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Abstract—Monitoring of heart rate (HR) and respiratory
rate (fR) is fundamental to assessing the health status of an
individual. To address this scope, technologies that frame
the upper body and the face regions of a subject without
any physical contact can be used. Motion artifacts can affect
the applicability of non-contact methods to the continuous
monitoring of these parameters as well as the computational
burden. This article focuses on a technique based on images
captured with a single digital camera for the continuous
estimation of HR and fR. The main goal is to analyze how
the velocity of facial movements and region of interest (ROI)
tracking duration influence the performance of the method.
Tests were performed on healthy volunteers during motion-
less trials (i.e., at rest and after exercise), head and torso
movements, and during physical exercise. Results demon-
strated that a continuous estimation of HR and fR can be
performed with acceptable errors under changing ROI track-
ing duration and velocity in motionless trials (mean absolute
error (MAE) below 5 bpm and 3.42 breaths·min−1 for HR and
fR, respectively), whereas during movements (mimicking head and torso movements, and during exercise) the error
increases (MAE up to 5.42 bpm and up to 5.03 breaths·min−1 for HR and fR, respectively). The proposed investigation can
provide a framework for the continuous estimation of HR and fR during both static and dynamic activities by optimizing
the ROI tracking duration under different velocities of facial movements.

Index Terms— Digital camera, heart rate (HR) monitoring, motion assessment, region of interest (ROI) tracking,
respiratory rate (fR) monitoring.

I. INTRODUCTION

V ITAL signs monitoring, such as heart rate (HR) and
respiratory rate ( fR), is fundamental to assessing the
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health status of an individual. These physiological parameters
are included in the Early Warning Scores (EWS), which are
indicators used to determine the severity of the patient’s phys-
iological deterioration in the hospital [1]. HR and fR are the
primary physiological signs to be monitored since their abnor-
mal values can be an index of some important diseases (e.g.,
cardiac arrest and cardiovascular diseases) [2], [3]. Moreover,
the influence of fR and HR, also known as cardiorespiratory
coupling (CRC) plays an important role in the assessment of
sleep-related disorders [4].

Commonly, contact-based systems which require the direct
contact of the sensor with the skin of the subject are employed
to measure HR and fR [5]. In this context, wearable technolo-
gies based on different kinds of sensors have been widely
used [6], [7]. However, contact-based technologies present
some drawbacks related to discomfort for the subjects, ease
of loss of contact, skin irritation in patients with fragile
skin, and lastly the need for dedicated instrumentation [8].
Thus, in recent years non-contact technologies (e.g., radar
and depth cameras) have gained a lot of interest due to
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their ease of use, no discomfort for the subject during the
monitoring [9], [10], [11], [12], [13]. Among them, digital
cameras (e.g., smartphone’s built-in camera, laptop built-in
camera) present several advantageous features such as costs,
availability, portability, and easiness of use [14], [15], [16].
Commonly, RGB sensors can be employed to detect the
remote photoplethysmographic (r-PPG) signal associated with
volumetric changes of blood in facial capillaries [17]. Both
HR and fR can be estimated from the r-PPG signal, as the
respiratory activity modulates the cardiac activity [18]. When
the r-PPG technique is used to retrieve information about the
pulsatile activity through a video of the subject’s face, different
factors must be considered, like lighting source [19], user-
camera distance [20], the resolution of the device used to
acquire the video [21], the region of interest (ROI) [22], [23],
and motion artifacts [24], [25], [26].

Head rotations and whole-body movements must be
detected and deleted to improve the accuracy of vitals moni-
toring and possibly to extend the applicability of video-based
systems outside constrained environments (e.g., during sports
activities and in real scenarios). In the last years, some studies
proposed different techniques to detect movements and to
make a robust contactless system, mainly for HR estima-
tion [27], [28], [29], [30]. Only a few studies have investigated
the influence of respiratory-unrelated movements on the esti-
mation of fR [31], [32]. To the best of our knowledge, most of
the studies available in literature detect body movements and
try to filter, compensate, or remove them by implementing
complex signal processing techniques (e.g., adaptive filtering)
or through deep learning methods [28], [33], [34]. Another
approach is to use the motion information obtained from a
body or face tracking to filter or compensate for motion [35].
For example, Guo et al. [36] used a near-infrared time-of-
flight camera to detect cardiac and respiratory unrelated
movements and compensate for the intensity variation caused
by motion artifacts using depth information. Another study
applies adaptive noise cancellation due to motion artifacts in
combination with a modified HSI—hue, saturation, intensity—
model to remove motion artifacts and reduce the effects of
irregular intensity induced by head movements [33]. However,
to the best of our knowledge, none of the studies available in
the literature have attempted analyses to quantify the amplitude
of body movements and thus compensate for them, except for
the recent work of Wu et al. [30] in which a motion level has
been computed to identify the magnitude of simulated move-
ments (i.e., stationary, small, and full motion). Strictly related
to the detection of motion artifacts is the tracking of ROIs iden-
tified to extract the pulsatile and respiratory patterns [25], [37].
However, an ROI tracking optimization analysis based on
the investigation of how many seconds to conduct the ROI
tracking has not been performed. Additionally, the reliable
estimation of HR and fR simultaneously is uncommon, mainly
because only r-PPG signal does not provide a robust measure
of fR . Moreover, most of the studies focus on the average
estimation of HR and fR [38], [39], which can discourage the
application of non-contact technologies when abrupt increase

or decrease in HR and fR are expected (e.g., sports field) or
when more data are needed for short-term recordings.

To tackle these drawbacks, in this article, we focus on the
analysis of how facial movements and ROI tracking duration
influence the performance of a method based on images
captured with a single digital camera for the estimation of HR
and fR . We aim at providing a framework for the continuous
estimation of these two parameters during both static and
dynamic activities by optimizing ROI tracking and the velocity
of facial movements. The contributions of our article are the
following:

1) A ground-truth independent algorithm is proposed for
the continuous estimation of both HR and fR with an
update time of 1 s, even in the case of body motion
disturbances.

2) A quantitative analysis of cardiac and respiratory
unrelated movements based on the velocity of facial
movements.

3) An analysis of the ROI tracking duration to optimize it
under different velocities of facial movements.

The article is structured as follows. Section II describes the
submodules of the proposed framework. In Section III, the per-
formed experiments on healthy volunteers during motionless
trials (i.e., at rest and after exercise), head and torso move-
ments, and during physical exercise to assess the performance
of the proposed framework and the evaluation metrics are
described. Section IV reports the obtained results, followed
by the conclusion in Section V.

II. METHODS

The architecture of the proposed pipeline for the continuous
estimation of fR and HR under different motions consists
of submodules including: 1) video pre-processing; 2) sig-
nal extraction; 3) signal analysis; and 4) estimation of fR
and HR. All the steps to estimate fR and HR are described in
Sections II-A–II-C.

A. Video Pre-Processing
A video of the face and the torso regions was recorded

through a digital camera. The facial region was detected in the
video with the pre-trained cascade classifier from the OpenCV
library [40] in a Python environment. Sixty-eight facial land-
marks were detected and tracked through the dlib detector,
which maps the facial points on the subject’s face [41].

In this work, three rectangular ROIs on the face—i.e., right
cheek, forehead, and left cheek since these facial regions
have good vascularization [42]—and one on the torso at the
level of the jugular fossa were identified to extract the raw
r-PPG and the respiratory signals, respectively (see Fig. 1).
Specific landmarks automatically identified on the face were
used to define geometric rules to construct the ROIs. The
tracking of all the identified ROIs was carried out under
changing ROI tracking duration to evaluate its influence on
the performance of the proposed framework in the estimation
of cardiorespiratory parameters and the computational burden
during video processing in terms of CPU running time. Five
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Fig. 1. Examples of (a) raw RGB signal extracted from three ROIs
and respiratory signal extracted by OF from ROI torso and (b) raw
displacement of nose’s landmark along the x-axis.

modalities of video analysis were implemented: 1) each frame;
2) every 30 frames—1 s; 3) every 150 frames—5 s; 4) every
300 frames—10 s; and 5) every 600 frames—20 s. For fR esti-
mation an additional analysis was performed by using a fixed
ROI identified in the first frame of the video [16], [43], [44].
The raw RGB signals extracted from the ROIs on the face
were used to retrieve the pulsatile-related signal, whereas the
respiratory signal was extracted through a method based on
the computation of the optical flow (OF) [44]. Contextually,
the displacement of the landmark on the nose was retrieved
from the video and then the velocity of this landmark has been
calculated. This value is then used to define the threshold on
the head movements.

B. Signal Extraction
The raw r-PPG signals were obtained from each ROI on the

face by spatially averaging the intensity of the pixels in the
three-color channels R, G, and B, corresponding to the red,
green, and blue channels according to the following:

s =
1

xROI

xROI∑
x=1

∑
c=R,G,B

I (x, y, c) (1)

where xROI represents the number of pixels in the selected ROI
region along the y-axis (see Fig. 1), c is the color channel,
and I(x, y) is the intensity component of each channel.

The respiratory signal was extracted through a method based
on the computation of OF, which allows the estimation of
the displacement between two consecutive images by tracking
image features on a pixel-by-pixel basis [44], using the Horn
and Schunck (HS) algorithm [45]. A velocity vector for each
pixel in the image was obtained and the component along the
y-axis was assumed as the most related to movements of the
ribcage caused by breathing [44].

C. Signal Analysis
The analysis of raw r-PPG and respiratory signals was

carried out in a MATLAB environment through a windowing

analysis. A window length of 20 s was chosen as it rep-
resents a good compromise between resolution and noise
robustness [16], [46], moving every 1 s. In the same analysis,
the fR and HR traces were obtained. Fig. 2 reports the
flowchart illustrating the steps for the respiratory and r-PPG
signals analysis when considering the threshold on the head
movement, which is computed as the velocity of the nose’s
landmark.

1) Respiratory Signal Analysis: In each identified win-
dow, the raw respiratory signals computed with OF were
first filtered with a Butterworth bandpass filter between
0.1 and 0.8 Hz (equivalent to the physiological range of fR
6–48 breaths·min−1). Then, an analysis in the frequency
domain was carried out by computing the power spectrum
density (PSD) of the signals. fR values were estimated by
considering the maximum frequency at which occurs the
highest value of the PSD multiplying by 60, obtaining a value
of fR in bpm in each window. These steps were carried out
per each modality of video analysis and when considering the
threshold on the velocity.

2) r-PPG Signal Analysis: In each window, all the raw RGB
signals were filtered through a Butterworth bandpass filter
between 0.7 and 3 Hz (equivalent to the physiological range
of HR 42–180 bpm). We implemented five well-established
r-PPG algorithms that can be used when performing tests with
digital cameras [47]: 1) green channel (GC); 2) independent
component analysis (ICA); 3) principal component analy-
sis (PCA); 4) chrominance-based signal processing method
(CHROM); and 5) plane orthogonal to skin (POS) [48]. This
analysis was carried out for all the raw r-PPG signals extracted
from the three identified ROIs with ROI tracking in each frame
of the video. After identifying the best algorithm to retrieve
the r-PPG signal, this algorithm was implemented for HR
estimation per each implemented modality of analysis (i.e.,
each frame, every 1, 5, 10, and 20 s) and when considering the
threshold on the movement’s velocity of the head, according to
the flowchart in Fig. 2. HR estimation was performed through
an analysis in the frequency domain by computing the PSD
of the signals. After the normalization of the PSD against its
maximum peak, HR was calculated by considering the average
of the frequencies at which occur the peaks of the PSD above
a threshold value of 0.8, weighted against the values of those
peaks, according to the following:

HR =

∑N
i=1 fi · Pi

N
(2)

where N is the number of peaks in the PSD above 0.8,
Pi is the value of the PSD in the range (0.8, 1], and fi
represents the value of the frequency at which occur Pi .
Then, the estimated values were multiplied by 60 to obtain
a value of HR in bpm. The HR values obtained per each
identified ROI (i.e., left cheek, right cheek, and forehead) were
numerically averaged. The mean value of HR was used for
further statistical analysis [16].

3) Motion Threshold: To evaluate the performance of the
proposed framework in the estimation of cardiorespiratory
parameters under different head and torso movements, motion
thresholds were identified by considering the velocity of the
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Fig. 2. Schematic of the flowchart illustrating the steps for respiratory and r-PPG signals when considering the threshold on the head movement.
The inputs are the raw RGB signals, the breathing signal, and the displacement of the nose’s landmark. The windowing analysis is carried out to
extract the values of HR and fR.

nose’s landmark (see Section II-C). As reported in Fig. 2,
the nose displacement was obtained in all the frames of
the video and the velocity (v) was computed as v = s/t ,
where s is the nose displacement in pixels and t is the
time. An analysis under gradually changing velocity thresholds
from 5 to 400 pixels/s with a step of 5 pixel/s was carried out
(the relative results are not reported). We considered just seven
threshold velocities to summarize the results: 50, 60, 100, 150,
200, 300, and 400 pixels/s, equivalent to approximately 2,
2.4, 4, 6, 8, 12, and 16 cm/s, respectively. These values were
obtained considering the region covered by the face in the
whole image, which is about 10% in all the videos recorded.
The maximum velocity value was calculated in each window
and compared to the threshold to execute the next steps as
shortly reported in Fig. 2.

III. EXPERIMENTAL TRIALS

To test the performances of the proposed framework in the
continuous estimation of fR and HR simulating real conditions
with motion artifacts (e.g., head rotations and torso move-
ments) and during physical activity, we carried out experiments
on healthy volunteers. The study was carried out according to
the Declaration of Helsinki, and in compliance with the Ethical
Approvals received from Università Campus Bio-Medico di
Roma (ST-UCBM 14/22 OSS).

A. Dataset in Laboratory Environment
This article aims at exploring the use of digital cameras

in the presence of motions, focusing on the analysis of how
facial movements and ROI tracking duration influence the
performance of the proposed framework in the continuous
estimation of cardiorespiratory parameters. Thus, we first
create a dataset using a digital camera setup in a laboratory
environment consisting of the following:

1) Camera: The CANON EOS 1100D camera (Canon,
USA) was used to record two videos of the face and the

torso of the subjects in a laboratory environment, with a
resolution of 1280 × 720 pixels and an acquisition fre-
quency of 30 frame per seconds (fps). The camera was
placed at about 0.5 m from the subject. The face of the
subject covers ∼10% of the whole image with a size of
257 × 361 pixels.

2) Reference Instrument: The multiparametric wearable
device, the Zephyr BioHarness v3 by Medtronic was
used to record the electrocardiographic (ECG) and the
respiratory waveforms. The device consists of a thoracic
belt and an electronic module. It acquires the user’s
respiratory pattern by detecting the volumetric changes
in the thorax through a strain gauge and the ECG
waveform via dry electrodes. The reference respiratory
and ECG signals were collected at 25 and 250 Hz,
respectively.

3) Subjects: A total of 20 healthy subjects (ten males and
ten females, aged between 22 and 31, Fitzpatrick Skin
Phototype between II and III) were enrolled for the
recordings. Each volunteer was called to perform two
video collections. During the first video, the subject was
asked to perform: 1) ∼120 s of quiet breathing (QB);
2) ∼90 s of tachypnea; 3) ∼90 s of small head rotations
left and right along the craniocaudal axis during QB;
and 4) ∼90 s of small left and right body oscillations.
The total video recording lasts around 8 min. During
the second test, the subjects were required to perform
∼110 s of QB after physical exercise (i.e., running at
high knees) for approximately 2 min of video recording.
An apnea stage of about 15 s was performed between
one task and the following to then discriminate them.
The experimental trials were guided via a graphical
interface running on a tablet located in front of the
subject. In addition, subjects were required to not wear
glasses and females to not have make-up on their
faces.
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Fig. 3. Example of temporal trends of estimated fR and HR values against the reference in the five trials according to the nose’s landmark
velocity (v) and the displacement of the torso along the x-axis (s) for one subject.

B. Dataset in Gym Environment
A dataset using the CANON EOS 1100D camera in a gym

environment was made to investigate the use of digital cameras
for the continuous estimation of cardiorespiratory parameters
during physical activity. The digital camera (Canon, USA)
was used to record one video of the face and the torso of
the subjects during physical activity (resolution of 1280 ×

720 pixels, at 30 fps). It was placed on a tripod at about
0.5 m from the subject and the zoom was adjusted so that
the region covered by the face in the whole image is of
about 10%. The multiparametric wearable device Zephyr
BioHarness v3 was used as a reference system. A total of
nine healthy volunteers (six females and three males, aged
between 25 and 33, Fitzpatrick Skin Phototype between II
and III) were enrolled for the experiments. During the tests,
each subject was required to sit on a cycle ergometer (Elec-
tronic bike RHC-100, Air Machine, Cesena, Italy) and to
perform the following protocol: 1) initial apnea stage of ∼15 s;
2) ∼60 s of QB at rest; and 3) ∼300 s of cycling at a
power of about 100 W. Each video recording lasts around
6 min.

C. Data Analysis
The collected videos both in the laboratory and gym

environment were post-processed in MATLAB environment
according to the steps reported in Fig. 2. All the r-PPG and
the breathing signals were synchronized with the ECG and
the respiratory waveforms from the reference system, starting
from the first minimum point after the apnea stage. An analysis
in the frequency domain was carried out to estimate the
values of fR and HR both for reference and video signals
as reported in Section II-C. HR values were estimated from
signals retrieved with the CHROM algorithm. Sometimes,
some estimated values of fR and HR are inconsistent with the
other estimated values. Thus, these values (i.e., outliers) were
removed using the Hampel filter, which identifies and replaces
the outliers through a moving median window [49]. Fig. 3
reports the temporal trends of the estimated fR and HR values
against the reference after the outliers’ removal in the five
trials performed in a laboratory environment for one subject.
The first line reports the nose velocities (v) computed in each

trial, whereas the second line shows the torso’s displacements
along the x-axis (s) extracted through OF in each trial.

D. Evaluation Metrics
To evaluate the performance of fR and HR extraction, the

mean absolute error (MAE) and the mean absolute percentage
error (MAPE) were computed. In the first analysis of cardiac
signals, MAE was used for evaluating the performance of
each r-PPG implemented algorithm and identifying the most
promising. In addition, a Bland–Altman analysis was carried
out to investigate the agreement between the implemented
approaches and the reference values both for fR and HR
estimation and to quantify the discrepancies.

IV. RESULTS

This section presents the results obtained in the continuous
estimation of fR and HR. We first report the results obtained
in a laboratory environment for fR and HR both when consid-
ering the threshold on the head movement and the influence
of different modalities of video analysis and when neglecting
them. Then, the results obtained in the gym environment are
reported.

A. Dataset in Laboratory Environment
1) Respiratory Rate Estimation: When the threshold on the

velocity was not considered and the modality of video analysis
with fixed ROI was used, MAE values below 1 breaths·min−1

were obtained for the motionless trials (i.e., QB, tachypnea,
head movement, and post-exercise), whereas an MAE of
2.56 and 5.71 breaths·min−1 were obtained during head and
torso movements, respectively.

Fig. 4 shows the Bland–Altman plots for the fR val-
ues estimated through OF in the five trials using the
fixed ROI. The dashed line represents the mean of differ-
ence (MOD), and the red lines represent the upper and
low limits of agreement (LOA). A good agreement was
achieved during QB, tachypnea, and post-exercise, with a
MOD ± LOAs of 0.04 ± 2.16 breaths·min−1(mean error
of ∼11%), 0.24 ± 6.11 breaths·min−1(∼15%) and 0.05 ±

4.83 breaths·min−1(∼19%), respectively. The values of LOAs
increase when fR was estimated during head and torso move-
ments (±8.92 and ±14.67 breaths·min−1, with a MOD of
0.34 and 2.50 breaths·min−1, respectively).



20102 IEEE SENSORS JOURNAL, VOL. 23, NO. 17, 1 SEPTEMBER 2023

Fig. 4. Bland–Altman plots comparing fR estimated through OF in the
five trials using the fixed ROI and without considering the threshold on
the nose’s velocity. Each color corresponds to a single subject.

Table I shows MAE and MAPE values obtained under
changing velocity thresholds and modality of video anal-
ysis for all five trials. In motionless trials, MAE below
3.5 breaths·min−1 was obtained when performing ROI track-
ing between Mode 1 s and Mode 20 s, even if MAPE
values reach high values. In Mode 1 an increase of MAE
was achieved. During head and torso movements, the values
of MAE are generally slightly higher. However, MAE <

5 breaths·min−1 with the higher percentage of monitored
windows (i.e., 88% during head movements and 63% during
torso movements) were achieved at 400 pixel/s for all the
implemented modalities of video analysis (see Table S1).
Comparing the different modalities of video analysis, Mode
fixed ROI results to be the best in motionless trials, although
when performing head and torso movements Mode 10 s is
most suitable with MAE below 4.09 breaths·min−1 at all the
considered velocity thresholds (see Table S2 for Bland–Altman
analysis).

2) HR Estimation: The performances of each implemented
r-PPG algorithm in the estimation of HR in the different trials
were investigated by analyzing the values of MAE. According
to the achieved values reported in Table S3, the CHROM
algorithm results to be the best method to retrieve the valuable
r-PPG signal for the estimation of HR in all the performed
trials (i.e., QB, tachypnea, head movement, torso movement,
and post-exercise) with an MAE < 5 bpm. As a result, the
CHROM algorithm was used for further analyses, including
the estimation of HR values considering the threshold on the
velocity of the pixel of the nose’s landmark and the analysis
of the ROI tracking on the subject’s face.

To evaluate the performances of the proposed frame-
work under changing velocity thresholds and modality of
video analysis, we computed the MAE and the MAPE
for all five trials (Table II). MAE values below 4.26 bpm
and MAPE < 3.89% were achieved in motionless trials
(i.e., QB, tachypnea, and post-exercise) for all the tested
modality of analysis and for all the velocity thresholds. As for
fR estimation, the different number of windows respecting the
thresholds has been used to calculate the MAE. The percentage
of windows used for HR in each condition are reported in
Table S4 for all the implemented modalities of video analysis.
When considering Mode 1, MAE of 3.17 bpm was obtained

TABLE I
MAE AND MAPE COMPUTED PER EACH TRIAL UNDER CHANGING

VELOCITY THRESHOLDS AND MODALITY OF ANALYSIS FOR fr
ESTIMATION. IN BOLD ARE HIGHLIGHTED THE BEST RESULTS

at 100 pixel/s during head movement, but only 6% of all the
windows were used for the estimation.
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TABLE II
MAE AND MAPE COMPUTED PER EACH TRIAL UNDER CHANGING

VELOCITY THRESHOLDS AND MODALITY OF ANALYSIS FOR HR
ESTIMATION. IN BOLD ARE HIGHLIGHTED THE BEST RESULTS

Whereas, during torso movement a MAE of 1.22 bpm was
achieved at 400 pixel/s for Mode 1 and 62% of the total
windows were used to estimate HR.

Fig. 5. Bland–Altman plots comparing HR estimated when using
Modality 1 of video analysis in the five trials with a velocity threshold
of 400 pixel/s. Each color corresponds to a single subject.

Comparing the different modalities of video analysis
(i.e., when increasing ROI tracking duration), there is a
slight increase of MAE values for all the velocity thresholds
in motionless trials (e.g., during QB, MAE values range
from 0.94 to 1.10 bpm at 50 pixel/s). Whereas, during head
and torso movements, MAE highly increases under changing
modality of video analysis (e.g., during torso movement, MAE
ranges from 1.22 to 14.59 bpm at 400 pixel/s). The best modal-
ity of video analysis results is Mode 1 both for motionless
trials and for trials with head and torso movements. However,
when analyzing the videos with the Mode 1 the running time
required to perform the ROI tracking is 65 min. Increasing
the ROI tracking duration, the running time decreases up to
20 min (i.e., Mode 5 s).

Fig. 5 shows the Bland–Altman plots for HR values esti-
mated in the five trials when using Mode 1 for the video
analysis with a velocity threshold of 400 pixel/s. Good
agreement was achieved during QB, tachypnea, and torso
movement, with a MOD ± LOAs of –0.48 ± 4.33 bpm
(mean error of ∼6%), 0.16 ± 7.17 bpm(∼8%), and
–0.51 ± 3.92 bpm(∼5%), respectively. Higher values of
LOAs were achieved during head movement and post-exercise
(±15.45 bpm – ∼20% and ± 10.49 bpm – ∼10%, respec-
tively). In accordance with the values of MAE, changing the
modality of video analysis to track the identified ROIs, the
values of LOAs increase (see Table S5).

B. Dataset in Gym Environment
Based on the promising results obtained in a laboratory

environment, experiments were carried out in a gym during
physical activity. Assuming that no considerable motions can
occur during physical activity on a cycle ergometer, here
we report the obtained results in the estimation of fR with
fixed ROI modality and HR with Mode 1 under changing
velocity thresholds. MAE values were computed per each
velocity threshold during QB and physical activity for the two
parameters as reported in Table III.

Regarding fR estimation, an MAE below 3 breaths·min−1

was achieved when the threshold is 50 pixel/s, whereas for HR
estimation, MAE below 4 bpm was obtained at 50 pixel/s.
However, during physical activity, 42% and 38% of the
windows were used for the computation of fR and HR, respec-
tively. Increasing the velocity threshold up to 400 pixel/s the
number of windows used for the estimation of the vital signs
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Fig. 6. Bland–Altman plots comparing the estimated values of fR and
HR with a velocity threshold of 400 pixel/s for the two trials.

TABLE III
MAE AND MAPE COMPUTED FOR fR AND HR ESTIMATION UNDER

CHANGING VELOCITY THRESHOLDS PER EACH TRIAL AND

WINDOWS NUMBER USED FOR fR AND HR ESTIMATION IN

PERCENTAGE. IN BOLD ARE HIGHLIGHTED

THE BEST RESULTS

increase (i.e., 98% and 97% for fR and HR, respectively),
as well as the MAE.

A Bland–Altman analysis was performed considering the
values of fR and HR estimated with a threshold velocity of
400 pixel/s (Fig. 6). For fR estimation, a good agreement was
achieved during QB at rest before the physical activity with
values of LOAs of ±5.99 breaths·min−1. During the physical
activity, a MOD ± LOAs of –4.10 ±13.80 breaths·min−1 was
obtained. Regarding the HR estimation, values of LOAs of
±11.45 and ±17.16 bpm were obtained during QB at rest

before the physical activity and during physical activity, with
approximately 15% of error in both cases considering the
whole HR ranges.

V. DISCUSSIONS
In this article, we focus on the analysis of how facial

movements and ROI tracking duration influence the perfor-
mance of a method based on images captured with a single
digital camera for the estimation of HR and fR . The proposed
framework allows the continuous estimation of these two
parameters both in simulated and real scenarios (i.e., during
physical exercise in a gym).

A. Dataset in Laboratory Environment
The obtained results from the dataset in a laboratory envi-

ronment show that the velocity threshold of 50 pixel/s allows
achieving low values of MAE both for fR and HR estimation
in all the motionless trials and a very continuous monitoring
can be performed since all the windows were used to estimate
the two vital signs.

For head and torso movements, it is difficult to find the
right compromise between the velocity threshold to be set,
the windows number used to perform fR and HR estimation,
and the low values of MAE. Setting a velocity threshold at
400 pixel/s allows continuous monitoring of both fR and HR
during head and torso movements using a high number of
windows for the estimation of the vital signs.

Focusing on fR estimation, we obtained comparable results
in motionless trials both when considering the velocity thresh-
olds and when neglecting them. An MAE < 2 breaths·min−1

was achieved and values of LOAs comparable with those
obtained in [32] (LOAs of ±1.04 breaths·min−1) were
obtained in motionless trials when considering the Mode
10 s for the video analysis. During head and torso move-
ments, the obtained results in terms of MAE and LOAs
change under changing velocity thresholds and with the
windows number used to estimate fR . The best results in
terms of low values of MAE and LOAs were achieved
at 50 pixel/s. The obtained MOD ± LOAs of 0.25 ±

2.18 breaths·min−1 at 50 pixel/s (Mode 10 s) during
head movement is comparable with that reported in [32]
(MOD ± LOAs of 0.18 ± 2.45 breaths·min−1) during tests in
non–stationary scenario.

Regarding HR estimation, we obtained comparable MAE
in all the tested modalities of video analysis both when
considering the velocity thresholds and when neglecting them.
MAE is between 0.94 and 4.30 bpm for the motionless trials
and per each modality of video analysis when the velocity
threshold was not considered. These values are comparable
with those obtained in [29] (MAE of 6.13 bpm). When head
and torso movements were performed, MAE increased ranging
from 4.26 and 10.88 bpm for head movement and ranging
from 3.74 and 15.22 bpm during torso movement without
no threshold on the velocity (see Table S6). Comparing the
different modalities of video analysis under changing velocity
thresholds Mode 10 s and Mode 1 result to be the most
suitable for fR and HR estimation in all five trials, respec-
tively. However, when performing the HR monitoring in the
absence of motions or after a physical exercise, the video
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can be analyzed with all the tested modes of analysis with
MAE < 4.26 bpm (see Table II), which is in accordance
with the threshold defined in the ANSI/AAMI EC13:2002
standard. This result suggests that the ROI tracking can be
performed every 20 s obtaining a continuous estimation of
HR per each velocity threshold in motionless trials with low
errors and reducing the computational burden. However, in the
case of HR monitoring in the presence of head and/or torso
movements, an ROI tracking every frame should be executed,
as also reported in other studies [37], [50]. The results obtained
under changing velocity thresholds during head and torso
movements in terms of MAE and LOAs are comparable with
other studies, in which an average value of HR was estimated
during lateral movements or head movements and/or natural
movements, such as head rotation, blinking, and speaking
(LOAs of ±3.07 bpm in [51], MAE of 5.45 bpm in [31], LOAs
of ±2.45 bpm in [32]). However, unlike the reported studies,
our work provides continuous monitoring of HR even in
dynamic trials (LOAs of ±3.92 bpm during torso movements
and LOAs of ±15.45 bpm during head movements) when
setting a velocity threshold of 400 pixel/s.

B. Dataset in Gym Environment
To the best of our knowledge, there are few studies con-

cerning the estimation of fR during physical activity, thus
it is difficult to have a comparison with other research.
However, regarding HR estimation there are various research
articles that explore the potentiality of estimating HR during
physical activity [52], [53], [54]. Comparing our results in
the estimation of HR in terms of MAE, our results are
in line with those obtained in [54], in which an MAE of
∼2 bpm was achieved in the estimation of average HR
during 3 min of physical activity. However, to the best of
our knowledge, none of the studies available in the literature
have done a quantitative analysis of cardiac and respiratory
unrelated movements based on the velocity of the pixel of
the nose’s landmark during a physical exercise to obtain
continuous monitoring of cardiorespiratory parameters.

VI. CONCLUSION

In this article, promising results are obtained for the moni-
toring of cardiorespiratory parameters in both motionless and
dynamic conditions and during physical activity. A single
digital camera was used to record videos and a novel approach
that considers the velocity of the performed movements is
presented, trying to provide a framework for the continuous
estimation of fR and HR during both static and dynamic activ-
ities by optimizing the ROI tracking duration under different
velocity of facial movements. Results demonstrated that a con-
tinuous estimation of fR and HR can be performed by setting
a velocity threshold of 400 pixel/s both in the laboratory and
gym environment, with MAE below 3.42 breaths·min−1 for
fR when performing ROI tracking between Mode 1 s and
Mode 20 s and MAE < 5 bpm for HR estimation in all
the tested modality of video analysis per all the motionless
trials. In dynamic trials (i.e., head and torso movements) a
continuous estimation of fR can be performed with a MAE <

5.03 breaths·min−1 in all tested modalities of video analysis,

whereas during cycling on a cycle ergometer fR can be
estimated continuously with a MAE below 4.57 breaths·min−1

when using the fixed ROI modality under the assumption that
there are no considerable motions. Continuous estimation of
HR can be performed with an MAE below 6.10 bpm when
using Mode 1 in all the dynamic trials, with a run processing
time of about 65 min. However, the other modalities of video
analysis can be used to reduce the run processing time to
20 min, but higher values of MAE are achieved. One limitation
of the study is related to the non-inclusion of subjects with
different skin colors in the experimental trials, which will be
further investigated. In addition, future investigations will be
devoted to the improvement of the proposed motion-robust
framework, performing tests on a larger population of different
ages including the elderly and children, and in other scenarios
(e.g., during sports activities, in clinical scenarios, or in home-
monitoring).
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