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Abstract—In this article, we utilize the advantages of
an event camera to tackle the visual place recognition
(VPR) problem. The event camera’s high measurement rate,
low latency, and high dynamic range make it well-suited
to overcome the limitations of conventional vision sen-
sors. However, to apply the existing convolutional neural
network (CNN)-based algorithms such as NetVLAD, the
asynchronous event stream should be converted to a syn-
chronous image frame, which causes a loss in temporal
information. To address this problem, this article proposes
a method that employs the asynchronous characteristic of
spiking neural networks (SNNs) to leverage the temporal
nature of event streams. The event stream is converted to
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event images and tensors in our preprocessing module. The SNN-based reconstruction networks, which are con-
verted from CNNs, reconstruct edge images from event tensors regardless of external environment changes. VPR is
conducted by matching features of the database and those from NetVLAD, which we used as a feature extraction
network in this study. To evaluate the performance of VPR by comparing the previous methods for DDD17 and the
Brisbane-Event-VPR dataset, experimental results demonstrate that the matching accuracy of the proposed method
is better than previous methods, especially for datasets with adverse weather conditions. We also verify that the
performance and energy efficiency are improved with SNNs over CNNs. Our code is available for download on

https://github.com/AIRLABkhu/EvReconNet.

Index Terms— Event camera, spiking neural networks (SNNs), visual place recognition (VPR).

[. INTRODUCTION

VENT camera is also called dynamic vision sensors
Eand neuromorphic vision sensors that can capture high
dynamic range (HDR) with low latency without motion
blur [1]. Unlike conventional cameras, which synchronously
upload all pixel values at a constant frame rate, event cam-
eras record changes in pixel intensity asynchronously and
each event’s time, location, and polarity information. The
HDR makes the event cameras much more robust against
high-contrast illumination conditions [2]. They also have the
advantage of lower power consumption compared to conven-
tional cameras; therefore, event cameras are widely used in
various fields, such as autonomous vehicles [3], robotics [4],
and medical imaging [5].
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Visual place recognition (VPR) is an essential task for
the simultaneous localization and mapping (SLAM) of
autonomous driving. It allows a vehicle to identify and navi-
gate to previously visited locations by matching pairs between
a query and a database [6]. Various approaches have been
employed to solve VPR problems, including feature extraction
and matching using handcrafted features [7], [8], [9], bag of
words (BoW) [10], and deep learning-based methods [11].
Most existing methods for solving VPR problems were per-
formed using images from conventional cameras, which are
vulnerable to blur and rapid illumination changes. However,
to improve the performance of VPR, the ability is necessary to
match between images taken in the same place under various
conditions regardless of weather, time, and amount of light
(see Fig. 1). This explains why event cameras are better suited
to solving VPR problems.

Several research studies have investigated applying event
data to solve VPR problems [12], [13], [14], [15]. They
mainly focused on reconstructing event data into the images
to apply to the existing image-based VPR method such as
NetVLAD [16]. Some approach [14] employs video recon-
struction method [17] from the event stream to recognize
places. A recent study has shown that reconstruction of only
the edge image from which noise was removed had better
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performance, rather than restoring the complete image from
event stream [15]. We believe that there is room for further
improvement as numerous studies suggest that spiking neural
networks (SNNs) are more suitable for event-based steam.
The main reason is that SNNs are designed explicitly for
asynchronous processing, enabling them to handle each event
as it arrives without requiring a fixed time interval [18].
Also, SNNs can use the event stream directly without losing
temporal information or requiring multiple frames.

We propose a novel method for VPR from an event cam-
era. Our approach consists of two successive models: the
image reconstruction and the feature extraction networks.
First, we reconstruct edge images from a stream camera
using SNN-based reconstruction networks. To achieve this,
a convolutional neural network (CNN)-based autoencoder that
reconstructs an image optimized for place recognition was cre-
ated and converted into an SNN. Then, reconstructed images
are fed to feature extraction networks based on NetVLAD to
extract features of the current location. The main contributions
of this study are summarized as follows.

1) We propose a novel approach to process event data
through SNNs and apply the advantages to VPR. To the
best of our knowledge, this is the first study to apply an
image reconstructed from an event stream using SNNs
to VPR.

2) We experimentally demonstrate that our proposed VPR
scheme, Ev-ReconNet-S, outperforms existing methods.

3) Our experiments demonstrate that the method based
on SNNs, converted from CNNs, exhibits superior per-
formance in VPR and, as per our analysis, is more
energy-efficient.

[I. RELATED WORKS

A. Event-Based Reconstruction

Since the advent of event cameras, research has continu-
ously been conducted using event vision. Early reconstruction
research is based on hand-engineered features. Bardow et al.
[19] introduced an algorithm to simultaneously recover the
motion field and reconstruct the intensity image, while the
camera undergoes a generic motion through any scene.
Munda et al. [20] created high-quality images by solving a
certain mathematical model on a surface without having to
estimate the optical flow. For the reconstruction of edge
images, Lee et al. [21] applied a fitting plane algorithm to
estimate the lifetime of the event using the intrapixel-area
event considering the surface of active events (SAE). They
activate an event until another event occurs in a nearby pixel of
the pixel where the event occurred so that the shape of the edge
is preserved. Mohamed et al. [22] calculated the lifetime of
the event using the local plane fitting technique. They showed
a result of reducing the response time to obtain edge images
of the same sharpness compared to previous studies.

Deep neural networks (DNN5s) have recently shown superior
performance on an event-based image or video reconstruction.
Wang et al. [23] utilized a generative adversarial network
(GAN) to transform event streams into image brightness.
Rebecq et al. [17] proposed E2VID, a high-performing video
reconstruction method from event data. It was trained using a

RGB Image with
environmental variance

Event Image

Fig. 1.  Sample images from the DDD17 dataset taken from conven-
tional cameras and event cameras. Even though they were taken in the
same area and time of day, intensity images are sensitive to changes
in illumination (first and second columns), and problems arise when
the light is too bright or dark (third and fourth columns). However, the
camera is more robust against these problems.

synthetic event dataset generated using ESIM [24] for a U-Net-
based [25] network. Zhu et al. [18] proposed an SNN-based
event video reconstruction method. They reconstructed video
through the fact that spiking neurons have the potential to
contain temporal information.

B. Visual Place Recognition

VPR is the problem of recognizing the same place despite
significant changes in viewpoint and appearance. Early studies
have employed a feature-based approach that can account
for different environmental variations. For place recognition,
Galvez-Lépez and Tardos [10] proposed a BoW that builds
code, such as clusters of features, and describes a scene by
the code book. Milford and Wyeth [26] proposed SeqSLAM,
which uses a local navigation sequence and matches images,
removing the global matching process and alternatively match-
ing with the nearing local images for efficiency and increased
robustness at visual environment changes. As numerous stud-
ies have progressed, feature extraction methods using deep
learning have begun to be introduced. The first work of
applying CNNs to tackle the VPR problem is conducted by
Chen et al. [27]. They utilized CNNs features extracted from a
pretrained model called Overfeat [28]. Siinderhauf et al. [29]
proposed a similar idea for image representation, vector of
locally aggregated descriptors (VLAD) is a descriptor aggre-
gation method for hand-engineered features. NetVLAD [16]
mimics VLAD by using a CNN to obtain an image descrip-
tor. A specifically designed pooling layer that implements
the VLAD embedding and aggregation with differentiable
operations, thus allowing end-to-end training of the network.
Milford et al. [12] introduced a place recognition on event
data using SeqSLAM. This study performed matching between
event-based images and detecting loops at various velocity
conditions indoors. Lee and Kim [15] implemented an image
generation network suitable for VPR and used event data. They
reconstructed edge images instead of intensity images from
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Fig. 2. Overview of the proposed method. Our method consists of three main parts: preprocessing, image reconstruction, and matching. For the
implementation of the image reconstruction module, a CNN autoencoder based on U-Net was additionally used. The CNN-based autoencoder was
converted to SNN using the Nengo toolkit and retrained using the Event Tensor. SNNs use a basic neuron model called LIF, and the overall structure

is the same as the CNNs before conversion.

event data, which showed superior performance. However, the
use of a CNN-based autoencoder for image reconstruction
could potentially result in a loss of temporal information.

C. Spiking Neural Networks

SNNs are a type of artificial neural network (ANN) that
more accurately emulate natural neural networks. The spiking
neuron model incorporates an internal parameter known as
the membrane voltage. When this membrane voltage reaches
a certain threshold level, it generates an output spike, and
the membrane voltage is reset to its resting potential. This
output spike is then transmitted to another neuron, increasing
the potential of the receiving neuron. SNNs are composed
of a collection of these spiking neuron models. Due to this
biomimetic structure, SNNs differ from traditional ANNs in
receiving asynchronous spikes as input. This characteristic
results in high compatibility with event cameras.

Spikeprop [30] is one of the first approaches to the super-
vised learning of SNNs, successfully applied to classification
problems. Neural engineering framework (NEF) is one of the
most utilized theoretical frameworks in neuromorphic comput-
ing [31]. As research advances, it has been recognized that,
despite potential losses due to implementation, it is efficient
to utilize SNNs converted from general ANNs such as CNNs
due to their inherent advantages [32], [33], [34], [35], [36].
Rueckauer et al. [34] proposed a method to convert CNN
operations, such as max pooling, softmax, batch normalization,
and inception module for use in SNNs, and show the best
results on datasets such as MNIST and CIFAR-10 in image
classification. Stockl and Maass [35] performed ANN-SNN
transformation more efficiently with a novel mapping strategy
using the few spikes neuron models (FS-neurons), which
allows SNNs to temporarily exhibit complex activation func-
tions with up to two spikes. Lopez-Randulfe et al. [36]

applied time-coded neurons to existing ANNs and reduced the
time complexity between synaptic connections. Nengo [37],
a toolkit that approximates and transforms ANNs trained
with TensorFlow into a spiking network, was also proposed
by Applied Brain Research. Duwek et al. [38] proposed an
approach to reconstruct image brightness from events based
on the Laplacian and Poisson reconstruction using NEF-based
SNNs through the Nengo framework.

Ill. PROPOSED METHOD

Our overall place recognition structure can be explained in
three modules, as shown in Fig. 2. First, we briefly describe
the data representation and preprocessing module. Second,
we describe the detailed structure of the reconstruction net-
works and conversion SNNs from CNNs architecture. Finally,
we will explain how the feature extraction networks are trained
in a supervised method.

A. Event Representation and Preprocessing
Event cameras trigger events asynchronously by pixel.

An event occurs when the following expression is satisfied:

|[IL(x,t) —L(x,t—At)|>C (1)

where L is the log intensity, x = [x, y]” is the pixel location,
t stands for the timestamp, and C is the contrast threshold.
The ith event can be represented as follows:

ei = (X, li, pi) 2

where p is the polarity of the change of brightness. Since these
individual event streams are difficult to apply directly to CNNs
and SNNs, we converted the data into an image and a tensor
format for CNNs and SNNGs, respectively, in the preprocessing
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Fig. 3. Concept for converting event images and event tensors from the
event stream.

step. Prior to conversion, noise and hot pixels were previously
removed using dvs_tools.!

For a specific time ¢ in the event stream, both event tensors
and event images are converted by the sampling of the event
data between t — At and ¢ + At, as shown in Fig. 3.
To convert the event stream to event images, events between
t — At and ¢t + At are classified into two channels according
to the polarity of each event. Each pixel’s value is determined
by the absolute difference between the count of positive
and negative events that occurred in the corresponding pixel.
Subsequently, the pixel value distribution is normalized to have
a mean of zero and a standard deviation of one to finalize
the image. Consequently, the event image is a single-channel
matrix of size H x W, which is utilized for training the CNNS.

The event tensor for SNNs is derived from the event stream
in a similar manner, targeting all events that occur between
t — Ar and ¢ + At, irrespective of polarity. The event data
within the interval + — Ar and t 4+ At are divided into T
bins along the temporal axis, effectively subdividing the bin
to have time intervals of 2A¢/T. Events that belong to each
bin are accumulated by one at a specific pixel position. This
accumulation is then normalized by dividing by the maximum
pixel value, ensuring that all pixel values range between 0 and
255. The resulting event tensor has dimensions of 7 x H X
W. Based on our experimental results, we determined the
values of 7 and Af to be 10 and 0.1, respectively.

B. Image Reconstruction Networks

We propose Ev-ReconNet, which is an edge image recon-
struction network for reconstructing edge images from event
tensors. To achieve this, we first design networks based on
CNNs and then convert them to SNNs. The CNN-based
neural networks for image reconstruction are based on the
autoencoder, which is composed of an encoder and a decoder
such as U-Net [15], [17]. To reflect the differences in input data
and training methods, we will refer to Ev-ReconvNet based on
CNNs and SNNs as Ev-ReconvNet-C and Ev-ReconvNet-S,
respectively.

The overall architecture of Ev-ReconvNet-C is shown in
Fig. 4. The encoder networks of our reconstruction model are

1 https://github.com/cedric-scheerlinck/dvs_tools

configured as follows. The input event image passes through
convolution, max pooling, and dropout layers. The encoder
block has a structure in which these three layers appear four
times in succession. A 3 x 3 convolutional filter is used in the
convolution layer, and the rectified linear unit (ReL.U) function
is used for all activation functions. The size of the max-pooling
area is 2 x 2, and the dropout ratio is 0.1. We fixed the
dimensions by reducing the padding size to 1. The decoder
block consists of a convolution layer, a dropout layer, and
an upsampling layer. Since the result of the encoder block is
concatenated to the input, an upsampling layer consists of a
transpose layer and a concatenate layer. The proposed architec-
ture employs the skip connection, which is a characteristic of
U-Net-based networks and shows performance improvements
in image segmentation [15], [25]. Similar to the encoder block,
the convolution filter has dimensions of 3 x 3, a padding size
is 1, a dropout rate of 0.1 is employed, and the activation
function used is the ReLLU function. After the decoder block,
it passes through two convolution layers to reconstruct one
channel of the edge image.

We converted CNN-based reconstruction networks into
SNN models. The conversion process from CNNs to SNNs and
the subsequent training procedure were carried out using the
NEF-based NengoDL library [37]. NEF is a widely recognized
theoretical framework that is used in computational neuro-
science and neuromorphic engineering to build large-scale
functional neural simulations. Nengo, a Python-based neural
compiler that translates high-level descriptions into low-level
neural models, is built on the foundation of the NEF. During
the conversion from CNNs to SNNs, we had to make several
modifications to various functions. One of the significant
changes involved the activation functions. The original ReLU
activation functions were converted into spiking rectified linear
activation functions. The output of these spiking activation
functions is directly proportional to the quantity of the positive
input spike, thereby creating a dynamic and responsive activa-
tion scheme. This spiking activation scheme is defined using
two key parameters: a synaptic time constant and a maximal
firing rate. In our model, we have chosen a synaptic time
constant of 10 ms and a maximal firing rate of 100. These
values were selected to ensure the optimal performance of
the Ev-ReconNet-S model. Another significant modification
was the choice of the loss function. Unlike CNNs, which
typically use cross entropy as the loss function, SNNs utilize
the mean squared error (mse). The reason for this change
lies in the output of SNNs. The output of SNNs typically
lies between 1 and 255, making the mse a more appropriate
measure of the loss function. This adjustment further fine-tunes
the performance of the Ev-ReconNet-S model, ensuring its
accuracy and efficiency in the tasks it is designed to perform.

C. Feature Extraction Networks

In our VPR framework, we employ NetVLAD [16] for
feature extraction networks. It is a structure in which a
NetVLAD layer is added as a pooling layer after the CNN
structure based on VGG16 [39]. The edge image from the
reconstruction network was used as the input of NetVLAD.
In order to utilize NetVLAD as a feature extraction module,
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Fig. 4. Architecture of Ev-ReconNet-C. The Ev-ReconNet-S follows the same design except activation functions.

a clustering technique was needed before training to normalize
the difference between each image. The number of NetVLAD
clusters we used for our VPR framework is 64. The output of
NetVLAD is a feature vector for the input data, which is a unit
vector with 4096 dimensions. For the training of the feature
extraction networks, the positive and the negative images of
the reference image were set. A positive image is an image
classified into the same category as the reference image, and
a negative image is classified into a different category. As the
loss function, we used triplet ranking loss using positive and
negative images as

L (a, p,n) =max (0,m +d (a, p) —d (a, n)) 3)

where a is the feature vector of the reference image and
p and n are the feature vectors of positive and negative
images, respectively. d is the distance function. As the distance
function, a pairwise distance with a norm degree of 2 was used.
The margin m is set to 0.1.

D. Training VPR Framework

We will describe the learning methods by Ev-ReconNet-C
and Ev-ReconNet-S, both of which are reconstruction net-
works. We first train Ev-ReconNet-C using event images
before conversion to Ev-ReconNet-S. Then, Ev-ReconNet-S
is trained with event tensors and pretrained parameters from
Ev-ReconNet-C for a given number of epochs. To train recon-
struction networks in a supervised manner, event streams and
corresponding ground truth, i.e., edge images, are required.
We solve this problem by using an event camera simulator [24]
for converting the image dataset [40] into an event stream. The
edge images are successfully obtained by applying the Canny
edge extraction [41] method to intensity images. We convert
the event image and event tensor from the same event stream
so that both networks are trained on the same dataset. In both
training processes, we set the learning rate to 0.001 and
used the Adam optimizer. However, we conducted 100 and
30 epochs for the Ev-ReconNet-C and Ev-ReconNet-S,
respectively.

In the case of feature extraction networks, training was
conducted using database images. We chose positive pairs

as images acquired from locations in geographical threshold
distance, and negative pairs were selected randomly from
sufficiently far locations. As the threshold distance, 70 m was
used. We set the learning rate to 0.0001, the batch size was 4,
and the stochastic gradient descent (SGD) optimizer was used.
For the SGD optimizer, the weight decay value was 0.001, and
the momentum was 0.9.

IV. EXPERIMENTAL RESULTS

In this section, we outline the comprehensive performance
of our proposed models and the results of our compara-
tive analysis. First, we detail the localization methods and
datasets employed in our experiments. Second, we describe
the matching performance of the proposed approach by com-
paring previous methods, which use intensity images and
edge images reconstructed by CNNs. Third, we analyze the
differences between CNNs and their converted SNN counter-
parts by comparing their performance in image reconstruction,
match accuracy, and energy consumption. For the experiments,
we used graphics processing units (GPU)—Nvidia RTX 2080
Ti for the overall process. Also, an Intel? Core? i9-9900X CPU
with eight processors was used.

A. Experiment Setup

1) Localization and Matching: We labeled each reconstructed
image using GPS information where the original image was
taken. First, the latitude and longitude data were transformed
into g, = [u, v],{, which follows the Universal Transverse
Mercator (UTM) coordinate. # and v are the vertical and
horizontal coordinates, respectively. We define the spatial
distance d;; between two reconstructed images Z; and Z; as
the Euclidean distance of g; and g;. A true match is assumed
if the spatial distance d;; between the matched images is less
than 70 m. To determine the distance v;; of two output vectors
fi and f;, the cosine similarity was used as

fi-f;

=t 4
AR TATI A @

2Registered trademark.
3Trademarked.
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We utilized recall@1 as the performance evaluation metric
for matching accuracy. For each test image, we identified the
single image exhibiting the highest similarity. If the location
of this selected image falls within a 70 m radius of the true
position, it is classified as a positive match. Consequently, the
matching accuracy is determined by the ratio of the number
of positive matches to the total number of images in the test
dataset. Furthermore, to construct the precision—recall curve,
we established a specific threshold value, denoted as 7. Any
match with a v;; value exceeding T was classified as a positive
match. We then adjusted the value of t iteratively to generate
the precision—recall curve.

2) Dataset: We used two groups of datasets for evaluation,
one for training image reconstruction networks and the other
for VPR evaluation. We trained methods such as E2VID and
EventVLAD for image reconstruction from event data using
the same datasets they used in their study. For example, E2VID
and EventVLAD were trained using the MS COCO [42] and
CARLA [43] datasets, respectively. The Oxford Robot Car
dataset [40] is an open dataset that is taken with an RGB
camera, which is frequently used in the autonomous driving
field. This dataset is used to train the proposed methods, i.e.,
Ev-ReconNet-C and EV-ReconNet-S.

We used Pittsburgh [16], Brisbane-Event-VPR [14], and
DDD17 [44] datasets to train NetVLAD. The Pittsburgh
dataset comprises 58k images, which cover an area of 8.9 x
3.9 km. This dataset is used for training NetVLAD in their
original study. Brisbane-Event-VPR and DDD17 datasets are
used for evaluation validation and testing of VPR networks.
This dataset contains six sequences of the same route in Bris-
bane. The route is approximately 8 km long and was traversed
six times at different times of the day. We used five routes,
except for the fourth route,* which was in poor condition due
to very low illuminance among the six routes. We set the
first route® as a database sequence, and the remainder were
used as a query sequence. DDD-17dataset has over 12 h of a
346 x 260 pixel dynamic and active-pixel vision sensor
(DAVIS) sensor recording highway and city driving in the
daytime, evening, night, dry, and wet weather conditions,
along with vehicle speed and GPS position. For VPR, overlap-
ping paths were required, and four routes were used referring
to [141.°

3) Comparing Methods: In our study, we evaluate the effec-
tiveness of our proposed method by comparing it with various
methods such as Raw (NetVLAD), E2VID, and EventVLAD.
The Raw method denotes the NetVLAD method, where the
intensity image of the dataset is used as input. We set the
Raw method as a baseline for performance comparison. Other
approaches, specifically E2VID and EventVLAD, employ
event data as input, similar to our proposed method. Our
goal with this method is to determine whether the use of
event data provides a superior solution to the VPR problem
than the RAW method. It is crucial that while both E2VID
and EventVLAD utilize event data as input, their outputs are

420200427_181204-ni ght.
520200421_170039-sunset1.

0Rec1487350455 and rec1487417411 for the first set and rec148779465
and rec1487782014 for the second set.

TABLE |
DESCRIPTION OF COMPARING METHODS

Ev-ReconNet-S
Raw E2VID |EventVLAD
(ours)
pretraining - MS COCO| CARLA |Oxford Robot Car
input data grayscale | event data | event data event data
transformed data . .
. - grayscale |edge images edge images
(input to VPR)
VPR method |NetVLAD | NetVLAD | NetVLAD NetVLAD
architecture CNNs CNNs CNNs, GRU SNNs
TABLE Il

MATCHING ACCURACY USING OFF-DATASET-BASED NETVLAD.
IN THIS METHOD, NETVLAD IS TRAINED BY INTENSITY IMAGES OF
PITTSBURGH DATASET ONLY

Raw |[E2VID |EventVLAD [Ev-ReconNet-S (ours)
DDD setl  [20.95| 54.39 64.49 66.42
DDD set2  (87.38| 96.29 96.39 96.54
sunset1-sunset2 |75.98| 78.38 80.92 84.88
sunset1-daytime [27.18| 31.37 18.28 20.47
sunset1-morning|50.24| 50.75 20.59 21.11
sunsetl-sunrise |40.27| 48.83 24.33 37.30

different. E2VID converts event data into an intensity image,
while EventVLAD produces an edge image. By analyzing the
experimental results of these methods, we aim to confirm
the performance improvement provided by edge images in
VPR tasks. Our suggested algorithm also processes event
data and creates an edge image. However, it deviates from
EventVLAD’s fundamental architecture, as it is built on SNNs
instead of CNNs. We aim to shed light on the performance
variations between edge image creation using CNN and SNN
methodologies through this difference. We briefly describe the
comparison methods in Table 1.

B. Match Performance

We conducted two experiments to evaluate matching per-
formance with two types of feature extraction networks,
i.e., off-dataset- and on-dataset-based NetVLAD. We used
Brisbane-Event-VPR and DDD17 as test datasets in all exper-
iments. The on-dataset-based method is to train and test
the NetVLAD with the same dataset. At this time, the data
used for training and testing were separated within the same
dataset. The off-dataset method means that the Pittsburgh
dataset is used for training, and the Brisbane-Event-VPR and
DDD17 datasets are used for testing VPR networks. For both
experimental setups, the image reconstruction methods were
pretrained on datasets used in previous studies. Note that in
the off-dataset method, the NetVLAD is trained using only
intensity images, whereas the image reconstruction format of
EventVLAD and the proposed method is the edge image. This
is to verify that the edge images we generate are directly
applicable to the VPR method trained on intensity images.

The experimental results using off-dataset NetVLAD are
shown in Table II. The performance of E2VID methods,
which reconstructs event stream to intensity image, is the
best for the Brisbane-Event-VPR dataset. However, on the
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TABLE IlI
MATCHING ACCURACY USING ON-DATASET-BASED NETVLAD

Raw |[E2VID |EventVLAD [Ev-ReconNet-S (ours)
DDD setl  |35.16| 66.08 72.24 7247
DDD set2  |96.36| 97.78 96.92 98.46
sunset1-sunset2 |87.84| 89.57 84.93 95.73
sunset]-daytime |36.37| 36.39 26.86 36.37
sunset1-morning|61.39| 60.81 32.25 44.60
sunsetl-sunrise |64.97| 62.20 47.59 66.08

DDDI17 sets and sunsetl-sunset2 data, accuracy when using
Ev-ReconNet-S is better than other methods, despite the edge
images we recovered from the event tensor having a different
format than the intensity images from which we trained the
VPR networks. In particular, the performance improvement
was noticeable in the DDD setl, presumably due to the
significant change in the environment between the database
and the query. As can be seen in the third column of Fig. 1,
the intensity of sunlight was so strong that there were frames
that looked like blank images with conventional cameras, but
event cameras could recognize them without any problems
due to the HDR in the DDD setl. Although the DDD set2
and sunsetl-sunset? datasets were not significantly affected
by the light intensity, the accuracy was relatively high because
the event camera effectively contained the edge information.
The sunsetl-morning dataset exhibited a different direction of
sunlight compared to the sunsetl data. However, the brightness
of the light was largely similar in both datasets, resulting in
minimal differences in the intensity of images between the
two. Since E2VID was also trained based on RGB images,
similar results were obtained when using intensity images.

The matching performance when using the on-dataset-
based NetVLAD is described in Table III. The performance
of the proposed method was the best on all datasets except
the sunsetl-morning and sunsetl-daytime datasets. However,
the sunsetl-daytime dataset differed only by 0.2%P com-
pared to the best-performed method (E2VID). When utilizing
NetVLAD on the DDD setl, it encountered issues with
dynamic range when processing intensity images. Conversely,
when event-based data were utilized, the issue was resolved,
as seen in previous experiments, and the reconstructed images
produced by our approach demonstrated the best performance.
To clarify, training with event data can readily overcome
current performance limitations, and issues related to timing
can be resolved by offline learning using NetVLAD. However,
in the sunsetl-morning dataset, the method using only inten-
sity data still shows the best performance, which means that
there are defects in the event data and still problems to be
solved. Except for some cases, we found that the performance
was better in the order of Ev-ReconNet (SNNs), E2VID,
EventVLAD, and NetVLAD. We can see that edge-based
images have better match performance than intensity images
for the same dataset, as shown in Fig. 5.

Figs. 6 and 7 show a precision—-recall curve when the value
of the threshold t changes for true prediction. Looking at
the precision—recall curve of DDD setl, the area under the
curve (AUC) of intensity images is significantly less than ours.
DDD set2 also shows that our algorithm makes a slightly

Ground Truth

Prediction

Intensity Image

Edge Image

Intensity Image

Edge Image

Fig. 5. Matching results using reconstructed edge events from the
Brisbane-Event-VPR dataset. The matching of the intensity image failed
(red), but the reconstructed image using the event data succeeded in
matching (green). In both cases, the on-dataset-based network was
used for matching. The intensity image of the upper row was input to
NetVLAD, and the intensity image of the lower row was reconstructed
using Ev-ReconNet and then input to NetVLAD.

setl set2

10 10
—— SNN(OURS) —— SNN(OURS)
E2VID E2VID
- —— EventVLAD 081 — EventVLAD

— RGB —— RGB

Fig. 6.  Precision—-recall curves on the DDD-17 dataset using on-
dataset-based NetVLAD. Our proposed method, the Ev-ReconNet-S
shows better performance than the rest of the algorithms.

larger AUC. For the Brisbane dataset, our algorithm increased
the performance than others for the sunsetl-sunset2 and
sunset1-sunrise datasets. With the sunsetl-daytime dataset, our
method showed better precision, but when the recall increased
(when the 7 value decreased), it showed poor performance
compared to the NetVLAD.

C. Performance Comparison Between CNNs and SNNs

We conducted additional experiments to compare the perfor-
mance of methods of EvReconNet based on CNNs and SNNS.
These experiments were designed to evaluate the performance
of image reconstruction and VPR accuracy using both methods
under identical conditions. Finally, we conducted an analysis
to compare the energy consumption of the two methods.

1) Image Reconstruction Performance: We conducted an
additional experiment to validate the performance of our
reconstruction method. In this experiment, we use a Canny
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sunset2

10 10
—— SNN(OURS)
E2VID
81— EventVLAD oe

—— RGB

daytime

—— SNN(OURS)
E2VID
—— EventVLAD
— RGB

sunrise morning

—— SNN(OURS)
E2VID
~—— EventVLAD

—— RGB

—— SNN(OURS)
E2VID
—— EventVLAD

—— RGB

00 02 04 06 o8 10 00 02 04 o6 o8 10

Fig. 7. Precision—recall curves on the Brisbane-Event-VPR dataset

using on-dataset-based NetVLAD. Except sunset1-morning as query
data, our algorithm shows similar or superior performance to the other
methods.

Fig. 8. Samples of the reconstructed edges from the Brisbane-Event-
VPR dataset. Raw intensity images (the first column), event images
that represent their polarities (the second column), Canny edge images
(the third column), and reconstructed edge images using EventVLAD,
Ev-ReconNet-C, and Ev-ReconNet-S.

edge detector to obtain edge images for ground truth. The
reconstructed images of comparing methods are shown in
Fig. 8. We observe that even in similar locations, there are
large differences between intensity images depending on the
time of day, but less so for edge images. We measured the
multiscale structural similarity index (MS-SSIM) [15], [45]
between the ground truth and reconstructed edge image
to evaluate the reconstruction performance of the proposed
method, of which the formula is given as follows:

2pxpy + Ci
ui +u3+Cl

200y + C2

IMSSSIM _ | _ e
oft+oy+ Cy

&)

where C; and C;, are constants, ;. and o are the mean
and standard deviation of each image, and M is the scale
pyramid. Table IV shows the reconstruction performance
of Ev-ReconvNet-C and the Ev-ReconvNet-S. The results
demonstrate that the reconstructed image of Ev-ReconvNet-S

TABLE IV
SSIM ALONG OUR RECONSTRUCTION AND EVENTVLAD
FOR EACH DATASET

Dataset sunsetl | sunset2 | daytime | morning | sunrise
Ev-ReconNet-C | 0.797 | 0.757 | 0.722 | 0.799 | 0.798
Ev-ReconNet-S | 0.864 | 0.830 | 0.812 | 0.855 | 0.857

TABLE V

MATCHING ACCURACY COMPARISON OF EV-RECONNET-C
AND EV-RECONNET-S

off-dataset-training on-dataset-training
Ev-ReconNet|Ev-ReconNet|Ev-ReconNet|Ev-ReconNet
(CNNs) (SNNs) (CNNs) (SNNs)

DDD setl 64.38 66.42 72.47 72.47
DDD set2 96.55 96.54 96.55 98.46
sunset1-sunset2 82.41 84.88 94.65 95.73
sunsetl-daytime 23.05 20.47 36.06 36.37
sunsetl-morning 20.81 21.11 42.57 44.60
sunsetl-sunrise 33.21 37.30 64.75 66.08

is closer to the ground truth in all datasets. We analyze the
reason for these results that the event tensor has negligible
loss of temporal information compared to the event image.

2) Matching Accuracy Comparison: We conducted addi-
tional experiments to validate the performance gap between
CNNs and SNNs from the same architecture. The experimental
results are shown in Table V. We confirmed that conversion
to SNNs has higher performance, except for DDD set2 and
sensetl-daytime datasets when using pretrained parameters.
In particular, SNNs trained using a database showed the
same or better results than CNNs in all datasets. In addition,
as the reconstruction of the edge image was well performed,
it was confirmed that the VPR performance also increased.
We analyze the main reason in two aspects. The first rea-
son is the structural difference between Ev-ReconNet-C and
Ev-ReconNet-S. In general, the architecture of the SNNs
is identical to that of CNN; however, there are a few
differences. SNNs use a basic neuron model called leaky
integrate and fire (LIF). The converted SNNs employ mse
as the loss function, whereas the original CNNs use the
cross-entropy loss. This implies that the performance may
vary when CNNs are converted to SNNs with an identical
structure.

3) Energy Consumption: We conducted a comparative
analysis of the energy consumption between the proposed
methods based on CNNs and SNNs. For this purpose,
we employed the Keras-Spiking framework to simulate the
energy estimation of the CNN on the Intel-17-4960X CPU and
the Nvidia GTX Titan Black GPU, as well as the SNN on the
Intel Loihi CPU (a neuromorphic chip). Our analysis is based
on several assumptions by following the same conditions as
in [46]. Table VI outlines the energy consumption for each
method. The analysis results indicate that, when executed on
a neuromorphic chip, the proposed method based on SNNs
exhibits the least energy consumption. This can be one of the
crucial advantages of the proposed method.
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TABLE VI
COMPARE ENERGY CONSUMPTION ANALYTICS. THE MEASUREMENT
UNIT IS TOTAL ENERGY PER INFERENCE (JOULES/INFERENCE)

E2VID |EventVLAD Ev-ReconNet-C|Ev-ReconNet-S

Energy
consumption| 3.28 6.13 4.74 4.73 x 1073
(J/inf)
TABLE VII

ACCURACY USING VARIOUS T AND At VALUES. T AND At VALUES
ARE EVALUATED WHILE KEEPING At AND T CONSTANT
AT 0.1 AND 10, RESPECTIVELY

T At

0.05 | 0.10 | 0.15
72.23|72.47|72.38
98.24198.46 | 98.27
95.17 |95.73|95.70
35.50(36.37 | 36.39
44.5844.60 | 44.42
65.2266.08 | 65.83

0.20
72.10
98.23
95.63
35.82
44.33
65.77

DDD Setl
DDD Set2

sunset1-sunset2

70.89
86.84
95.02
36.30
42.44
65.56

7247
98.46
95.73
36.37
44.60
66.08

7243
98.33
95.56
36.35
44.80
66.02

7243
98.41
95.60
36.35
44.80
66.02

sunset]-daytime

sunset]-morning

sunsetl-sunrise

D. Accuracy Affected Parameters of Event Tensor

We conducted extensive experiments to analyze the effect
of event tensors’ parameters on our method’s performance.
We experimentally tuned the number of bins 7 and the
marginal time Ar when converting the event tensor from the
event stream at time f. In the first experiment, we tested
various T values 5, 10, 15, and 20 while keeping Ar constant
at 0.1. In the second experiment, we varied At¢ from 0.05 to
0.20 while maintaining 7 at a constant value of 10. The
resulting dataset accuracies using 7 and At are shown in
Table VII. Based on these experiments, we concluded that T’
and At are crucial performance-affecting parameters.

V. CONCLUSION

In this study, we investigated the use of event camera data
for VPR tasks and proposed an SNN approach that addresses
the issue of temporal information loss during the discretization
process of converting event data into images. Specifically, our
approach leverages the spatiotemporal processing capabilities
of SNNs to directly process the raw event data without
the need for image conversion. Our experimental results
demonstrate that the SNN approach can achieve competitive
performance on the benchmark dataset and outperforms a
method based on event cameras combined with convolutional
neural networks. Importantly, our approach preserves the
temporal information of the event data, which we believe
contributes to its superior performance compared to methods
that rely on image conversion. Our future work will focus
on speeding up and further improving the performance of the
converted SNN model.
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