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Abstract—The growth of Artificial Intelligence (AI) and the
Internet of Things (IoT) sensors has given rise to a syn-
ergistic paradigm known as AIoT, wherein AI functions as
the decision-maker and sensors collect information. How-
ever, a substantial proportion of AIoT rely on cloud-based
AI, which process wirelessly transmitted raw data, increas-
ing power consumption and reducing battery life at sensor
nodes. Edge-AI has emerged as a promising alternative,
implementing AI directly on sensor nodes, eliminating the
need of raw data transmission. Despite its potential, there is
a scarcity of hardware architectures optimized for resource-
constrained platforms, such as field programmable gate
arrays (FPGAs), particularly for low-frequency sensors. This
work presents a shared-scale integer-only recurrent neural
network (RNN) implemented on a Lattice ICE40UP5K FPGA
using a resource-minimized time and layer-multiplexed (TLM)
hardware architecture. This architecture adopts real-time pro-
cessing, setting clock frequency to complete a single RNN timestep preceding the next sensor sample, reducing power
consumption significantly. Measurements on this FPGA implementing our proposed architecture applied to a pretrained
RNN on cow behavior show a power consumption of 360 µW at a clock frequency of 146 kHz and negligible accuracy loss
at 8-bit bitwidth. This finding suggests that our methods lead to the most accurate implementation of animal behavior
estimation with a power consumption below 500 µW on an FPGA. The implementation in Systemverilog and Python code
is publicly available, enabling adaptation of the RNN for various tasks involving low-frequency sensors on resource-
constrained FPGAs, thereby contributing to the further advancement and democratization of Edge-AI solutions.

Index Terms— Artificial intelligence (AI), edge-AI, field programmable gate array (FPGA), Internet of Things (IoT),
machine learning, precision livestock farming (PLF), quantization, recurrent neural network (RNN).

I. INTRODUCTION

THE advent of Artificial Intelligence (AI) has enabled
increasingly complex tasks, such as 3-D protein structure

estimation and plasma control in nuclear fusion reactors [1],
[2]. Adjoining this development, the Internet of Things (IoT),
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utilizing microcontrollers and field programmable gate arrays
(FPGAs), has become a vital part of applications in live-
stock, wild-life monitoring, robotics, and manufacturing [3].
By 2025, it is estimated that 100 billion IoT devices will
generate an economic impact of 11 trillion USD [4]. Simi-
larly, the global GDP is expected to increase by 14% until
2030 from use of AI across sectors of industry [5]. This
surge in IoT and AI has led to a synergy, dubbed AIoT,
where IoT sensor nodes serve as information gatherers and AI
models as the decision maker, drawing similarities with sense
organs, the nervous system, and the brain. Cloud computing is
integral to a considerable share of AIoT implementations [6],
providing vast compute resources for implementing AI clas-
sifiers that process wirelessly transmitted sensor data that
include images, sound, temperature, acceleration, or humid-
ity [7]. However, this transmission, which may involve the
utilization of low-power wide area (LPWA) networks, incurs
considerable power consumption that increases with the num-
ber of bytes transmitted and the frequency of transmission
intervals [8].
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Edge-AI proposes to implement AI models on the sensor
node itself, leading to a key advantage in power consumption
by eliminating the necessity of raw sensor data transmis-
sion [9]. Consequently, Edge-AI substantially decreases the
size and interval of transmitted data, potentially leading to
a 1000-fold increase in battery life when utilizing LPWA
technology [10]. Furthermore, Edge-AI offers benefits when
deployed near end-users, as it enables processing and transmis-
sion of class labels in real time [11]. Despite these advantages,
several challenges hinder its widespread adoption, primarily
arising from the discrepancy between software-based models
and hardware resources required for implementation [12].
Moreover, the majority of implementations are proprietary and
rely on hardware with high design costs, such as application
specific integrated circuits (ASICs), restricting public access
from adopting novel hardware architectures for custom deploy-
ments on widely available FPGAs. FPGAs have emerged as
an alternative to ASICs due to their programmable logic and
customizable building blocks at significantly lower economic
costs [13]. In addition, FPGAs have been proposed as a means
to alleviate computing constraints at the edge and accelerate
processing, resulting in a significant speedup compared to
CPU-based platforms such as microcontrollers [14]. However,
the emphasis on maximizing processing speed offers limited
advantages for sensor node implementations since system
latency is inherently constrained by sensor frequency.

The constraint of sensor frequency can be effectively lever-
aged by recurrent neural networks (RNNs), as these networks
process data on an input-by-input basis. In other words,
unlike fully connected and convolutional neural networks that
require the entire sensor data space during inference, RNNs
repeat operations for each new sample over a set number
of timesteps. Taking into account also their ability to recog-
nize spatiotemporal patterns within generative processes [15],
RNNs seem to be particularly relevant for sensor applications.
Other than sensors, RNNs have been extensively used in
machine translation, video captioning, and actuator control,
where latency is crucial for user-friendliness [16], [17], [18],
[19]. In these applications, the primary performance metric
is system latency, which is minimized through techniques
such as parallelization, pipelining, quantization, and resource
scheduling optimization [20], [21]. However, to the best of our
knowledge, no RNN hardware architecture has been proposed
that leverages the processing scheme of RNNs to minimize
resources, and implements a real-time processing approach
with regard to sensor inputs.

In this work, we present a resource-minimized RNN hard-
ware architecture based on an extended quantization scheme
for integer-only RNNs that reduces the number of fixed-
point multiplications to one third. This architecture, referred
to as time-and layer-multiplexed (TLM) RNN, adopts a
real-time approach, enabling its implementation on heavily-
constrained, low-cost FPGAs, such as the Lattice ICE40UP5K
(Lattice Semiconductor Inc., Hillsboro OR). While the Lat-
tice ICE40UP5K FPGA serves as a primary example in
this work, other low-resource FPGAs, including the Gowin

LittleBee (Gowin Semiconductor Corp., Guangzhou Guang-
dong, CN) and Efinix Trion (Efinix, Inc., Cupertino CA), are
equally suitable for implementing the proposed architecture.
We employ the ICE40UP5K FPGA to demonstrate the
proposed architecture on three models, including a pretrained
model on a previously-proven IoT application, cow behavior
estimation [22], [23], and asses them using a measurement
setup. During our evaluation, the internal clock frequency
is adjusted within the range of 145 kHz to 12 MHz and a
corresponding substantial increase in power consumption is
observed. Based on this observation, we derive an expression
that establishes a minimum clock frequency, ensuring that the
RNN completes timestep processing just before the arrival
of the next sensor input. Applying this expression to the
implementation of the cow behavior model (model c) that
receives input from a 25 Hz accelerometer, we achieve a power
consumption of 360 µW at a clock frequency of 146 kHz. This
effectively demonstrates the applicability of our approach to
precision livestock farming (PLF) with sensors, as we present,
to the best of our knowledge, the first highly accurate (top-1
accuracy >95%) animal behavior estimation model operating
on an FPGA with a power consumption below 500 µW.

The contributions of this work are.
1) An extension to the post-training quantization scheme

of integer-only RNNs with quantization scale sharing,
reducing the number of fixed-point multiplications to
one third. (Section II)

2) The introduction of a TLM RNN hardware architecture
using a real-time approach with regard to incoming
sensor data, minimizing resources, and reducing power
consumption. (Section III)

3) Implementation of the proposed methods on a heavily-
constrained and low-cost FPGA, including power con-
sumption measurements. (Sections III and IV)

4) Open-sourcing of the code used for FPGA implementa-
tion and conversion from a Tensorflow 2.0 model [24],
[25], [26], enabling public access.

II. SHARED-SCALE INTEGER-ONLY RNN
Based on an integer post-training quantization for con-

volutional neural networks [27], [22] and [28] proposed an
approach for quantizing RNNs. We extend this quantiza-
tion scheme by introducing sharing of quantization scales.
In essence, this scheme is based on converting any real number
into an unsigned integer

r = S(q − Z) (1)

where r is a real number, q is an integer, and S and Z are the
scale and zeropoint, described by

S =
|max(M)| + |min(M)|

2qbits − 1
(2)

Z =

⌊
−min(M)

S

⌉
(3)

where M is a matrix of any size and qbits is the bit-width.
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Fig. 1. MP, TM, and TLM RNN architectures. MP signifies the most
rapid architecture with the minimum number of clock cycles required for
inference, allocating an NPU to each layer and timestep. TLM employs
a single NPU, minimizing resources while necessitating the greatest
number of clock cycles for processing.

A. Methods
Let the system equation of the simple RNN be

ht = tanh(b + Uht−1 + Wxt ) (4)

where b, U, and W are the trained bias, hidden, and input
weight matrices, respectively, and ht−1 and xt are the hidden
vector at time t − 1 and the input vector at time t [29]. Using
the methods in [22] and [28] and omitting the scale, the above
matrix terms are quantized to

U′

q = (U − ZU)(ht−1 − Zh) (5)

W′

q = (W − ZW)(xt − Zx) (6)

bq = (b − Zb) (7)

where Z i is the zeropoint and i represents the corresponding
matrix. Including the above in (4) with their respective scales
leads to

ht,q = tanh
(

1
ST

(
Sbbq + SUShU′

q + SWSxW′

q

)
+ ZT

)
(8)

where Si is the scale, i representing the corresponding matrix
and tanh is the hyperbolic tangent. ST and ZT cast the summed
up term into a lower bit representation [22], [27].

Scales are decimals, represented with floating point or fixed-
point numbers. Operations using these representations require
more logic to implement than integer-based operations [30].
We propose the sharing of these scales between matrices, and
between input-output vectors after discovering that the result-
ing model error is negligible, as matrix values are bounded
within a similar range post-training. Consequently, (8) reduces
to

ht,q = tanh(M(bq + U′

q + W′

q) + ZT) (9)

M =
SMSv

ST
(10)

SM =
|max(umax, wmax)| + |min(umin, wmin)|

2qbits − 1
(11)

Fig. 2. NPU, containing five modules, processing engine, Activation
Function and Weight, Vector, and Neuron Controllers. Expanded mod-
ules are shown in Fig. 3.

TABLE I
PARAMETERS OF MODELS USED FOR POWER MEASUREMENTS WITH

INTERNAL CLOCK FREQUENCY IN SECTION III-B (a,b,c), AND COW

BEHAVIOR PROOF OF CONCEPT IN SECTION IV (c)

Sv = max(Sx, Sh) (12)
Sb = SMSv (13)

where {u, w}{max,min} are the maximum and minimum matrix
elements of Uq and Wq, and M is a multiplicative decimal
term, reducing non-integer multiplications to one third. This
multiplication is performed with a multiply-and-shift operation

Mshift = −⌈log2(M)⌉ + (qbits − 1) (14)

Mint = ⌊M · 2Mshift⌉ (15)
M = Mint >> Mshift (16)

where qbits is the bitwidth, and Mint and Mshift are integers,
respectively. Here, >> represents a bitwise right shift operator.
The scales of xt and ht , Sx, Sh, are shared, set based on
the domain of the hyperbolic tangent, Dtanh ∈ [−2, 2]. This
method can be extended to other RNN types, long-short-term-
memory and the gated recurrent unit [31], [32].

Table I describes the RNN model parameters of three
models that are considered for FPGA implementation in
subsequent Sections. Using the proposed scheme, each layer
undergoes separate quantization, while input-output vector
quantization across the model remains constant. Additionally,
each RNN layer exhibits an equal width, N . The final RNN
layer is followed by a single feed-forward layer, mapping the
final hidden output vector at t = Ts, hTs,q to class prevalence, ŷ,
in a process referred to as many-to-one classification. Further
details regarding the model structure can be found in [22].

III. RESOURCE-MINIMIZED HARWARE ARCHITECTURE

Fig. 1 shows three RNN architectures, mass parallelized
(MP), time-multiplexed (TM), and TLM, employing a varying
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Fig. 3. Architectural overview of the NPU on FPGA at 8-bit bitwidth,
implementing model a (parameter values described in Table I). The
structure of the weight memory (ROM IP) and details of the processing
engine are shown in Figs. 5 and 6, respectively. Clock, reset, and enable
signals are omitted.

number of neuron processing units (NPUs). Fig. 2 shows this
NPU, comprising five modules that are employed to process
a single time step of the proposed RNN. Additionally, the
NPU can implement a linear layer, mapping features from
the RNN to classified labels. The MP architecture aims to
maximize throughput by implementing an NPU at each time
step and layer, resulting in the least required NPU cycles
per inference. However, this architecture demands a signifi-
cant amount of resources, rendering it unsuitable for heavily
resource-constrained FPGAs. The MP architecture is better
suited for large-scale FPGAs, such as the Xilinx Virtex (Xilinx,
Inc., San Jose CA) or Intel Stratix series (Intel Corp., Santa
Clara CA), frequently utilized in accelerators [33]. In contrast,
the TM architecture offers a scaled-down approach, reducing
the employed NPUs to the number of layers. Consequently,
the speed becomes a function of the number of time steps.
This architecture is appropriate for intermediate scenarios,
where throughput remains crucial, but the considered FPGA
for use contains moderate resource constraints. The focus
of this work is the TLM that minimizes resource usage
and allows implementation on an extremely small FPGA.
This architecture necessitates a single NPU for constructing
any RNN according to the previously discussed architectural
setting, namely, an equal RNN layer width followed by a
single linear layer. In this case, the processing speed becomes a
function of the number of time steps and layers, increasing the
number of clock cycles compared to MP and TM architectures.
However, as will be demonstrated in Section III-B, this does

Fig. 4. State Diagram of the Neuron Controller for RNN inference on
model a, described in Table I.

not pose a challenge when input data originate from sensors
with sufficiently low sampling frequency.

Within this architecture, the single NPU stores the interme-
diate recurrent hidden output vectors, ht,q for the next layer
and timestep in memory. We propose to implement the TLM
architecture with a real-time approach, i.e., the internal clock
frequency is set as a function of the architectural parameters
that influence the number of clock cycles for a single timestep
of the RNN to be completely processed by the NPU, i.e.,

fin = pcycles · fsensor (17)

where fin is the internal clock frequency, pcycles is the number
of clock cycles for processing a single timestep [(18)–(20)],
and fsensor is the sampling frequency of the sensor. This
approach leads to a clock frequency on FPGA that is min-
imized using a clock divider under the constraint that the
processing completes before the next sensor sample arrives.

A. Single NPU
The subsequent sections will present the implementation

of the TLM architecture on the Lattice ICE40UP5K FPGA,
encompassing intellectual property (IP) modules. This FPGA
is extremely compact (smallest package measures 5.38 mm2),
featuring 5280 4-bit look up tables (LUTs) and 1-bit registers,
as well as 30 Embedded Block RAMs (EBRs) consisting
of 4096 bits each at a core voltage of 1.2 V. At a typical
price <10 USD, this FPGA is an example of low-cost pro-
grammable hardware that is heavily constrained in terms of
resources. Other similar examples suitable for implementation
include the Gowin LittleBee and Effinix Trion FPGAs. The
implementation incorporates five IPs: algorithmic IPs, such
as Adders, Subtractors, and Multipliers, and random access
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Fig. 5. Memory composition of the weight and parameters of the RNN,
layer-by-layer (RNN0:3). One word in the ROM comprises a single row
of the input weight and hidden weight matrices, and the bias, leading
to (2N + 4)qbits bits per word. The final address of a layer, address
(N + 1), contains the quantization parameters, i.e., Mint, Mshift and
zeropoints Zi [(4)].

memory (RAM) and read-only memory (ROM) IPs, which
are realized using EBRs. The source code, accompanied by
a comprehensive guide for adapting the implementation to a
customized model on Lattice FPGAs and an overview of IPs to
modify in the source code for compatibility with other vendors,
can be found in [26].

Fig. 3 presents an expanded NPU featuring a system-level
overview that incorporates the FPGA, sensor peripherals,
and an external microcontroller (parameters of model a,
Table I). In this configuration, the FPGA (secondary) com-
municates with a microcontroller (primary) to receive sensor
data, xt , and transmit class predictions, ŷ, utilizing the
serial peripheral interface (SPI). The neuron controller, act-
ing as the central component of this architecture, follows a
predefined finite state machine (FSM) that distributes instruc-
tions and data to other modules using the described wires.
Sections III-A1–III-A5 provide detailed descriptions of the key
modules and their functions within the proposed architecture:
the neuron controller, weight controller, vector controller, pro-
cessing engine, and hyperbolic tangent (activation function).

1) Neuron Controller: Fig. 4 shows the state diagram of the
neuron controller. The states involve instructing the processing
engine to commence operations (OP1-3), guiding the mem-
ory and vector controller to store and load elements, and
incrementing the column, row, layer index, and time, denoted
as m, i , l, and t respectively. Initially, the neuron controller
stores incoming sensor data, xt , in registers, proceeded by an
instruction to read all quantization parameters Mint, Mshift, and

Fig. 6. Expanded diagram of the processing engine and three proposed
operations at 8-bit bitwidth, SUB_MAC (OP1), MUL_SAC (OP2), and
ADD_ACC (OP3).

Z . Following this, two distinct modes of operation are selected
with wire “mode.”

In the first mode, W(i)′
q is processed [(6)]. The controller

receives W(i,m)
q from the memory and forward it along with

x(m)
t at layer l = 0, or h(m)

t,q of the previous layer l − 1 for
l > 0 to the PE, initiating OP1. After 6 (l = 0) or 20
(l > 0) increments of m, the second mode of the RNN
commences, similarly processing U(i)′

q [(5)] using U(i,m)
q and

h(m)
t−1,q. Subsequently, OP3 and OP2 are initiated, yielding

h(i)′
t,q . This scalar is input to the hyperbolic tangent function,

mapping h(i)′
t,q 7→ h(i)

t,q. The row, i , is then incremented, and
the aforementioned steps are repeated twenty times, resulting
in the hidden output vector ht,q at layer l. This process is
repeated for all layers. Accordingly, the hidden output vector
of the previous layer is locally stored in registers, i.e., xt = ht,q
for layers l > 0.

The neuron controller then waits for the next sensor sample
to arrive and upon arrival repeats the aforementioned process
for the number of timesteps set as Ts = 50. Once 50 timesteps
have passed, the NPU acts as linear layer with a rectified linear
unit (ReLU) activation function, outputting classified vector, ŷ.

2) Weight Controller and Structure: Fig. 5 shows the mem-
ory structure, encompassing the storage of weight and
quantization parameters by means of ROM IP that allocates a
specific number of EBRs. An EBR possesses a word length
of 16 bits and a total of 256 addresses. As a result, 22 EBRs
are required to store the weights of the RNN in accordance
with the parameters outlined in Table I, given that the RNN
word length amounts to 352 bits.

The weight controller acquires information about the RNN
state from the neuron controller, determined by the layer, row,
and column indices (l, i , and m), and the selection of the
weight matrix (Uq or Wq). The address to be loaded is deter-
mined by the layer and row indices, and whether a quantization
parameter or a weight is requested. Upon receiving the 352-bit
word from the ROM IP, the weight controller picks a 32-bit
segment to return to the neuron controller. In the case of
requesting a quantization parameter, no offset is added and the
forwarded data are selected based on the index stored in the
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TABLE II
NUMBER OF 4-BIT LUTS, 1-BIT REGISTERS, AND 4-KBIT EBR AND %

OF TOTAL USED BY MODEL A, B, AND C ON THE LATTICE

ICE40UP5K FPGA

Parameter LUT (PLUT), selected with wire “par_i.” In case
of a weight, two scenarios transpire: 1) a bias weight, b(i)

q ,
is picked by taking the initial 32 bits of the 352-bit word and
transmitted to the neuron controller; and 2) an element of the
hidden or input weight matrix, U(i,m)

q or W(i,m)
q , is requested,

and the transmitted element is selected from the word based
on column index m.

3) Vector Controller: To store the hidden vectors of RNN
layers, ht,q, each containing N elements, a single EBR is
utilized. In this EBR, each address stores a single element,
h(m)

t−1,q, where m is the column index. During RNN operation,
h(m)

t−1,q is loaded for every element multiplication involving the
hidden weight matrix [(5)]. Conversely, the resulting scalar
h(i)

t,q from a single RNN cycle in (4) is stored based on row
index i .

4) Processing Engine: Fig. 6 shows the processing engine
that performs matrix multiplications by means of N vector
multiplications over row index i , leading to ht,q of layer l.
For a single vector multiplication, we propose three operations
using four 8-bit registers, namely, substract and multiply-
accumulate (SUB_MAC, OP1), multiply and shift-accumulate
(MUL_SAC, OP2), and add-accumulate (ADD_ACC, OP3).
OP1 represents the operation of substracting the zeropoint
from matrix elements and multiply-accumulating these ele-
ments over a single row, column by column. Using registers
a–b, this operation outputs an accumulated scalar, denoted as
“res.” This operation is performed twice, once per matrix, at a
total of 2N times, resulting in scalars U(i)′

q and W(i)′
q [(5) and

(6)]. Then OP3 is initiated, summing up the three intermediate
vector, b(i)

q , U(i)′
q and W(i)′

q . Finally, OP2 leads to h(i)′
t,q by means

of a shift-and-add of the result of OP3 with Mint, Mshift and
adding ZT.

5) Hyperbolic Tangent: The hyperbolic tangent is a non-
linear function, commonly implemented using piecewise
linearization or a one-to-one mapping, stored within memory
or a LUT. Here we propose to perform a 1-to-1 mapping as
the range at 8-bit bitwidth is sufficiently small, i.e., h(i)′

t,q ∈

[0, 255] 7→ h(i)
t,q ∈ [107, 149]. Consequently, the hyperbolic

tangent is implemented using a single EBR, and the address
is determined by the value of h(i)′

t,q , yielding h(i)
t,q.

B. Measurement Setup and Implementations
Fig. 7(a) shows the experimental setup utilized to assess

power consumption and validate the RNN implementation
on the Lattice ICE40UP5K FPGA, employing the Lattice
ICE40UP5K-B-EVN breakout board. The RNN I/Os, compris-
ing 4 SPI pins for the SPI are connected to the digital I/O of

Fig. 7. (a) FPGA measurement setup using Analog Discovery
2 and Lattice ICE40UP5K-B-EVN breakout board. (b) Measured power
consumption over the internal clock frequency. (c) Maximum sensor
frequency for real-time RNN operation, a function of the clock frequency
and number of clock cycles [(18)–(21)].

the Digilent Analog Discovery 2 (Digilent Inc., Pullman WA).
To verify the design, emulated sensor data are transmitted to
the FPGA via this interface from a personal computer. After
Ts transmissions of xt , the classified vector, ŷ, from the FPGA
is compared with the original Python-based model.

To determine the power consumption of the implementation,
we measure the voltage drop across a resistor connected in
series with the core FPGA voltage of 1.2 V. The voltage
measurement is initiated when an SPI message containing xt is
sent, resulting in a voltage increase due to RNN operation. The
design for the FPGA implementation is written in SystemVer-
ilog and parametrized, allowing customization of architectural
parameters, sensor frequency, and a customized RNN weights.
The code for the conversion from a TensorFlow 2.0 simple
RNN model and the design files are publicly available and
accompanied by a comprehensive guide [26].

Fig. 7(b) plots the power consumption of the FPGA imple-
mentations across a range of internal clock frequencies, fint,
from 142 kHz to 12 MHz, while Fig. 7(c) plots the maximum
supported sensor frequency. The power consumption exhibits
a near-logarithmic increase with the internal clock frequency,
spanning from 340 µW at 145 kHz (model b) to 3.81 mW
at 12 MHz (model a), with verification carried out on model
c. Table II enumerates the resources utilized by the three
models. The maximum sensor frequency is determined by
the input dimension (I ), layer width (N ), number of layers
(L), and output classes (O). We analytically determined and
verified in post-synthesis simulation the number of cycles per
timestep as

pcycles = pRNN + plin (18)

pRNN = N 2(8L − 4) + N (14L + 4I ) + I − 2L (19)
plin = O(4N + 10) + 3 (20)
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Fig. 8. Single behavior and mixed behavior classification scenarios of
cow behavior. xt, y, and ŷ describe the corresponding accelerometer
data, ground truth distribution coefficients, and estimated coefficients by
the implemented RNN on FPGA respectively.

where pcycles represents the number of clocks for the NPU to
process a single RNN timestep. Specifically, this represents the
number of cycles necessary for the NPU to be able to accept
the subsequent input vector from sensors, xt+1. The maximum
sensor sampling frequency is determined as

fsensor,max =
fin

pcycles
(21)

where fin can be any fraction of the 12 MHz oscillator on the
breakout board using a clock divider.

IV. PROOF OF CONCEPT: COW BEHAVIOR ESTIMATION
WITH A 3-D ACCELEROMETER

Utilizing the proposed TLM architecture and its implemen-
tation, we demonstrate a proof of concept by employing a
RNN trained on a publicly available cow dataset [23] for the
task of estimating cow behavior. This application is a part
of a burgeoning field known as PLF, which concentrates on
the observation, interpretation of the behavior and control of
animals [37], [38]. Other PLF examples encompass precise
control of cow feeding, fertility monitoring, and early disease
detection. These practices have been shown to decrease green-
house gas emissions and reduce antibiotic usage, suggesting
that PLF can enhance the efficiency of milk and meat pro-
duction per unit of emissions [38], [39], [40]. Decision Trees
and Support Vector Machines are among the most commonly
employed machine learning algorithms for PLF, with sensors
such as accelerometers, video, gyrometers, and GPS being
widely utilized [35], [41].

A. Implementation Results
Table I shows the architectural parameters for the cow

behavior RNN model, referred to as model c. With a layer
width of N = 13, inputs from a 3-D accelerometer at 25 Hz
and 4 output coefficients (O = 4), model c is smaller than
the RNN used for describing the architecture in Section III,

TABLE III
COMPARISON OF ANIMAL BEHAVIOR ESTIMATION STUDIES

IMPLEMENTING ALGORITHMS IN HARDWARE, INCLUDING POWER

CONSUMPTION MEASUREMENTS OR ESTIMATIONS

model a. The 4 output coefficients represent the prevalence
of 4 behaviors, i.e., eating (Eat), resting (Res), rumination
(Rum), and Moving (Mov). For comparison purposes with
other relevant works, the top-1 accuracy is utilized, taking the
behavior that has the largest coefficient in output vector ŷ.

Initially, we load the weights of the Tensorflow 2.0 model
into our Python-based implementation of the shared-scale
RNN. Utilizing sample cow behavior data, the Python model
generates a “.mem” file that replicates the model weights in
accordance with the memory composition depicted in Fig. 5.
Subsequently, we adjust the parameters of the HDL design
according to Table I, point to the created memory file, and set
the sensor frequency to 25 Hz. With these parameters and a
sensor frequency of fsensor = 25 Hz, the internal frequency is
set to fint = 146 kHz using (21).

Fig. 8 shows six cow behavior regression scenarios and
snapshots of actual camera footage. Here, xt is the corre-
sponding accelerometer data. The behavior coefficients are
represented by y and ŷ, i.e., the ground truth determined
the cow dataset and the regressed coefficients obtained from
the implemented RNN on FPGA with the setup described in
Section III-B.

Table III compares the performance of the RNN on cow
behavior with works that show hardware implementations
with the task of estimating animal behavior. Compared to
the original RNN model on Tensorflow 2 of [22], our RNN
implementation shows a minimal top-1 accuracy loss from
95.2% to 95.1%. The measured power consumption of the
implemented cow behavior model is 360 µW. Although this
is 1.66× higher than [35], the accuracy increases by 8.3%.
Compared to works that show implementations on an STMicro
(Geneva, Switzerland) and Texas Instruments (Dallas, TX)
microcontroller, our implementation consumes only 1.16% and
8.37% of reported power consumption at 31 100 µW and
4300 µW [34], [36]. In contrast, these implementations show
an accuracy higher, increase of 3.2%, and lower, drop of 5.5%
for a 3 and 5 behavior classification, respectively.
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The considerable advantage in power consumption when
using an FPGA for AI implementation is evident, as our
proposed TLM hardware architecture applied to the shared-
scale RNN can be leveraged. As a result, this proof of concept
on itself has the potential to significantly impact the field
of PLF by providing a low-power and accurate solution for
monitoring animal behavior in real-time.

V. DISCUSSION

In this work, we have made three significant contributions
to the field. First, we introduced a shared-scale, integer-only
RNN that reduces the number of fixed-point multiplications
to one third. Second, we proposed a hardware architecture
designed to minimize resource utilization for implementa-
tion and incorporated a real-time processing scheme aligned
with sensor sampling frequency, referred to as TLM. The
key advantage of this hardware architecture is its ability to
minimize the required logic for implementation while trading
off throughput. Although this is not ideal for high-throughput
applications such as machine translation and audio processing,
low-frequency sensor applications remain unaffected. This
distinction arises because, unlike machine translation where
the input sample space is available from the onset, sensor input
arrives on a sample-by-sample basis. Third, we demonstrated a
proof of concept by implementing the proposed TLM architec-
ture on a highly compact FPGA, the Lattice ICE40UP5K, for a
critical application in PLF. To the best of our knowledge, there
is no existing integer-only RNN with a resource-minimized
hardware architecture and a processing scheme tailored for
sensor applications at the edge. Consequently, we believe this
work, accompanied by the code and guide made publicly
accessible in [26], substantially advances the fields of IoT
and Edge-AI by enabling multilayer RNNs, neural networks
proven to be capable of solving various complex tasks, to be
implemented on nearly any FPGA.

The proposed RNN hardware architecture currently presents
several potential improvements that we suggest exploring.
At present, the RNN only supports layers with equivalent layer
widths. Additionally, the input vector cannot have a size that
exceeds the layer width. Adding the possibility of multiple
linear classification layers, commonly used in foundation
models, could be a valuable improvement. Furthermore, the
current RNN can only be employed in a many-to-one setup,
where the final layers hidden output vector is used by the
linear output layer for classification. Enabling many-to-many,
varying layer widths, and incorporating multiple linear output
layers may pave the way for implementing encoder–decoder
structures and natural language processing models on smaller
hardware platforms, albeit with a trade-off in processing speed.
For these applications, we believe the TM architecture would
be more advantageous in balancing speed and resource use.

In addition to architectural improvements, theoretical or
model-based enhancements and modifications can be consid-
ered. At present, the only supported type of RNN is its simplest
form. However, many applications utilize long-short term
memory or gated recurrent units. These RNN types address
the vanishing-gradient problem and maintain longer temporal
memory during training. Furthermore, recent advances have

been made in training sparse RNNs. Drawing inspiration from
the stability of signals in nature, [42] introduced a delta
mechanism that skips matrix multiplications if the differ-
ence in hidden or input vector elements between timesteps
remains below a threshold 2, referred to as Delta RNN.
In fact, the examination of accelerometer sensor data (Fig. 8)
and hidden output vector elements confirms this observation
on the task of cow behavior estimation. Accelerators on
FPGA developed with Delta RNN on GRU and LSTM have
demonstrated considerable speed-ups and high percentages of
weight sparsity for negligible accuracy loss on high-throughput
natural language processing benchmarks such as TIMIT and
Librispeech [43], [44].

VI. CONCLUSION

In light of these advancements, it is conceivable to extend
this work to include these sophisticated RNN types and
techniques, thereby unlocking greater potential for a wider
range of applications and further enhancing the efficiency
and performance of the proposed RNN architecture. The
integration of our proposed TLM architecture with these
theoretical advancements is posited as a subsequent step for
the extensive use of RNNs in IoT and resource-constrained
Edge-AI applications. Moreover, the synergy between such
theoretical and architectural advancements could bridge the
gap between resource-limited hardware and large-scale RNN
models. Surmounting this barrier would enable the execution
of complex tasks in real time, including machine translation,
control, and reinforcement learning, on low cost, widely avail-
able FPGAs, thus contributing to the democratization of AI.
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