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Automatic Classification of
Frequency-Modulated Radar Waveforms

Under Multipath Conditions
Hubert Milczarek , Igor Djurović , Senior Member, IEEE, Czesław Leśnik , and Jacek Jakubowski

Abstract—Techniques for automatic modulation classi-
fication (AMC) of radar signals are crucial for spectrum
sensing, passive bistatic radars, and electronic intelligence
(ELINT). Most of the existing AMC algorithms were evaluated
using solely synthetic data. Meanwhile, signals intercepted
in real-life scenarios are extra distorted due to the multipath
propagation. This article presents the novel, pattern recog-
nition AMC method for frequency-modulated radar signals,
with improved resistance to noise and multipath. This has
been achieved by a multistage feature selection process,
involving over a dozen of popular radar signal metrics. Based
on the feature selection results, the two advanced wave-
form features were utilized in the designed algorithm, i.e.,
quasi-maximum likelihood (QML) instantaneous frequency
(IF) estimate and fractional Fourier transform (FrFT) profile.
The proposed AMC method has been evaluated using both
synthetic and real data. The obtained results show that pro-
posed classification framework achieves an overall accuracy
of 93.6% for a set of real-life signals acquisitions, corrupted
both by noise and multipath influence.

Index Terms— Automatic modulation classification (AMC), automatic modulation recognition (AMR), electronic intelli-
gence (ELINT), machine learning, modulation recognition, multipath, radar signal.

I. INTRODUCTION

ALGORITHMS for distinguishing unknown, intrapulse
modulation embedded in the intercepted radar signals

have been intensively developed over the last two decades.
Such techniques are known in literature as automatic modula-
tion recognition/classification (AMR/AMC). They are useful
in multiple civil and military applications, including spectrum
monitoring, passive bistatic radars, electronic support (ES),
electronic intelligence (ELINT), and radar warning receivers
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(RWRs). For example, in ELINT/ES systems, prior modulation
recognition facilitates deinterleaving of pulse trains originating
from different emitters and recognition of the specific type
of radar among numerous existing types. During the pulse
technical analysis, some of the radar capabilities may also be
inferred on the grounds of applied waveform.

The extensive research of AMC methods was initiated in
early 2000s [1]. The breakthrough was provided with the work
of Lundén and Koivunen [2], where the first comprehensive
classification system, suitable for most widely used radar
waveforms, was proposed. Subsequent studies were aimed to
find more effective feature extraction methods, e.g., Hough
transform [3], morphological operations [4], or Fourier syn-
chrosqueezed transform [5]. Numerous different classifiers
were also examined, including fuzzy c-means [6], hierarchical
decision trees [7], and artificial neural networks [8], [9].
Currently, the prevailing trend in the development of the
AMC is to utilize latest deep-learning techniques, i.e., using
the image related to the time–frequency representation (TFR)
of the signal as a feature that supplies convolutional neural
network (CNN) classifier [10], [11], [12], [13], [14], [15].
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In fact, the vast majority of the existing AMC algorithms
are pattern recognition machine learning methods with dif-
ferent complexities of feature extraction and classifier stages.
These algorithms proved to be quite effective for noise-buried
synthetic signals, yet they have several drawbacks in common.

1) They have not been validated using real-life signals.
2) Usually, it is assumed that the signal is corrupted by

the additive white Gaussian noise (AWGN) only. The
primary goal, consequently, is to design the algorithm,
which will remain accurate for the lowest possi-
ble signal-to-noise ratio (SNR). Meanwhile, in classic
ELINT scenarios, received signals are easily distinguish-
able from the noise. On the other hand, the multipath
propagation—phenomenon that may introduce severe
distortions in the intercepted signal—has been scarcely
noticed so far.

3) Many complex signal processing methods, such as
time–frequency distributions, have been already applied
in AMC. However, ELINT algorithms should be fit
for real-time execution, what is barely considered.
For instance, few hardware AMC implementations
reported [16], [17], [18], had to utilize simple features
extracted from instantaneous signal properties (ISPs) in
order to limit computational burden.

This article presents new AMC algorithm, which solves the
aforementioned problems. Instead of customary application of
some arbitrarily chosen features, we compared a large set
of candidate features and examined them in the aspect of
tolerance to noise and multipath distortions. This allowed to
design straightforward, yet accurate classification algorithm.

It should be pointed that few other attempts to mitigate
the multipath outcomes has been already made both in the
field of radar and communications signal processing, e.g.,
channel equalization [15], [19] or direct signal extraction [20].
However, we assumed that thorough feature selection will be
sufficient to avoid further preprocessing.

Our current research is limited to two radar modula-
tions: presumably, the most common [21] linear frequency
modulation (LFM) and more advanced nonlinear frequency
modulation (NLFM) with a few of its existing variants. Our
interest in NLFM modulation stems from its increasing popu-
larity [22]. In contrast to plain chirp, NLFM waveforms do not
require weighting and thus do not induce mismatched filtering.
Furthermore, unlike phase shift keying (PSK), NLFM has not
been regularly considered in AMC so far.

The remainder of this article is outlined as follows. First,
a recognition system and utilized waveforms are introduced
in Section II. Then, Section III explains the multipath prop-
agation model used throughout research. Next, Section IV
gives a set of ten signal features under consideration, including
time, time–frequency, and spectral representations of a signal
typical for radar AMC. Afterward, Section V describes a three-
stage feature selection process. Section VI presents the utilized
naïve Bayes (NB) classifier with its decision rule. Next, the
designed AMC algorithm is verified using simulation and real-
life signals, and the results are given in Section VII. Finally,
this article is concluded in Section VIII.

Fig. 1. Diagram of the considered waveform recognition system.

TABLE I
CONSIDERED RADAR WAVEFORMS

II. SYSTEM AND WAVEFORMS

In this section, we introduce the requirements for designed
AMC algorithm, present its role within the recognition sys-
tem, and define five radar waveforms considered within the
research.

A. Recognition System
The typical waveform classification system comprises three

major parts, as shown in Fig. 1. The front-end receiver inter-
cepts the high-frequency radar signal xRF(t), where t is
the continuous-time variable, and then estimates its carrier
frequency. Next, during complex downconversion, carrier is
removed and signal is sampled at fs = 1/Ts. Thereafter, signal
is preprocessed in order to isolate respective pulses, so that
time of arrival (TOA) and pulsewidth (PW) of each pulse
are estimated—this if often done using adaptive thresholding
methods. Finally, we can assume that we deal with consecutive
N samples of a complex signal x(n), which is a single radar
pulse s(n), transmitted over AWGN channel, i.e.,

x (n) = s (n) + ε (n) = a (n) exp [jφ (n)] + ε (n) (1)

where n denotes the sample index, a(n) is the instantaneous
amplitude, and φ(n) stands for instantaneous phase (IP). The
noise component ε(n) has the variance of σ2

ε and the SNR
is defined as 10log(Ps/σ2

ε), where Ps represents the signal’s
average power.

The signal x(n) is fed into a feature extractor and then
classifier, which jointly constitutes the AMC algorithm. This
prerequisites one-time feature selection and classifier train-
ing, whereby both are done offline. At the output, the
recognition system yields the information that x(n) embeds
one of the known modulations in this research, NLFM
or LFM.
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Fig. 2. Geometry of multipath propagation with direct path signal (red)
and its detoured copies (blue).

B. Considered Waveforms
In previous AMC studies which recognized NLFM as a

separate class, e.g., [16], [23], only a single nonlinearity model
has been considered. Meanwhile, no specific form of this
waveform dominates. For this reason, in order to achieve
proper generalization by the designed algorithm, during the
research, we applied four different NLFM models, derived
from the most popular synthesis methods reviewed in [22].
These waveforms are gathered in Table I, where f(t) =
φ′(t)/2π signifies instantaneous frequency (IF), η denotes the
nonlinearity factor [24], and PSL stands for peak sidelobes
level.

All waveforms above have f(t) given by monotonic and
odd function. This complies with the majority of NLFM
synthesis algorithms [24], [29], [30]. Already existing AMCs
did not account for this aspect during NLFM modeling. This
might result from a gap between radar and reconnaissance
communities.

It should be noted that in case of the NLFM, the dis-
crepancy between frequency deviation δF and bandwidth B
may be substantial. To prevent notion ambiguities, we adopted
energetic definition of bandwidth using in-bound energy ratio
(IBER) defined in [31] and scaled IF appropriately [22] to
reach desired IBER = 0.9. Furthermore, to account for finite
rise and fall time of a pulse, x(n) was weighted by discrete
Tukey window to shape both slopes to 250 ns length.

III. MULTIPATH MODEL

In practice, the academic assumption that AWGN is the
one factor which impairs the reception generally does not
hold true. It should also be accounted that signal is scattering
from different objects along its path, e.g., buildings, foliage,
or ground. In turn, the multicomponent signal induced in the
antenna is the product of the desired direct path signal and
unwanted, delayed rays as depicted in Fig. 2. The multipath
distortions in question have been carefully examined in a field
of wireless communications and global navigation satellite
systems (GNSS). The corresponding studies for electronic
warfare were limited until the monograph [32]. Recently,
Kong et al. [14], [15] introduced the multipath fading in a
context of radar AMCs, giving momentum to this problem.

In the following, we present our multipath channel model
utilized throughout feature selection and next in simulation

Fig. 3. Pulse overlap due to multipath scattering.

experiments. Let us recall that the compound signal is the
incoherent sum of s(n) and its R delayed replicas. Then, (1)
can be rewritten in continuous time domain as

x (t) = a(t) exp[jφ(t)]︸ ︷︷ ︸
direct path signal

+ ε(t)︸︷︷︸
AWGN

+
R∑

r=1

ξrζra(t− δtr) exp{j[φ(t− δtr) + δφr]}︸ ︷︷ ︸
reflected component

(2)

where ξ signifies reflection coefficient, ζ represents amplitude
attenuation factor, δt denotes time lag, and δφ is phase offset,
whereas all parameters are specific for individual reflection.
The underlying problem is to estimate these quantities. In com-
munications, it is common to describe fading channel with
its impulse response or power delay profile (PDP), whereby
PDP can be determined in field measurements. Analogical
characteristics for radar are not publicly available. Hence,
we adopted qualitative approach and predetermined certain
distribution for each parameter based on [24], [32], and [33].

The reflection coefficient ξ describes attenuation level at
the reflection surface and depends on the grazing angle,
admittance of the reflecting medium, and polarization of the
incident signal [32], [34]. Since no geometrical dependencies
are modeled, it was assumed that the coefficient takes values
from the uniform distribution ξ ∼ U(0, 1).

Next, ζ provides amplitude scaling resulting from path loss,
which is related to power attenuation as Patt = 20log(ζ) [33].
The free-space path loss (FSPL) may be estimated using the
formula [35]

FSPLdB = 32.4 + 20log10 (fc) + 20log10 (Dkm) (3)

where fc denotes the carrier frequency expressed in MHz and
Dkm is the distance from the transmitter, given in kilometers.
One can find that for a typical microwave band used in
radar and a distance of several dozens kilometers, FSPL
function is locally linear. Given that, we performed simple
linear regression on experimental PDP from [36], obtaining
the following power attenuation function:

Patt(∆) = −0.03∆ (4)

where ∆ = cδt denotes detour and c is the speed of light.
It can be inferred that multipath inference arises when time

delay between direct path and reflected pulse δt < T . This
effect is mostly visible by deformation of the pulse envelope,
as illustrated in Fig. 3.

Based on [33], it has been supposed that ∆ is governed by
gamma distribution with shape kΓ = 2.6 and scale θΓ = 129,
as depicted in Fig. 4.
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Fig. 4. Statistical distribution of the detour ∆ related to time lag δt.

The model assumes that the phase shift of the baseband
signal x(t) is distributed according to δφ ∼ U(0, 2π), as prop-
agation delay is usually many times higher comparing to the
carrier signal period. Finally, the number of paths R constitutes
simulation parameter.

IV. FEATURE EXTRACTION

In this section, a set of considered features are presented.
During this study, we examined many more features, including
higher order moments and cumulants, Rényi entropy, and TFR
variance. Nonetheless, in order to keep the article concise,
we report only those features that were found informative
enough after the initial selection. The section covers five
feature categories specific to radar AMC. First, the features
based on instantaneous signal properties are discussed. Next,
a single feature based on the moment of the complex envelope
is given. Then, the features derived from time–frequency
distributions are proposed. After that, the features based on
power spectral density (PSD) of a signal are described. Finally,
new feature based on fractional Fourier transform (FrFT) is
introduced. The ith feature is denoted as γi.

A. Instantaneous Signal Properties
The features derived from instantaneous amplitude, fre-

quency, and phase are frequently applied for AMC due to
ease of their implementation. They were made popular by
Azzous and Nandi [37] for communication signals recognition.
In this research, we utilized IP and IF extracted using com-
mon phase differentiation methods, but also more advanced
quasi-maximum likelihood (QML) algorithm. Instantaneous
amplitude was omitted, since it is indiscriminative for
LFM/NLFM pair.

1) ISP Derived From the Complex Envelope: The IP of s(n)
may be estimated as

φx (n) = FU

{
arctan

[
q(n)
i(n)

]}
= φ̂ (n) (5)

where i(n) and q(n) denotes the in-phase and quadrature
components of the recognized signal x(n), respectively, •̂
signifies the estimate of the •, and FU is the phase unwrapping
function. The first feature is the standard deviation of the IP,
which is defined as

γ1 =

√√√√ 1
N − 1

[
N∑

n=1

φ̂2 (n)

]
−

[
1

N − 1

N∑
n=1

φ̂ (n)

]2

. (6)

IF may be easily derived using a simple backward finite
difference (BFD) estimator of a form

f̂ (n) =
1
2π

[
φ̂ (n)− φ̂ (n− 1)

Ts

]
. (7)

Similar to (6), the standard deviation of the IF has been
considered as the next feature, such that

γ2 =
1

δF̂

√√√√ 1
N − 1

[
N∑

n=1

f2
Z (n)

]
−

[
1

N − 1

N∑
n=1

fZ (n)

]2

(8)

with the difference that zero-centered version of the IF esti-
mate is utilized to offset carrier frequency estimation errors,
i.e.,

fZ (n) = f̂(n)− 1
N

N∑
n=1

f̂(n) (9)

and scaling by the estimate of the frequency deviation δF̂ =
max[fZ(n)]−min[fZ(n)] is applied to achieve invariance of
signal bandwidth.

BFD-based IF estimates suffer from their high variance.
Hence, γ3 feature is analogous to (8) albeit employs Kay’s
IF estimator with reduced variance [38]

f̂ (n) =
1
2π

Nk/2∑
m=−Nk/2

w (m)
[
φ̂ (n + 1 + m)− φ̂ (n + m)

Ts

]
(10)

where Nk/2+1 ≤ n ≤ N −Nk/2− 1 and w(m) denotes the
window function of a length Nk = υ− 1, which is defined as

w (m) =
1.5υ

υ2 − 1

1−

[
m−

(
υ
2 − 1

)
υ
2

]2
. (11)

After the initial experiments, υ was set to 63. Finite difference
IF estimates of pulse radar signals are generally unreliable
close to edges [24]. For this reason, features have been
calculated after omitting 7% and 10% of the boundary samples
for γ2 and γ3, respectively.

2) IF Estimated by the QML Algorithm: In recent years,
a number of more precise IF estimation methods have been
developed in a field of time–frequency signal processing [39].
It can be observed that the NLFM can be accurately modeled
as the polynomial-phase signal (PPS) [9], [30], [40]. This
enables the application of the QML IF estimation method [41]
tailored for the PPS class. In order to limit the computational
burden, we skipped O’Shea refinement stage, so the QML
method has been executed as follows.

It is assumed that s(t) is a PPS of a form

s (t) = Aejφ(t) = Aexp

(
j

P∑
i=0

ait
i

)
(12)

where A denotes the constant amplitude, t ∈ [−T/2, T/2],
and P is a degree of polynomial with the coefficients {ai|i ∈
[0, P ]}. In this research, we adopted the 12th degree PPS
model [24], [31]. The IF of s(t) may be represented as

f (t) =
1
2π

P∑
i=1

iait
i−1. (13)
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First, a series of discrete short-time Fourier transforms
(STFTs) of x(n) using windows wh(m) of a length h from
set H are obtained

ρh
st (n, k) = DFT [wh (m) x (n + m)] (14)

where DFT signifies discrete Fourier transform, m denotes
discrete lag, k is the discrete frequency index, wh(m) = 1 for
|m| < h/2, and wh(m) = 0 otherwise. During this study,
the windows defined by {h ∈ H : h = 2i ∧ h ≤ N}, i ∈ N
were utilized. Next, IF estimates corresponding to consecutive
STFTs are extracted from the ridge of the transform, i.e.,

f̂h (n) = arg max
k

∣∣ρh
st (n, k)

∣∣ . (15)

Then, PPS coefficients âh = [âh
1 , . . . , âh

12]
T are com-

puted for each f̂h(n) by means of polynomial fitting. Since
f(n) is normally odd function, it has been accounted that
{â3, â5 . . . , â11} = 0, s.t.,

âh =
(
XT

hXh

)−1
XT

h yh (16)

where yh, Nh, and Xh are defined in (17), at the bottom of
the page.

The final set of estimated PPS coefficients âf =
[â1, â2, â4, . . . , â12]

T is the one which maximizes QML crite-
rion of the form

âf = arg max
âh

|J(h)| (18)

J(h) =

∣∣∣∣∣
N∑

n=1

x (n) exp

[
−j

P∑
i=1

âh
i (nTs)

i

]∣∣∣∣∣ . (19)

Finally, the IF of x(n) may be reconstructed from âf using
(13). The γ4 feature derived using the QML method is defined
analogously to (8).

B. Moment of the Complex Envelope
Moments and cumulants of the complex envelope char-

acterize distribution of a signal constellation. Hence, they
are particularly useful for a recognition of phase-modulated
waveforms. Yet, these metrics proved to be relevant also for
modulations other than PSK [8].

The pth-order mixed moment of the complex random pro-
cess with zero mean is given by [42]

Mpq(x) = E
[
x (n)p−q

x∗(n)q
]

(20)

where E denotes the excepted value, ∗ signifies the complex
conjugate, and q is an integer smaller than p/2. Typically, the

above quantity is estimated using the formula [2], [8]

M̂pq (x) =

∣∣∣∣∣ 1
N

N∑
n=1

x (n)p−q
x∗ (n)q

∣∣∣∣∣ . (21)

After the initial simulations, M10 estimator that maximized
interclass separation was chosen as γ5 feature.

C. Features Derived From TFR
Among many existing time–frequency decompositions, the

Wigner–Ville distribution (WVD) and the Choi–Williams dis-
tribution (CWD) are most prevalent in radar AMC. The
continuous form of the WVD is given by

ρwv (t, f) =
∫ ∞

−∞
s
(
t +

τ

2

)
s∗
(
t− τ

2

)
e−j2πfτdτ (22)

where τ denotes lag in continuous time domain. WVD is
known to be optimal transformation for LFM analysis [43]
in the sense that it follows its IF, i.e.,

ρLFM
wv (t, f) = A2δ (f − µt) = |A|2 δ [f − f(t)] (23)

where δ(f) denotes the delta function. However, for higher
order PPS with P > 2, WVD reveals inner cross-terms, which
appears as artifacts in the midway of the chord linking two
arbitrary points of the IF curve, as depicted in Fig. 5. This
property provides the opportunity to distinguish between LFM
and NLFM with TFR concentration measures.

To compute the feature, first discrete WVD needs to be
derived [44]

ρwv (n, k) =
N−1∑
m=0

x (m) x∗(n−m)e−
j2πk(m−n/2)

N (24)

then, L4/L2 norm metric proposed by Jones and Parks [45]
may be employed

γ6 =
(
∥ρwv (n, k)∥4
∥ρwv (n, k)∥2

)4

=
∑N

n=1

∑K
k=1 ρ4

wv(n, k)[∑N
n=1

∑K
k=1 ρ2

wv(n, k)
]2 . (25)

To retrieve the IF of higher order or multicomponent signals,
the reduced interference distributions (RID) are preferable to
WVD. The CWD, also known as exponential distribution,
belongs to this class. As any of the Cohen class distributions,
the CWD may be represented as a radar ambiguity function
(RAF) multiplied by a kernel function

ρcw (t, f) =

∫ ∞

−∞

∫ ∞

−∞
exp

(
−ν2τ2

σ

)
︸ ︷︷ ︸

CWD kernel

As (ν, τ)

· e−j2π(−tν+fτ)dνdτ (26)

yh = 2π
[
f̂h (−Nh) , f̂h (−Nh + 1) , . . . , f̂h (Nh)

]T
, Nh = (N − h)/2

Xh =


1 −NhTs 0 (−NhTs)

3 · · · (−NhTs)
11

1 (−Nh + 1) Ts 0 [(−Nh + 1) Ts]
3

. . . [(−Nh + 1) Ts]
11

...
...

...
...

. . .
...

1 NhTs 0 (NhTs)
3 · · · (NhTs)

11

 (17)
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Fig. 5. WVD decomposition of the LFM (left) and the NLFM signal
(right).

where ν is the frequency lag, As(ν, τ) denotes the RAF
of s(t), and scaling factor σ controls the tradeoff between
interference suppression and frequency resolution. During the
research, we applied σ = 0.05, likewise to [2].

The discrete equivalent of (26) may be computed directly
from the WVD of x(n) in a straightforward manner by
executing 2-D DFT followed by 2-D inverse DFT

ρcw (n, k) = IDFT2 {DFT2 [ρwv (n, k)] · gcw (l,m)} (27)

where gcw(l,m) denotes the discrete CWD kernel and l is
the discrete frequency lag. This operation has been illustrated
in [24].

In order to extract the feature, the time-integrated CWD is
required

ρf
cw (k) =

N∑
n=1

ρcw (n, k) (28)

so that ρf
cw(k) kurtosis could be computed

γ7 =
1

Kσ4
ρ∗

K∑
k=1

[
ρf

cw (k)− ρ̄f
cw

]4
(29)

where K is a number of frequency-domain samples, and ρ̄f
cw

and σρ∗ denote the mean and standard deviation of ρf
cw(k),

respectively.

D. Spectral Features
Spectral features extracted from PSD are often employed

in AMC. PSD estimates P̂ (k) are generally derived using the
periodogram

P̂ (k) =
1
N

∣∣∣∣∣
N−1∑
n=0

x(n)e−j2πnk/N

∣∣∣∣∣
2

. (30)

Klauder et al. [46] proved that for a plain chirp signal with
time-bandwidth product (TBP) exceeding 100, more than 99%
of signal energy is confined between [−δF/2, δF/2] and its
spectrum is asymptotically rectangular. This is not the case
for the NLFM waveforms, which spectra are bell-shaped in
order to attenuate the sidelobes. Spectral flatness known from
acoustic signal processing [47] can be utilized to exploit this
property

γ8 = K

[∏K−1
k=0 P̂ (k)

]K−1

∑K−1
k=0 P̂ (k)

. (31)

Fig. 6. PSDs of a typical LFM (blue) and NLFM signal (red).

The above metric takes values from 0 for a single harmonic
to 1 for white noise. This feature is determined on a PSD
portion corresponding to bandwidth B, as shown in Fig. 6.

Periodogram estimates have relatively high variance.
To reduce the variance, alternative Welch’s method was uti-
lized for γ9. The PSD estimation was performed on eight
segments with 50% overlap and windowed using Hamming
function.

E. FrFT-Based Feature
In the past few years, the FrFT has drawn much attention

in the field of radar signal processing [20], [48], [49]. The
continuous form of the FrFT is defined by the formula [50]

Sα (u) = Fα [s (t)]

=


AF

∫ ∞

−∞
s(t)ej t2

2 cote−jutcscαdt, α ̸= niπ

s(u), α = 2niπ

s(−u), α = (2ni ± 1)π
(32)

where u signifies transform domain, α ∈ R denotes transform
angle, ni ∈ Z, and

AF =

√
1− jcotα

2π
ej u2

2 cotα. (33)

Intuitively appealing interpretation of the FrFT is the coun-
terclockwise rotation of a signal in the time–frequency plane
by an angle α. In case of the LFM waveform, there exists a
single rotation angle αopt that results in energy integration in
the transform domain [48]. This optimal angle is related to the
chirp rate µ with the equation [20]

αopt =
2
π

arctan(µ). (34)

As the result, the chirp is compressed into a single harmonic,
as shown in Fig. 7. The same does not apply to the NLFM,
where chirp rate µ(t) is a time-dependent function. Hence,
effective compression occurs for a wider span of FrFT angles.
We took advantage of this fact to distinguish between both
waveforms. The feature extraction algorithm is provided in
the following.

At first, compute a series of discrete FrFTs of the x(n)
denoted as X ′

α(r), where r stands for discrete FrFT domain.
Consecutive transforms are computed using rotation angles
from the set A′ s.t. {α ∈ A′ : α = iδc

α ∧ (0 ≤ α ≤ π)},
i ∈ N, where δc

α is the coarse search step. This αopt blind
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Fig. 7. LFM dechirping using the FrFT.

search strategy allows to circumvent the requirement for chirp
rate estimation.

Then, the maximum of magnitude of each FrFT is deter-
mined as

X ′
max(α) = max

r

∣∣X ′
α(r)

∣∣ (35)

what facilitates rough estimation of the optimal rotation angle
using the obtained coarse FrFT profile

α̂opt = arg max
α∈A′

[X ′
max(α)] . (36)

Next, by repeating the same procedure with the set A′′ s.t.
{α ∈ A′′ : α = iδf

α∧[α̂opt−(∆α/2) ≤ α ≤ α̂opt+(∆α/2)]},
where δf

α means fine search step, i ∈ N, and ∆α is search
span, new FrFT set X ′′

α(r) is obtained. Consequently, fine
FrFT profile X ′′

max(α) is derived analogically to (35), so that
αopt estimate might be improved.

Lastly, the feature is a skewness of the FrFT profile
X ′′

max(α), which is calculated as

γ10 =

∑
α∈A′′≤α̂opt

X ′′
max (α)∑

α∈A′′≥α̂opt
X ′′

max (α)
(37)

and is interpreted in Fig. 8. It should be noted that X ′′
max(α)

should be normalized by its maximum beforehand in order to
make the feature SNR-invariant.

The definition (37) applies to upchirp waveforms, whereas
the reverse is taken in case of downchirp. Following this rule,
the feature value is always confined within an interval [0, 1].
During the simulations, the parameters δc

α = 1◦, δf
α = 0.1◦,

and ∆α = 5◦ were utilized, as a compromise between
processing complexity and feature relevance.

V. FEATURE SELECTION

Once the features have been defined, the feature selection
was performed. First, it enables the use of a simpler classifier,
hence reduces the overall computational demand of the AMC
method. Second, the curse of dimensionality which is inherent
for a large set of features can be avoided due to this process.

Let us denote the original set of nΓ = 10 features as
Ξ = {γ1, γ2, . . . ,γnΞ

}. The problem of feature selection
comes down to picking such a subset Γ∗ of a minimum pos-
sible cardinality nΓ < nΞ, which maximizes some objective
function J(·), i.e.,

Γ∗ = arg max
Γ⊆Ξ

J(Γ) : |Γ∗| = nΓ. (38)

Fig. 8. Graphical representation of the FrFT profile.

The overall classification accuracy related with the subset
Γ∗ is often comparable to a hypothetical accuracy with all
available features employed. It is due to the fact that irrelevant
and redundant variables are eliminated during the selection
stage.

The feature selection was divided into two steps. During the
first two, the features were evaluated individually against noise
and multipath influence. This explorative analysis makes the
results applicable for other scholars. The terminal step utilized
minimal-redundancy-maximal-relevance (mRMR) criterion to
choose the target subset Γ∗ for the designed algorithm.

The simulations presented in Sections V–VII were carried
using a set of complex, baseband test signals buried in AWGN,
with sampling frequency fs set to 100 MHz. The necessary
code was executed in MATLAB 2021b. As a general rule,
we utilized the proprietary software, except the embedded
MATLAB functions periodogram and pwelch and the FrFT
implementation developed by Ozaktas et al. [51].

To measure the relevance of the proposed features, their
respective Fisher scores [52] were estimated. Let nc =
2 denote the total number of classes and y be the class index,
1 for LFM and 2 for NLFM. During each simulation, nx

samples of x(n) were generated. For a specific ith feature,
this yielded the dataset γi ∈ R1×nx . Consequently, the Fisher
score of this individual feature has been approximated using
the formula

F (γi) ∼= F (γi) =

∑nc

y=1 nx|y(γ̄i|y − γ̄i)
2

σ2
i

(39)

where nx|y means a number of samples belonging to the yth
class, γ̄i and σ2

i =
∑nc

y=1 nx|yσ2
i|y are the mean and standard

deviation of the ith feature estimated from γi, whereas γ̄i|y
together with σ2

i|y are the same metrics obtained for the yth
class only.

During the feature selection, nx = 1000 signal samples
were utilized to compute (39) value, divided equally between
LFM and NLFM C, i.e., nx|1 = nx|2 = 500. This applies to a
given value of test parameter (single point in the graph). Fixed
pulse duration T = 40 µs and bandwidth B = fs/40 were
applied.

First, the noise influence on respective features has been
examined. To this end, the Fisher score as a function of SNR
was determined, in the range of −10 ÷ 30 dB with 1.25 dB
steps. The results are shown in Fig. 9. Features derived from
the complex envelope are marked with black, TFR-related
features are plotted green, spectral features are represented
with blue, QML feature is plotted in yellow, and the single
FrFT feature is drawn using red color. It should be noted that
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Fig. 9. Feature score as a function of SNR.

Fig. 10. Feature score as a function of a number of multipath components.

common temporal features, especially those derived from the
IF, are highly susceptible to noise, what corroborates earlier
studies, e.g., [24], [53].

The same experiment was conducted with R being a test
parameter, so as to assess whether the features will keep their
properties in multipath channels. The results are presented in
Fig. 10. Not surprisingly, the features become less informative,
while a number of reflections increases. One can infer that
features derived from linear decompositions, such as STFT
(γ4) and FrFT, are less prone to interference in comparison to
those extracted using bilinear transforms due to cross-terms
inherent to the latter. This has also been noticed in [40]
and [48]. Interestingly, WVD feature turned out to be more
informative than one derived from CWD. This may be due
to the fact that RID class distributions reduce not only cross-
terms but also signal autoterm, so can degrade overall output
SNR [54]. It is also worth emphasizing that a couple of the
abovementioned metrics are perceived as suitable for radar
AMC, including PSD, BFD-estimated IF, or various TFRs
combined with CNN classifiers. Meanwhile, they are multipath
sensitive what may affect the overall accuracy of a designed
AMC method. Fig. 11 gives an insight into this issue, where
three different characteristics of a real-life NLFM waveform
are compared, whereas one recording is barely distorted and
the other is heavily corrupted due to the multipath effect.

During the preliminary selection, we considered the fea-
tures which the score falls below 1 as insufficiently relevant.
In other words, if F (γ) < 1 in a given range of test
parameter, the feature was eliminated. First, we assumed that
SNR ≥ 0 dB requirement is entirely sufficient for a typical
ELINT/ES scenario, so that γ1, γ2, and γ3 could be excluded.
In the case of multipath, we wanted the features to keep
the minimal Fisher score for R = 2, so γ5 together with
γ7 was further discarded. Furthermore, among two spectral
metrics γ8 and γ9, less informative γ8 was eliminated. Finally,
γ4, γ6, γ9, and γ10 remained for the last stage of feature
selection.

The already mentioned mRMR algorithm [55] was chosen
to determine the optimal subset of features. The mRMR
not only favors the subsets, which increase the interclass
separation, but also depreciates the combinations of similar
features.

During this experiment, the dataset Γ ∈ RnΓ×nx composed
of samples related to multiple features was used. For an
exemplary subset Γ = {γ4, γ6, γ9}, it will take the form

Γ =

γ4
γ6
γ9

 =

γ4,1 γ4,2 . . . γ4,nx

γ6,1 γ6,2 . . . γ6,nx

γ9,1 γ9,2 . . . γ9,nx

. (40)
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Fig. 11. Comparison of BFD-estimated IF (top), CWD (middle), and PS
(bottom) for the almost pure (left) and distorted signal (right).

Fig. 12. Results of the feature subsets evaluation using mRMR. For
clarity, only γ indices are plotted. The vertical axis is normalized to 1 bit.

The relevance of a subset was estimated from Γ as the mean
value of the mutual information I(·) between the samples
related to consecutive features γi and the dataset class label
vector Ψ = [y1 y2 · · · ynx

] ∈ {1, 2}, i.e.,

D (Γ) ∼= D (Γ, Ψ) =
1
|Γ|

∑
γi∈Γ

I (γi;Ψ). (41)

Consequently, the redundance was estimated as mean
mutual information between all existing feature pairs

T (Γ) ∼= T (Γ) =
1
|Γ|2

∑
γi,γj∈Γ

I
(
γi; γj

)
. (42)

Given both values are known for all considered Γ, the
mRMR-optimal subset if the one which maximizes the cri-
terion

Γ∗ = arg max
Γ⊆Ξ

J (Γ) = arg max
Γ⊆Ξ

[D (Γ)− T (Γ)]. (43)

In this stage, fixed SNR = 10 dB and R = 5 were applied.
To calculate the mutual information, we utilized functions

from the repositories [56], [57]. The results for all existing
subsets nΓ ≥ 2 of the remaining four features are shown in
Fig. 12. The mRMR score is marked with red, and relevance
together with redundance are plotted using dark and light gray,
respectively. It can be noted that time–frequency and spectral
metrics (WVD, PSD, and FrFT) are strongly correlated. At the
same, the only temporal, IF-based γ4 feature turned out to be
the most discriminative.

According to the results, the optimal Γ∗ = {γ4, γ9} subset
should be selected. However, γ9 prerequisites bandwidth esti-
mation, so would certainly deteriorate its relevance in practice.
For this reason, the suboptimal {γ4, γ10} combination of QML
and FrFT features was chosen as the ultimate set.

VI. WAVEFORM CLASSIFIER

Features scrutinization discovered the highly discriminative
signal representation. This, in turn, reduced the requirements
for the classifier’s performance. In order to find the proper
decision method, we synthesized sample signal set and com-
pared outcomes of five popular classifiers, namely, linear
and quadratic discriminants, support vector machine, k-nearest
neighbors, and the NB. After the 10-fold cross-validation
supervised test, it turned out that all of the above methods
exhibited near perfect accuracy, except the inferior linear
discriminant. Finally, Gaussian NB classifier was employed
in the designed AMC algorithm due to its simplicity.

Given new observation of x(n) is associated with the
true class label y and the extracted features are confined in
multivariate random variable X = (γ4, γ10)T, the classifier’s
task is to assign a such class-label y∗, which will maximize
the functional of a form [58]

y∗ = arg max
y∈{1,2}

P (y|X). (44)

Explicit solution of this problem would require the estima-
tion of the prior probability P (y|X) what is infeasible, yet its
equivalent form may be derived using the Bayes theorem

P (y |X) =
P (X | y) P (y)

P (X)
=

P (γ4, γ10 | y) P (y)
P (γ4, γ10)

(45)

where P (X | y) is posterior and P (y) represents likelihood.
The denominator in the above equation stays constant

regardless of considered y, hence can be discarded. Further-
more, the NB classifier naively assumes that all features make
equal and independent contribution to the result. Under these
two conditions, the above problem can be further simplified
to

P (y |X) ∝ P (y)
nΓ∏
i=1

P (γi | y) = P (y) P (γ4 | y) P (γ10 | y)

(46)

where ∝ signifies proportionality.
It can be noticed that if any of the conditional probabilities

is close to zero, the arithmetic underflow may occur. In order
to prevent this, the above formula is usually computed in log
space

P (y |X) ∝ ln [P (y)] +
nΓ∑
i=1

ln [P (γi | y)]. (47)
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Fig. 13. Distribution of training samples and the NB decision rule.

The remaining problem is to estimate the conditional prob-
abilities. Gaussian NB, as the name suggests, assumes that
features follow the normal distribution, i.e.,

P (γi | y) =
1

σi|y
√

2π
exp

[
−
(
γi − γ̄i|y

)2
2σ2

i|y

]
. (48)

It can be deduced that NB supervised learning comes down
to determine the parameters, which governs (48) distribution.
This can be achieved using the training dataset along with
sample mean and sample standard deviation estimators.

For this purpose, we synthesized nx = 10 000 training
samples with nx|1 = 5000 and nx|2 = 5000, whereas the
latter class was divided equally between NLFM A-D. Please
note that in such case, P (y = 1) = P (y = 2), so that prior
probability in (47) might be omitted. The remaining parame-
ters of training dataset were as follows: SNR ∼ U(0, 20) dB
and TBP ∼ U(50, 500) with B governed by U(fs/80,fs/8)
and T bounded between [5 µs, 100 µs] at once. These values
are typical of real-life reconnaissance scenarios. Finally, R =
0 was set during the training to avoid possible data corruption
arising from impreciseness of multipath model (let us recall
that multipath presence has been already accounted during the
feature selection stage). The SNR, TBP, pulse duration, and
bandwidths were modeled as random variables so as to reflect
the fact that signals emitted by the noncooperative radars
normally have unknown and varying parameters.

The scatter diagram representing sample dataset is depicted
in Fig. 13. NLFM and LFM samples are plotted using
green and red color, respectively. Black dashed line indicates
obtained decision boundary. The samples related to respective
NLFM waveforms are marked using various shapes.

VII. RESULTS AND DISCUSSION

In order to evaluate the algorithm, we applied two-pronged
approach. First, classic quantitative research using software-
generated signals was conducted. This was followed by the
experiment using real-life signals. The latter part acts as proof
of concept, demonstrating that a properly designed AMC
method is able to cope with multipath-distorted input signals.

For the sake of comparison, we modeled a part of real-time
AMC method by Iglesias et al., tailored to field-programmable
gate arrays (FPGAs). The NLFM/LFM pair is discriminated
therein using the mean squared error between unwrapped,
BFD-estimated IP and its least squares quadratic fitting.
We did not modeled subblock processing, treating all x(n)
samples as a whole. The decision threshold thLFM =
0.4906 was determined using training dataset with the same

Fig. 14. Classification accuracy as a function of SNR.

TABLE II
SNR CONFUSION MATRIX

parameters as provided in Section VI, with the except that
SNR followed U(10, 20) dB to preserve BFD estimates from
possible degradation. An interested reader can find necessary
implementation details in [16].

The results are presented in the following using accuracy
metric and confusion matrices. The accuracy is defined herein
as

Accuracy =
c1
1 + c2

2

c1
1 + c2

1 + c1
2 + c2

2

(49)

where cŷ
y denotes a total number of samples belonging to the

yth class, which were assigned to the ŷth class.

A. Simulation Results
This subsection shows the accuracy curves in a function

of SNR and R. Single datapoint was computed using nx =
2000 test samples, divided equally between LFM and NLFM
A-D, i.e., nx|1 = nx|2 = 1000. Again, TBP followed
U(50, 500) distribution with B ∼ U(fs/80,fs/8) and T
bounded between [5 µs, 100 µs] at once.

Fig. 14 presents the accuracy of two considered algorithms
as the SNR function, calculated with 1.25 dB steps and
R = 0. Confusion matrix related to this experiment is given
in Table II.

Please note that if a decision error is biased toward one
class given equally distributed test data, the accuracy will never
drop below 50%, even though an algorithm completely loses
its discriminative properties.

Perhaps not surprisingly, the proposed method exhibits
better noise resilience with 18-dB improvement when com-
pared to ISP-based Iglesias method. This is obviously due to
applying more complex features, but more importantly, the
maximum accuracy of our method remains close to 100% for
high SNR values, performing 5% better with respect to the
ISP algorithm.
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TABLE III
MULTIPATH CONFUSION MATRIX

Fig. 15. Classification accuracy as a function of multipath reflections.

Given the above results, next experiment was conducted
with SNR confined between U(15, 25) dB so as to assure a fair
comparison. In order to assess the multipath robustness, this
time the accuracy was calculated as a function of R ∈ [0, 35]
using the multipath model introduced in Section III. The
results are given in Fig. 15 and Table III.

It is worth reminding that the proposed multipath model is
not based on empirically determined channel parameters. As a
consequence, the obtained results should be rather interpreted
qualitatively. Nonetheless, it is clear that our algorithm is less
prone to multipath and shows a potential to maintain stability
in unfavorable propagation environments. This was verified in
the next stage of research.

B. Results on Real-Life Signals Set
In the final step of the research, we did a measurement

campaign and acquired signals originating from five different
types of noncooperative, land-based pulse radars. This set of
sensors included long/medium range surveillance and ATC
radars, which utilized L and S frequency bands. Three of
the emitters employed unknown NLFM waveform and the
remaining two utilized linear chirp. Signals were intercepted
from the ground with minor, natural and artificial obstacles
present along the propagation path. This obviously introduced
multipath components to received composite signal.

The data have been recorded using USRP-2901 software
defined radio with omnidirectional antenna, controlled with
LabView 2016. Baseband sampling frequency was set to
7.7 MHz. Each time after the data collection has been finished,
samples were stored on disk drive for offline processing using
MATLAB 2021b.

First, the necessary preprocessing was performed, starting
with increasing the sampling rate with interpolation by factor
13. This adjusted fs to ca. 100 MHz—the value applied
during simulation research, so that the same software could
be used. Next, pulse detection was required. This was done

Fig. 16. Recorded signals samples in time domain.

TABLE IV
CONFUSION MATRIX FOR REAL-LIFE SIGNALS SET

visually by manually marking the rising and falling edges of
consecutive pulses. It clearly introduced extra TOA and PW
estimation errors, what likely impeded correct classification.
For each radar, a total of 100 pulses originating from antenna
main lobe were selected, yielding the whole dataset consisting
of 500 pulses. The essential processing consisted of running
AMC algorithm with accordance to Sections IV and VI.

Fig. 16 depicts four instances of recorded pulses. This
exemplifies how prominent the multipath distortions could be.
The instantaneous amplitude together with real and imaginary
part of x(n) is plotted in gray, blue, and red, respectively.

Maximum, minimum, and median value of SNR for whole
recorded dataset equaled −0.7, 53.2, and 21.1 dB, respectively,
whereby SNR was estimated using the formula SNR ∼=
10 log10(P̂s/σ̂2

ε) with

P̂s =
1
N

N∑
n=1

|x(n)|2 − σ̂2
ε (50)

and the average noise power σ̂2
ε approximated as the mean

squared value of 3N consecutive noise samples adjacent to
the pulse. The confusion matrix estimated for the dataset is
shown in Table IV.

Finally, the overall classification accuracy totaled 65.0% for
Iglesias et al. method and 93.6% in case of our algorithm.

VIII. CONCLUSION

This concise introduced the novel, pattern recognition AMC
algorithm for frequency-modulated radar waveforms. Unlike
the existing methods, the algorithm is able to recognize
NLFM signal with generalized frequency modulation law,
so classification between LFM and NLFM depends not on
the f(t) form but solely on the presence of nonlinear IF
components. Designed method was successfully verified using
real-life signals. The fact that both the QML IF estimator [59]
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and FrFT transform [49] have been already realized on FPGA
makes the potential to run the proposed method in real-time
systems.

We believe that more attention should be given to multipath
propagation in radar AMC. While we acknowledge that the
proposed phenomenon model may not be sufficient, it could
still prove useful in prospective research. The alternative
models of a multipath fading, such as Rician channel utilized
in [15], should also be considered. It is worth emphasizing
that currently celebrated CNN classifiers might be prone to
multipath interference, depending on the class of applied TFR.

The obvious limitation of the algorithm is limited number of
recognized waveforms. For further studies, we believe that it is
particularly important to investigate modern, yet currently not
recognizable low probability of intercept radar modulations,
such as polyphase-coded FM (PCFM).
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