defined by their difference, as shown
in the following equations:

GASF = [cos(φi + φ j )]

= X̄ ′
· X̄ −

√
I − X̄2 ·

√
I − X̄2

GADF = [sin(φi − φ j )]

=

√
I − X̃2 · X̃ − X̃ ′

·

√
I − X̃2. (6)

5) Markov Transition Fields (MTFs): Another time-series
visualization algorithm that is prominently used as a pre-
processing step for computer vision deep neural network
applications is the MTF. MTF relies on splitting the data
longitudinally into quantile bins to create a Markov transition
matrix (MTM) denoting the probability of a transition from
one bin to another. Subsequently, MTF is defined by adding
a temporal dependence to MTM, according to the following
equation:

M =


wi j |x1∈qi ,x1∈q j · · · wi j |x1∈qi ,xn∈q j

wi j |x2∈qi ,x1∈q j · · · wi j |x2∈qi ,xn∈q j
...

. . .
...

wi j |xn∈qi ,x1∈q j · · · wi j |xn∈qi ,xn∈q j

 (7)

where Wi, j corresponds to a single MTM value [20].

C. Ensemble Deep Learning
In this work, a deep convolutional network with an attention

mechanism [28] is proposed for the binary classification
of high/low valence, high/low arousal, and moderate/severe

depression states. From an overview perspective, the deep
learning architecture consists of five layers, including the
attention layer, as depicted in Fig. 9. During each set of exper-
iments, the raw signal-to-image transformations processed by
STFT, CWT, HHT, GASF, GADF, or MTF are fed as input into
the model. The dimensions of the images are 64 × 64 × 3 and
span the 30-min duration denoting the time period of relevance
prior to the ESM sampling questionnaire.

Suppose that the input images are represented by X =

{x1,1, . . . , xh,b}, where x(i, j) ∈ Rhxb, and h and b are height
and width of the image. Consider then the input of the 2-D
convolutional layer s1 as a single image x(i, j), which, when
convolved with the kernel w(i, j) of size a × b, obtains the
feature map m(i, j) using

m(i, j) = x(i, j)∗w(i, j)

=

a∑
u=−at=−b

b∑
v

x(u, v) · w(i − u, j − v). (8)

The 2-D convolution is performed on the input images with
a stride of 1 and a kernel size of 3 × 3 with 32 filters.
Batch normalization was integrated after this layer for the
normalization of the activation function, rectified linear unit
(ReLU). To reduce overfitting, both the L1 kernel regularizer
and a single dropout layer with a value of 0.3 were added. Let
the set of feature maps across after the batch normalization and
dropout layers be denoted as M̂s1 = {m̂k

s1 , . . . , m̂n
s1}, where

k indicates a spatial location of n total locations within the
layer. We forego a second convolutional layer with pooling
layers and fully connected layers in favor of the attention
mechanism and the RF, respectively, in the complete model.

The learned feature maps are then propagated to the atten-
tion layer for additional emphasis on the key aspects of the
representations. The attention layer uses the compatibility
scores of the dot product of m̂k

s1 and the global feature
vector g, which has the entire input image as support as
defined as follows:

cs
i =

〈
ℓs

i , g
〉
, i ∈ {1, . . . , n}. (9)
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Fig. 10. Architectural pipeline of the proposed model (multimodal).

The relative magnitude of the scores is contingent on the
strength of activation of m̂k

s1 and the alignment between this
feature map and g. The scores are normalized to the range
(0, 1) by the softmax operation in

as
i =

exp
(
cs

i
)

∑n
j exp

(
cs

j

) , i ∈ {1, . . . , n}. (10)

The final output of the attention mechanism for the convolu-
tional layer s1 with feature map m̂k

s1 is denoted by gs
a , which

is the weighted combination of the feature maps for this layers
and the weights are specified by a

gs
a =

n∑
i=1

as
i · m̂k

s1 . (11)

It is hypothesized based on [29] and [30] that the convo-
lutional layer learns a hidden representation of the general
regions of interest across the images, and the attention mech-
anism weighted features derived from this representation
indicate the relevant intermittent or latent activation accompa-
nying mood states during motion or the exhibition of certain
physiological markers.

The weights of the model are trained using a fully con-
nected layer comprising 24 neurons with a sigmoid activation
function. After training for 25 epochs, with early stopping and
learning rate reduction on the plateau of 3 epochs, only the
feature extraction layers are maintained as input for RF.

For the multimodal cases, as shown in Fig. 10, the convo-
lutional channels are replicated three times for each modality,
and the features from each pipeline are fed to a fully connected
layer of 16 neurons before being passed through a sigmoid
activation for final classification during training of the feature
extraction component.

For both unimodal and multimodal cases, random search
and grid search were utilized to select the ideal number
of neurons, depth of the networks, and activation functions,
with F1-score being the optimization criterion. It is worth

mentioning that kernel sizes varied between 5 × 5, 20, and
20, while the numbers of filters varied between 1 and 128.

To identify the machine learning classifier most suitable for
classifying the feature representations only, we compare RF
with support vector machines (SVMs) and K-nearest neighbors
(KNNs) [31]. To see if changes to the feature extraction com-
ponents drastically affect model performance, we adapt the
CNN layers with spectral normalization (SN) [32] for stability
of the weights and also extend the module with long-short term
memory (LSTM) cells and bidirectional LSTM (BiLSTM) as
well [33]. These are independently incorporated prior to the
attention mechanism, and the goal is to observe if the models
are consistently learning similar latent space representations
in the presence of architectural variations.

III. RESULTS

The training and test instances are selected using hold-
out cross-validation, where 75%, 15%, and 10% of motion
signals are used for training, testing, and validation. When
adapting the weights of the CNN without the RF component
so that it operates as a feature extractor, 50% of the original
training set was used for training and the remaining 25%
for validation. The standard evaluation metrics considered are
accuracy, sensitivity, specificity, and F1-score.

While inferring users depressive states using each of HR
(PPG-HR), GSR, and accelerometer signals yielded highest
performance results when CWT, STFT, and HHT signal-to-
image preprocessing transforms were employed, relatively,
with an average accuracy and F1-score values of 51.88 ±

0.57 and 51.78 ± 0.39, as seen in Table II, resulting models
exhibit moderate, yet balanced, performance with minimal
overfitting yielding average performance values of 50.33 ±

1.15 accuracy, 56.92 ± 1.76 sensitivity, 43.13 ± 1.78 speci-
ficity, and 50.02 ± 1.21 F1-score.

On the other hand, valence and arousal respective inference
unimodal models tended to overfit as seen in the highly
contrasted (and constantly fluctuating) specificity and sen-
sitivity metrics in Tables III and IV, with average arousal
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TABLE II
DEPRESSION - CNN-ATTENTION-RF MODEL PERFORMANCE

COMPARISONS EXPRESSED AS PERCENTAGE

TABLE III
AROUSAL - CNN-ATTENTION-RF MODEL PERFORMANCE

COMPARISONS EXPRESSED AS PERCENTAGE

model specificity and sensitivity values of 59.69 ± 39.47 and
40.49 ± 39.21, respectively. Similarly, for valence inference
models, the average specificity and sensitivity metrics are
82.3 ± 25.32 and 17.32 ± 23.99.

The effects of multimodality on the detection of depres-
sion, arousal, and valence were tabulated and highlighted in
Tables V–VII. The average performance metrics for multi-
modal inference of depressive states are 49.51 ± 1.46 accuracy,
65.0 ± 10.0 sensitivity, 35.0 ± 10.0 specificity, and 50.0 ±

0.0 for F1-score. Analogously, arousal inferring models exhib-
ited 55.86 ± 3.87 accuracy, 71.59 ± 18.98 sensitivity, 30.75 ±

20.69 specificity, and 51.17 ± 1.31 for F1-score. Finally,
valence prediction models followed similar trade when incre-
menting input data modality, as average recorded performance

TABLE IV
VALENCE - CNN-ATTENTION-RF MODEL PERFORMANCE

COMPARISONS EXPRESSED AS PERCENTAGE

values were 74.58 ± 5.85 accuracy, 87.21 ± 9.08 sensitivity,
15.06 ± 11.09 specificity, and an F1-score 51.13 ± 1.35.

We report additional experiments to support one of our
theories that leveraging feature representations from CNN
components and classifying with a simpler model can reduce
overfitting for certain types of data as in this work. With
additions of SN, LSTM, BiLSTM, or replacements of SVM
and KNN instead or RF, we notice that the performance of
the models tends to become more balanced. However, the
differences between each of these variants are negligible and
show that the data that we used, i.e., the 30-min window
containing emotional stimuli and preceding an ESM reporting
event, were not particularly effective for the tasks.

After intent analysis highlighted results, we cannot arrive
at a conclusion in favor of multimodal networks. Out of
the aforementioned permutations, only arousal-oriented mod-
els retained reliability within multimodal settings. Despite
that, models during experimentations consistently degraded
in reliability with each added modality. Even arousal-oriented
prediction models quickly overfit with their specificity plum-
meting to 0 and sensitivity to 100, meaning that the model
was prone to an increasing amount of false positives during
our trial runs.

IV. DISCUSSION

A. Contributions
In this work, we utilize wearable data acquired during the

ESM method, with the intention of capturing a “snapshot”
of short events during the day associated with likely exter-
nal stimuli and aggregating the derived measures to capture
more complex interactions between the mind and body. The
participants of the data collection procedure are all students,
and this establishment of physiological or behavioral base-
lines for this group of patients essentially paves the way for
recognizing signs and symptoms of underlying emotional and
mental states via significant deviations from mined patterns.
Some studies show valence and its consistent relation to
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TABLE V
DEPRESSION - MULTIMODAL MODEL PERFORMANCE COMPARISONS EXPRESSED AS PERCENTAGE

TABLE VI
AROUSAL - MULTIMODAL MODEL PERFORMANCE COMPARISONS EXPRESSED AS PERCENTAGE

TABLE VII
VALENCE - MULTIMODAL MODEL PERFORMANCE COMPARISONS EXPRESSED AS PERCENTAGE

PPG-HR, particularly among men, in response to pleasant,
neutral, and unpleasant stimuli [34]. Skin-conductance-related
features show both positive and negative associations with
arousals [34], [35]. However, the relationship between auto-
nomic functioning described by these sensors and affective
emotions is not as linear and can change drastically across
the type of stimuli and setting of the measurements [36], and
studies such as ours contribute to ongoing research. ACCEL
is relatively more general in its application, as it can capture
anxious gesticulation, nervous fidgeting, and frequency of
activities such as sitting/walking/running.

It appears that empirically STFT and CWT preserve tem-
poral dependencies to a greater extent than their counterparts.
High sensitivity with much lower specificity or vice versa
suggests probably overfitting for the positive and negative
classes, respectively. It is worth mentioning that the initial
training approaches involved a standard 2-D-CNN based on
the LeNet architecture the application of transfer learning
with the VGG16, ResNet50, and InceptionV3 models [37].
These models produced results such as a sensitivity of 100%
and a specificity of 0%, showing signs of extreme overfitting
alongside unstable and diverging training and validation losses.
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By employing a simpler structure with the proposed CNN-RF
with attention, a considerable increase in the discriminability
between the classes is observed. The rationale behind the mod-
ification of the architecture is rooted in three primary reasons.
First, the attention mechanism serves to prioritize the most
relevant regions of interest within the feature maps extracted
from the input images by the convolutional filters. This likely
reduces variance in the presence of potential sampling bias.
Second, 30-min long physiological signals can prove to be
computationally expensive to process, which is lessened by
the drastic reduction in the number of pertinent features
exiting the attention mechanism. Finally, ensemble techniques
incorporating “bagging” and “boosting” have the ability to fare
reasonably when the size of the data is comparatively small.

According to Leeflang et al. [38], based on the perceived
domain importance of either class, screening with high sen-
sitivity is possible, at the risk of false positives taking into
account that a reasonable threshold of specificity is main-
tained ( ˜40%). This is because the models tend to detect
higher valence/arousal states considerably better than lower
valence/arousal states in general but often struggle to differ-
entiate between instances of high and low. We purport that this
is because of interindividual differences stemming from their
reactionary behaviors within the context of changing places
and activities. This is in line with [39], as it suggests that no
conclusive statistical relationship between valence and arousal
was found, especially when analyzing intra-individualistic
findings. This insinuates that nontransferability of information
could be the underlying cause impeding the learnability of
such relationships, as observed in our findings. Conversely,
the depression states had roughly the same level of differen-
tiability, indicating that not all individuals exhibit similar or
consistent patterns in the motion dimension. Although some
studies show that accelerometer-based movement for psy-
chologically distressed individuals is lower in intensity [40],
others [41] indicate that patients suffering from manic depres-
sive disorders can have competitively more movement activity.
Moreover, concordance with [42] is noted as well, where
individuals with depression have only minor and mostly stable
fluctuations of valence compared to a healthy control group.

To minimize the role of confounding variables within the
context of people, events, or even the relationship between
ephemeral mood (valence/arousal) and chronic depression, sta-
tistical importance between place and activity was computed.
With significance values below p = 0.05, it can be surmised
that place and activity could have in fact had a bearing on the
level of subconscious response activation in a substantially
meaningful way. The reliability of the self-ratings can be
influenced by simple subjectivity, or events preceding the ESM
questionnaire time, carrying over feelings of nonchalance,
agitation, or impatience while reporting. A core limitation
stems from the fact that the data appears to be quite similar in
nature, suggesting that only a causal relationship might exist
and might after all be inferior to more biological contemporary
sensor readings acquired by HRs (photoplethysmography sen-
sors) and skin conductance (GSR sensors) [43]. This dataset
could be an instantiation of a scenario reflecting the overall
proliferation of depression among the population, therefore

introducing numerosity in records, and diversity in terms of
multiple depressive states can lead to conclusive, less elusive
outcomes. Following suggestions stated in [44], we consider
this developed model and associated results as a general
approach, which can be improved with the collection of similar
samples.

Addressing the intersubject variability again, it is noticeably
high for this cohort of patients, despite the similarities in
demographics and location. It can be surmised then that
a relatively short, multiple monitoring duration (30 min)
across a week, even in the presence of potential external
stimuli, is insufficient to draw meaningful conclusions about
individuals’ baseline mental health state. These individual
differences likely arise from a complex interplay between
biological/genetic, social, and/or environmental factors [45].
To render models able to attain precision psychiatry, lon-
gitudinal continuous personal time-series models (as in this
work), but of a significantly longer duration (months instead
of weeks), will prove to be more promising.

Considering the findings of the recent work reported in [46],
it appears that a longer duration of data collection and more
dimensions to the data, in fact, improve the performance of
wearable-derived features when used with machine learning.
Their observational study utilized three months of continuous
wearable data and medical examinations across this period
to detect the onset of mental illness (measured by confirmed
diagnoses due to “administration of hypnotics, anxiolytics,
or antidepressants” and/or “psychiatric visits”). The score
of 71.2 as quantified by the area under the receiver operating
characteristic (AUROC) curve was achieved and featured
importance explored in terms of monthly averages of HR,
physical activity duration, and sleep rhythms revealed sleep
habit disturbances to be the primary contributor for predictive
modeling.

An overarching reason for the elusiveness of depression
or mental health detection is the associated stigma and the
reluctance of individuals to openly report symptoms. As such,
the threshold for actual psychiatric consultation or diag-
noses is relatively higher than diseases such as diabetes or
cardiovascular disease (objective biomarkers being present).
Interestingly, this mirrors the relative likelihood of noticeable
physical symptoms manifestation in the individuals, in the
form of decreased interest in the activity, disrupted sleeping
behavior, or eating disorders. This phenomenon is observed
by Saito et al. [46] and Ahmed et al. [47] as well, where only
severe cases exhibit discernible physiological patterns, which
can be captured by wearables.

Psychiatry and psychology fields deal with the problem of
discrepancy between self-reported and objective assessments.
Moukaddam et al. [48] suggest a holistic approach where
researchers must assess the information provided by sensors
and what it reflects objectively along with its link with the
patient’s self-reports. Oftentimes, the labels, especially self-
reported ones, might not reflect the disease it is testing for, but
rather a related, comorbid/co-occurring condition with similar
pathology. As purported by Harvey et al. [49], anhedonia,
or the reduced ability to feel pleasure and enjoy activities,
is a core symptom of depression also present in other mental
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health disorders as it impairs reward processing and can
be gleaned from mobility patterns via smartphone collected
data. This is echoed by Moukaddam et al. [48] who state that
the numerous daily fluctuations of emotions in individuals,
positive and negative, along with their intensity and relation
to the adequacy of the response or fidelity of continued
function, can be expressed through wearables. These digital
markers of behavioral change during specific contexts can
consolidate objective data of value during any future clinical
visits, as discordance between measured reality and patient
memory of events can happen due to recall being subject to
bias. This is the documented case of increased attention bias of
depressive individuals to negative emotional stimuli stemming
from the dysfunction of excitation and inhibition [50].

Furthermore, Teismann et al. [51] assert that states of
depression and anxiety are characterized by dysfunctions of
affective experience and affective quality perception (i.e.,
the inability to accurately describe what exactly they are
feeling). This has the effect of modulating neutral responses
on self-reported scales, rather than eliciting valence or arousal
responses at either extremity (higher or lower). Naturally,
while we can expect the chronic experiences of negative
emotions to be indicative of declining emotional health [50],
neutral scores warrant more information to discriminate if
there has been a model error or subject-specific variation in
the presence of other mental health conditions.

Zhang et al. [50] also note that higher arousal levels were
observed in a depressed population, and it appeared that
rising emotional intensity was harder to suppress. This could
be a reason for the increased arousal evaluation metrics in
Table VII. Similarly, Teismann et al. [51] bring to attention
that higher anxiety scores are noticed for higher arousal, and
anecdotally had a stronger association than with depression.
Motivated by the continued use of HR to detect depression,
stress, and other psychiatric disorders, we expected PPG-HR
to have higher predictive power than empirically found in this
study [52].

Our study highlights the opportunities and limitations of
multimodality owing to its conferring of confounding in
specific point-of-care applications. The blending of multiple
sensor modalities results in each person becoming their own
reference, as each individual or group of individuals in the
same demographic has similar routine behavior (meal times,
sleep patterns, exercise, work schedules, places visited, and
so on) [47]. While this can prove to be beneficial, in cases
where the information quality is not as rich or diverse as
expected, models can overfit one’s own wearable phenotypes
or symptomatology. Indeed, this appears to be the case in
Table VI, where fusing two modalities boosted the detection
of arousal compared to one modality, but three modalities
made it worse again. As such, model fairness across different
subgroups should be maintained while tailoring personalized
models to each stratum of the population in future studies.

Although multimodality is traditionally expected to improve
data diversity and enhance extracted insights, challenges affect
multimodal networks to a greater degree than their unimodal
counterparts. Multimodal models are more susceptible to many
anomalies observed in data features and recording techniques.

Illustrating this, Lahat et al. [4] enumerate potential sources of
multimodal inference errors in relation to the data acquisition
as capture resolution, data span incongruence, and alignment
issues. Furthermore, data-embedded features could stymie
multimodal efforts, such as data noise and origin variance.
Many of the stated challenges affect both unimodal and
multimodal approaches; however, their impact on the presence
of multimodality is particularly amplified, and their potential
solutions’ effect diminished [4]. In other words, the more the
sensor sources are collected, the more varied sources of errors
will be. Especially with low control over the data collection
procedure, accounting and addressing all sources of error,
given they are discovered, become increasingly difficult with
each additional modality.

As always, there is the question of anonymity and accu-
racy pertaining to the mechanisms to protect patients’ data
rights. Generally, adding context (geography/visited loca-
tions/age/gender) to wearable devices to ascertain more
fine-grained user behavior can improve the specificity of
models in detecting diseases. However, it is imperative for
clinicians and individuals to mutually reach a consensus on the
upper and lower thresholds for automated screening threshold
and subsequent medical follow-ups. It is likely that additional
dimensions, such as age and gender, can contextualize individ-
ual behavior to a better degree. This is observed in the results
of [51], where age and gender proved to be good indicators
of valence and arousal, even without any wearable data.

With the global incidence of mental health disorders rapidly
surmounting, it is of utmost importance to leverage ubiquitous
wearables for quantifying fluctuations in emotional intensity
and responses, reduced sociability, physical activity, prosody,
and the overall cognitive function to promote holistic healthy
lifestyles [53]. We address the common issue that the majority
of predictive models are trained on data obtained exclusively
in a Western cultural context, by establishing benchmarks of
valence, arousal, and depression modeling trained on a popula-
tion cohort based in China. One of the advantages of wearable
sensors is that the monitoring can be conducted at any place,
any time, and increases the regularity of user-specific screening
in a passive way [54].

B. Limitations
To glean a better understanding of the statistical prop-

erties of the DAPPER dataset, we use statistical methods,
t-test, and analysis of variance (ANOVA), to inspect data
homogeneity within and across categories. The t-test method
measures the significant difference between two entries or
signals through the comparison of the means. On the other
hand, ANOVA compares the means to calculate significant
differences between groups of signals [55].

The t-test is applied by contrasting random samples of
PPG, GSR, and ACCEL signals across our binary categories,
valence, arousal, and depression. Being conversely capable of
analyzing groups of data signals, ANOVA is run to measure
significant differences across and simultaneously within cate-
gories with the same group (i.e., low valence and high valence,
low arousal and high arousal, and moderately depressed and
severely depressed).
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TABLE VIII
ANOVA RESULTS ACROSS WESAD AND DAPPER

Both statistical tests’ results can be summarized with two
values: F-statistic and p-value. F-statistic is the ratio of the
variances of two populations, while p-value signifies the
strength of evidence against the null hypothesis, being in this
case that the variance of two populations under examination is
equal. More concretely, higher p-values mark cases with low
evidence to reject the null hypothesis, suggesting that observed
results are more likely to be due to chance. In contrast,
lower p-value scores suggest strong evidence for the statistical
uniqueness of the results. We expect signals belonging to the
same categorical groups to exhibit less statistical difference
than that of signals belonging to opposing groups. Establish-
ing a baseline, we import WESAD, a rigorously used and
validated time-series physiological–psychological biomarker-
oriented dataset [56]. WESAD contains similar biosignals to
DAPPER, proving it easy to compare results from one dataset
to another. It contains electrocardiogram (ECG), electromyog-
raphy (EMG), and ACCEL signals recorded using a respiBAN
chest strap, which is subsequently synchronized with user
state-trait anxiety inventory (STAI) and positive and negative
affect schedule (PANAS) questionnaires. By combining the
subjective survey results, sections of recorded signals are
labeled as either transient (0), baseline (1), stress (2), amuse-
ment (3), or meditation (4).

In an attempt to make WESAD similar in comparison in
format to DAPPER, signals are split into smaller chunks
(length = 214 583 sampling points) after empirical exam-
ination of median label length, as observed in Fig. 11.
Subsequently, the aforementioned four labels had to be made
into two to reasonably conform with our current datasets’
formatting. Consequently, we run both t-test and ANOVA on
WESAD’s ECG data, given it most conformed to DAPPER’s
formatting. The results from the prior tests are tabulated in
Tables VIII and IX, respectively. In contrast with DAPPERs,
WESAD’s results are more in line with expectations: data
belonging to the same class are more uniform than data from
opposite classes. Note that WESAD does likely elicit higher
information gain due to its 700-Hz recording frequency versus
the preprocessed 1-Hz signals provided through DAPPER.
Since one of the goals of our work was to study the utility

TABLE IX
PAIRED t -TEST RESULTS ACROSS WESAD AND DAPPER

Fig. 11. Plotting label transition frequency of all user data. The
horizontal axis denotes the number of sampling points in a signal, and
the vertical axis denotes the label. Note that labels 5–7 were equivalent
to 0, as described by Schmidt et al. [56].

of low-frequency and low-cost sensors, this does not pose a
problem in this data exploration aspect.

To further our understanding of DAPPER’s statistical
attributes and highlight any irregularities that might arise due
to labeling errors, we perform clustering both of our and
WESAD data. The results of the KNN clustering algorithm
are shown in Fig. 12. One can observe that the KNN clustered
points further corroborate the same results as shown by the
t-test and ANOVA tests: data from the same category are
far more dissimilar to one another in DAPPER than in the
WESAD baseline.

KNN clusters reinforce the primary problem incident in the
DAPPER cohort; faulty sensors or edge case scenarios where
all patients share the defining characteristic (all depressed
to some degree) can lead to poor separability of patient
subgroups. This repeated observation of the result indicates
an underlying incompatibility with DAPPER and our original
intended application, mobile sensing. Without further infor-
mation about the exact acquisition conditions, we can only
make assumptions about the manner in which the data were
collected and if there was a systemic error or methodological
error.
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Fig. 12. Clustering data using KNN (K = 2) on ECG and PPG
data from WESAD and DAPPER, respectively. Each signal is plotted in
2-D using the first two captured values. Clustering results are shown
using the point’s color. WESAD groups are more homogeneous than
DAPPER. (a) WESAD Class 0. (b) WESAD Class 1. (c) DAPPER
Class 0 (depression). (d) DAPPER class 1 (depression). (e) DAPPER
Class 0 (arousal). (f) DAPPER Class 1 (arousal). (g) DAPPER Class 0
(valence). (h) DAPPER Class 1 (valence).

This brings to light the larger issue of third-party datasets
saturating the domain of medical intervention or emotion
recognition in naturalistic settings without sufficient sanity
checks. There is a lack of standard guidelines to quantify
characteristics of datasets and quality of collection procedures
owing to variability in devices, equity of demographic repre-
sentation, and context of subjective questionnaire logging [57].
Recently, initiatives such as the mobilize-D procedure [58]
provide a systematic approach for data standardization with
considerations of heterogeneity in acquisition. Particularly,
in the case of emotion recognition, the latent complexity of
human emotion in the expression of multiple emotions and its
interplay with physiological responses renders it difficult to
produce actionable outputs [59]. Finally, there is always the
tradeoff between the privacy of personal data and the accuracy
of developed models that need to be considered when new
datasets are introduced [60].

V. CONCLUSION

This work proposed an ensemble deep learning model with
an attention mechanism for the purpose of binary classification
of arousal, valence, and depression states with sensor data

derived from wearable devices to be utilized in naturalistic
settings. The signals were acquired from the DAPPER dataset
and belonged to individuals in the 30-min time period prior
to being subject to an ESM sampling questionnaire. The raw
values were transformed into different image representations,
and we empirically found that CWT and STFT were able
to achieve the best sensitivity scores of 58.75%:45.59%,
62.34%:43.41%, and 49.43%:51.70% for predicting depres-
sion, valence, and arousal with a mixture of unimodality
and bimodality with CWTs and STFT: ACCEL-CWT, GSR-
CWT & ACCEL-STFT, and ACCEL-STFT. We come to the
conclusion that low-cost sensor readings from the DAPPER
dataset may not be sufficient to capture the complexities of
emotional and mental state, and likely have utility in being an
auxiliary modality alongside more individual characteristics,
such as age and gender. To the best of our knowledge, this
is one of the first experiments in the domain of emotional
state variations measured by affective states among a predom-
inantly depressed population and serves as a benchmark for
developing algorithms using the DAPPER dataset. Future work
can address self-supervision and multilabel extensions to this
study and implement models capable of detecting fine-grained
emotions (tense, angry, happy, and so on) from arousal and
valence measures.
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