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Abstract—Conventional face direction estimation tech-
niques detect the characteristic parts of the face, such as
the nose, eyes, and mouth, and estimate the face orienta-
tion based on the movements of these features. However,
these methods cannot accurately estimate the face direction
when the characteristic parts of the face are hidden; for
example, when the face is turned sideways or a mask is
worn. Face detection using point cloud data has been investi-
gated as a solution to these issues. Previous studies applied
five classes of face direction estimation for the head using
3-D point cloud data. However, considering the practical use
of driver assistance systems that verify the driver’s status,
these five classes are not sufficient for accurately detecting
the face direction, and a more precise horizontal wide-range angle detection approach is necessary. In this study,
we acquired 3-D point cloud data in k (where k > 5) classes while accurately measuring the horizontal angle of the face
during the acquisition of the training data using gyroscopic sensors. The training data captured by this depth-gyro sensor
integration generates accurate depth data for each direction. As a result, a low number of point cloud data samples for
each face direction were sufficient for generating the directional classification model. Therefore, this depth-gyro sensor
integrated data capturing significantly reduces the amount of required training data. Furthermore, we applied a weight
reduction process for the point cloud data to reduce the training time and performed deep learning to estimate the face
direction. The proposed method achieved high performance in face direction detection using deep learning, even with a
comparatively small dataset.

Index Terms— Deep learning, depth sensor, gyro sensor, point cloud data, point cloud data resolution reduction.

I. INTRODUCTION

TECHNOLOGY for estimating the direction of the human
face has various applications, such as driver assistance

systems to prevent car and motorcycle drivers from distracted
driving that includes looking away or falling asleep, systems
to prevent cheating in examinations, and in marketing to
analyze the preshelf behavior based on facial orientation (see
Fig. 1). For example, Virtual Y has been applied extensively in
recent years. YouTubers, i.e., active users of YouTube, use the
technology for estimating the face direction to create virtual
characters by linking the movements of users and 3-D avatars.
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Conventional techniques for estimating the face direction
detect the characteristic parts of the face, such as the nose,
eyes, and mouth, and estimate the face orientation based on
the movements of these parts [1], [2], [3], [4], [5]. However,
when the face is turned to one side or a mask is worn,
the characteristic parts of the face are hidden, and these
methods cannot estimate the face direction. Face detection
using point cloud data has been investigated as a solution to
the aforementioned issues.

In a previous study, a method for estimating the face
direction in five classes (directions) was developed using
3-D point cloud data [6]. This estimation model was
based on the deep learning of 3-D point cloud data
in five face directions: frontal, diagonal frontal, right,
left, and horizontal, and the authors confirmed that their
method was effective in estimating the five face direction
classes.

However, the ambiguous five-class classification is not
sufficient for accurate face direction detection when con-
sidering the practical use of driver assistance systems that
verify the status of car drivers. Therefore, more accurate
detections of the various horizontal angles of the face are
necessary.
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Fig. 1. Applications of face direction estimation.

Fig. 2. System overview of the study.

In this study, we aim to expand face direction estimation
by acquiring point cloud data for training over a wide range
of faces. First, we obtain the point clouds for training when
the subject faces the k-direction. Thereafter, we perform deep
learning on the point clouds to achieve the k-class face
orientation estimation.

An overview of the proposed system is presented in Fig. 2.
We used a depth sensor and gyro sensor to conduct the study.
Depth sensors can be applied to face direction detection in dark
environments, such as nighttime, because each pixel of the
depth camera contains distance information instead of color
information. Furthermore, the use of data (point cloud data)
from a depth camera protects the privacy of the user, thereby
enabling practical applications [7], [8], [9]. As shown in Fig. 2,
we used the gyro sensor to measure the face direction correctly
while acquiring the original point cloud data for training

Fig. 3. Depth camera used in this study.

and testing from a depth camera (as explained later). The
training data captured by this depth-gyro sensor integration
generate accurate depth data for each direction. As a result,
a low number of point cloud data samples (100 samples) for
each face direction were sufficient for generating the direc-
tional classification model. Therefore, this depth-gyro sensor
integrated data capturing significantly reduces the amount of
required training data. In the training stage, we first reduced
the density of the point cloud data and downsampled them
to a maximum of 1000 points to reduce the weight of the
data, which reduced the training time. The same process was
then applied to the test data during the verification experiment.
Consequently, the proposed method exhibited rapid training
and testing times. As per the validation experiments, high
accuracy was achieved in the face direction estimation for the
(k = 7, 9, 11, and 13) classes while using a smaller number
of training data samples (100 samples) for each direction.
Therefore, the application of point cloud data for face direction
detection using the proposed method was validated.

II. ACQUISITION OF TRAINING DATA

A. 3-D Point Cloud Data and Usefulness of
Depth Camera

A depth camera was used to obtain the 3-D point cloud
data. These data are generated using the distance image that is
obtained from the depth camera, and the distance information
from the depth camera is stored in each pixel of the obtained
image. As the data are generated from distance information,
they are not easily affected by the surrounding conditions
and are effective even at night or under strong sunlight.
Furthermore, the privacy of the subject can be maintained
because only the point cloud data are used.

The depth camera that was used in this study was the
RealSense D435 depth camera from Intel1 [10], which was
used in various studies [11], [12], [13], [14], [15], [16]. The
equipment used in this study is shown in Fig. 3, and the
specifications thereof are listed in Table I.

B. Application of Gyro Sensor
A gyro sensor was attached to the head to measure the angle

of the face, and relevant training data for the face angle were

1Registered trademark.
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TABLE I
SPECIFICATIONS OF THE DEPTH CAMERA

Fig. 4. Gyro sensor used for measuring face direction during training
data acquisition.

Fig. 5. Data acquisition environment.

acquired during the training stage. A gyro sensor, which is
also known as an angular-rate sensor, detects changes in the
rotation and orientation of an object as angular velocity and
outputs it as an electrical signal. The angular velocity is the
rotational speed per unit time.

In this study, we used the WT901BLECL gyro sensor
manufactured by Witmotion Inc., [17]. The gyro sensor can
measure angles through a wireless connection via Bluetooth
and has a small size (51.3 × 36 × 15 mm), making it suitable
for measuring the real face angle while acquiring the point
cloud data of the head. The gyro sensor used in this study is
shown in Fig. 4, and the point cloud data acquisition setting
for the subject is shown in Fig. 5. The specifications of the
gyro sensor are presented in Table II.

C. Head Extraction by Density-Based Spatial Clustering
of Applications With Noise (DBSCAN)

When point cloud data are generated from the depth image
that is obtained using a depth camera, only the necessary point
cloud data of the head are extracted from the original data
using a clustering method known as DBSCAN [18].

TABLE II
SPECIFICATIONS OF THE GYRO SENSOR

Fig. 6. Example of DBSCAN with background and people cropped.

DBSCAN is a point density-based clustering method. The
process includes two parameters: eps and min_points. The eps
parameter determines the clustering range for a single point.
Smaller values enable finer clustering, whereas larger values
result in more general clustering. In the experiment for this
study, we set the eps parameter to 0.01.

The min_points parameter defines the clusters, provided that
there exist more points than the min_points parameter within
the radius that is determined by the eps parameter. When
this parameter is increased, the points with higher density
are considered as the same cluster; however, an extreme
increase in the value will not result in any clustering [18].
In this experiment, we set the min_points parameter to 10.
An example of the extraction of the human region, including
the head, using DBSCAN is shown in Fig. 6.

D. Normalization of Point Cloud Data
Following the application of DBSCAN, we normalized the

point cloud data to equalize the weights of the values as a
preprocessing step prior to deep learning. The equation for
the normalization is given as follows:

xout =
xin − σ

max{|xin − σ |}
(1)

where xin is the input, xout is the output, and σ is the average of
the point cloud data with respect to the x-, y-, and z-axes. The
difference between each axis direction in 3-D was calculated
for the point cloud data, and the value was divided by the
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TABLE III
CLASSIFICATION OF FACE DIRECTION

Fig. 7. Sample point cloud data for seven classes.

maximum value of the difference at each point to normalize
the value between 0 and 1.

E. Classification of Face Direction
In the classification of the face direction, the state of the

classification is described by seven classes (k = 7). However,
the proposed method works for k > 7. Thus, in the experi-
ments, we also tested the method for k > 7.

Table III summarizes the classification for the seven classes
(k = 7), while Fig. 7 shows the samples of the point cloud
data for the seven classes.

III. DEEP LEARNING OF HEAD POINT CLOUD DATA

In this study, we performed deep learning of the point cloud
data of the head that were acquired using the depth camera
and used the learned model for face orientation estimation.

The deep learning library and model that were used in this
study are listed in Table IV.

A. Order Invariance and Movement Invariance
Two aspects must be considered to handle point cloud data

with deep learning: order invariance and translation invari-
ance [19]. Order invariance is a property whereby the output
does not change, even if the order of the points is changed.
For example, the intensity and color of the light, which are
arranged in a regular order, are stored in each pixel in an RGB

TABLE IV
SOFTWARE USED FOR DEEP LEARNING

image. If the order is changed, the light intensity and color
that are stored in the pixels also change, and subsequently,
the output also changes. However, as the 3-D point cloud data
that were used in this study were generated from the distance
information obtained from the depth camera, the information
in the point cloud data remained the same even if the order
of the points was changed, and thus, the output remained the
same.

Translation invariance is a property whereby the output
does not change even if the input is moved in parallel or
rotated. Equation (2) provides the expression for the translation
invariance

f (x1 + r, x2 + r, + · · · xn + r) = f (x1, x2, . . . , xn) (2)

where r is an arbitrary vector.
As can be observed from (2), the output cannot change even

if the input is moved by an arbitrary vector r. This is referred to
as translation invariance. The equation for rotational invariance
is given as follows:

f (Rx1, Rx2, . . . , Rxn) = f (x1, x2, . . . , xn) (3)

where R is an arbitrary rotation matrix.
As can be observed from (3), the input by an arbitrary

rotation matrix R does not change the output with rotational
invariance.

B. Deep Learning Model: PointNet
We used PointNet by Charles et al. [20] as our deep learn-

ing model. Unlike images, where pixels are regularly arranged,
point cloud data have an irregular structure. Therefore, they
are often transformed into a 3-D voxel grid or image for
deep learning. However, several problems arise with such
data transformation. For example, the obtained data become
unnecessarily large, and the training process would require
substantial time. However, PointNet can perform deep learning
using point cloud data as input.

PointNet considers the following two points. First, PointNet
achieves order invariance using a target function known as max
pooling, whereby the element with the largest value among the
input elements is output. An example of max pooling is given
as follows: if the input data are {1, 2, 3, 4, 5}, max pooling
outputs the element with the largest value, which is 5. This is
indicated in the following equation:

max{1, 2, 3, 4, 5} = 5. (4)

However, the output remains 5 even if the order of the input
data is changed to {2, 4, 5, 1, 3}, as shown in the following
equation:

max{2, 4, 5, 1, 3} = 5. (5)
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Fig. 8. Flow of deep learning using PointNet.

PointNet utilizes max pooling to achieve order invariance
and an affine transformation matrix [21] to achieve translation
invariance. An affine transformation is a combination of a
linear transformation and a translation [22], [23], [24]. The
affine transformation matrix is obtained through T-Net [25],
a neural network that is order-invariant and uses max pooling.
The input point cloud data are then shifted and rotated, and
the affine transformation matrix is applied to the input 3-D
point cloud data to approximate shift invariance. Consequently,
PointNet establishes both translation invariance and order
invariance.

C. Overall Flow of PointNet
Fig. 8 shows the overall flow of the deep learning process

using PointNet, where n indicates the number of points. As the
data used in this study were 3-D point cloud data, the input
data volume was n × 3. Movement invariance was obtained
by applying the affine transformation matrix to the input data
in the transform layer. Subsequently, the data were convolved
using a neural network and passed through a multilayer
perceptron (MLP). This was repeated and max pooling was
performed to achieve order invariance. Thus, an overall feature
set of 1024 dimensions was obtained. Thereafter, the obtained
features were passed through the MLP to classify k classes.

IV. VERIFICATION EXPERIMENTS

A. Experimental Environment
Depth images were captured using a depth camera and

tripod, with the subject seated on a chair approximately
50–60 cm from the head and at the same height as the
eyes of the subject. Data acquisition was performed with the
cooperation of ten people (subjects).

Fig. 9. Confusion matrix of validation experimental results.

For the seven-class (k = 7) classification, 700 point cloud
datasets (100 for each of the seven classes of horizontal angles
of the head) were prepared as the training datasets, whereas
350 datasets (50 for each of the seven classes) were prepared
as the validation datasets to measure the accuracy. Similar
datasets were prepared for k = 9, 11, and 13.

The experiments were conducted using a computer with the
following configuration: Intel Core i5-7500 at 3.40 GHz, Intel
HD Graphics 520, 16 GB.

B. Experimental Results
Fig. 9 presents the confusion matrix of the results when k =

7, and the number of training epochs was set to 15. The vertical
and horizontal axes represent the true and estimated values,
respectively. Fig. 9 shows that at all horizontal angles, which
indicates that the estimation was highly accurate, where l and r
indicate left and right, respectively, which were the directions
in which the subject looked. For example, l30 indicates that
the subject was looking 30◦ to the left with respect to the
camera. The average learning time was 842.406 s and the
average estimation time was 2.53 s.

We determined the accuracy, precision, and recall based on
four parameters, namely, true positive (TP), true negative (TN),
false negative (FN), and false positive (FP).

Accuracy is the percentage of total data that are correctly
classified, where higher accuracy indicates better performance.
The formula is given as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
. (6)

Precision is the percentage of correct answers among those
that are predicted as true by the trained model. Higher preci-
sion indicates fewer incorrect classifications. The precision is
calculated as follows:

Precision =
TP

TP + FP
. (7)

Finally, recall is the percentage of correct answers among those
that are true. It is a measure of the number of angles that can
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TABLE V
SUMMARY OF ACCURACY, PRECISION, AND RECALL

TABLE VI
ACCURACY FOLLOWING FACE DIRECTION CLASS CHANGES

be estimated without an error and is calculated as follows:

Recall =
TP

TP + FN
. (8)

The experimental results of accuracy, precision, and recall
when k = 7 are summarized in Table V. Table V demonstrates
that the accuracy, precision, and recall reached over 98%
in the experiments, where l and r indicate left and right,
respectively, which were the directions in which the subject
looked, as above described.

Fig. 10 presents a sample of the orientation estimation
results that were obtained in this experiment (on the left) and
the face regions obtained by DBSCAN for each orientation
(on the right), where l and r denote left and right, respec-
tively, GT is the labeled direction, and Pred is the predicted
direction.

Furthermore, the face direction estimation accuracies for
additional classes (when k = 7, 9, 11, and 13) are summarized
in Table VI. It can be observed from the table that the point
cloud-based face direction detection exhibited high accuracy.
The accuracy was very high for directional classes 7 and 9,
which means that the application possibility is high. It is con-
firmed that the proposed method exhibited high performance
with a lower number of training data (100 samples for each
direction) in deep learning.

Therefore, the depth-gyro sensor integrated data capturing
significantly reduces the amount of required training data
while achieving high classification performance.

In this study, we used a depth sensor to obtain the point
cloud data for k (k = 7, 9, 11, and 13) classes while accurately
measuring the horizontal angle of the head using a gyro
sensor. The gyro sensor sent data to the computer through a
Bluetooth wireless connection. However, the numerical angle
value from the gyro sensor was not very stable in certain cases.
We believe that this issue can be resolved by measuring the
horizontal angle of the head using a microcomputer, such as an
Arduino or Raspberry Pi, with a wired connection and a gyro
sensor.

C. Comparisons With Conventional Methods
As mentioned in Section I, the proposed face orientation

estimation method is an improvement upon a previous face
direction orientation estimation method [6] that used a depth
camera. In a direct comparison, the proposed method with

Fig. 10. Estimation results and sample distance images. (a) r90 is
estimated as r90 (true). (b) l90 is estimated as l90 (true). (c) r60
is estimated as r60 (true). (d) l60 is estimated as l60 (true). (e) r30
is estimated as r30 (true). (f) l30 is estimated as l60 (false). (g) 0 is
estimated as 0 (true).

depth-gyro sensor integration was able to improve the number
of estimation directions with high accuracy.
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TABLE VII
PERFORMANCE COMPARISON WITH CONVENTIONAL METHODS

In addition, we compared the proposed method with
conventional face orientation estimation methods that use
other devices, such as normal cameras. The comparison
results are presented in Table VII, which pertains to the
seven-directional class estimation mentioned in Table V. The
accuracy of the proposed method showed better performance
than conventional methods using 2-D cameras. Furthermore,
the proposed method can be applied at night and in places
where the user’s privacy needs to be protected since it esti-
mates the face orientation based solely on the point cloud
data.

V. CONCLUSION

In this study, we estimated the horizontal direction of the
head using the gyro sensor during the acquisition of point
cloud data from the depth sensor for the learning stage of deep
learning. The training data captured by this depth-gyro sensor
integration generate accurate depth data for each direction.
As a result, a low number of point cloud data samples for
each face direction were sufficient for generating the direc-
tional classification model. Therefore, this depth-gyro sensor
integrated data capturing significantly reduces the amount of
required training data. We further applied a weight reduction
process for the point cloud data to reduce the learning time.
The proposed method achieved high performance in detecting
the face direction using deep learning using a comparatively
small dataset. The accuracy, precision, and recall reached over
98% in our experiments.

In the future, we plan to solve several errors resulting
from the gyro sensor during the data acquisition process.
Furthermore, real-time processing on small hardware should
be considered for real applications.
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