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Abstract—Temperature sensors have been widely devel-
oped to control the course of diseases, improve haptic
feelings, and in multisensing systems to compensate for
the output of other temperature-sensitive sensors. The use
of additive manufacturing to produce resistive temperature
detectors (RTDs) with reduced dimensions and bulkiness is
attracting great interest. Among the relevant process parame-
ters and design choices, the curing process must be consid-
ered. In this work, two different commercial metallic-based
materials are cured at various temperatures to evaluate the
differences in their microscopic and macroscopic behavior.
The sensors were designed, developed, and evaluated for
their temperature coefficient of resistance (TCR) at different
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curing temperatures using a programmable climatic chamber. A scanning electron microscope (SEM) has been used
to microscopically inspect the sensing structures with respect to the different curing temperatures. The results show
insightful correlations between the macroscopic and microscopic behavior of the used inks as well as the performance
of the sensors. In particular, increasing the curing temperature decreased the room temperature resistance in all the
samples by up to 70% and increased the sensitivity by up to 95%. These findings will help propose better processes as
well as design choices for the development of printed resistive temperature sensors.

Index Terms— Aerosol jet printing (AJP), curing process evaluation, temperature sensors.

[. INTRODUCTION

VEN though temperature sensors are now widespread and
Eused in a plethora of applications, they are still objects
of vivid interest in the research community, presenting an
exponential growth in the number of published articles from
the 1980 s to the present day.

Monitoring of physiological parameters in the healthcare
sector has posed new technological challenges to minia-
turize and embed standard medical equipment in wearable
devices [1], [2]. Those mainly aim to provide systems for self-
care monitoring, remote diagnosis, sports medicine, rehabili-
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tation, and prosthetics [3], [4], [5]. In this frame of e-health,
temperature sensors acquired great relevance in order to
control the course of infective disease, illnesses, and wound
healing [6], [7], [8], [9] as well as improve the state-of-the-art
accuracy of commercial devices [10]. Moreover, in prosthetics,
the possibility to embed temperature sensors can address two
different needs: 1) it improves the haptic information that
can be collected from the environment providing accurate
feedback to the user [11] and 2) it enhances the detection
of environmental temperature as an influence factor on the
performance of other sensors, which allows compensating for
its effect [12], [13], [14], [15], [16], [17], [18].

Different kinds of temperature sensors can be found in the
literature, each with their unique capabilities and limitations.
A first class is based on semiconductors to form both pn junc-
tions and/or transistor-like structures [19]. Those devices can
also be based on organic semiconductors to achieve flexible
and biocompatible devices [20]. Thermocouples, on the other
hand, are based on the Seebeck effect and allow a precise
detection of temperature gradients, but are not suitable for
providing absolute temperatures. The use of positive/negative
coefficient thermistors is also widespread. Those devices are
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nonlinear and are usually produced by rigid and non-easily
printable materials [21]. On the other hand, resistive tem-
perature detectors (RTDs) are based on the thermoresistive
effect through which the resistance of a metal changes with
temperature due to both a change in the resistivity of the
bulk material and structural modifications. Such structural
changes in metals are found to be negligible [22]. Among
the possible different techniques that have been proposed in
the literature for the fabrication of RTDs, printed and additive
manufacturing techniques are reported. Those allow a quick
prototyping process, can be adapted to work on nonplanar/
3-D surfaces, and offer a wide range of compatible materials.
All these capabilities are promising for the development of
smart objects [23], [24]. Among the possible printed tech-
niques, aerosol jet printing (AJP) is attractive because of its
flexibility in terms of supported viscosity of the inks and its
fully digital and maskless production process, which allows
quick and economic prototyping that is ideal in the research
frame. AJP basic principles have already been described in
the literature [25]. In brief, the process is controlled by three
gas flows. An atomizer flow is used to produce a mist from
the liquid ink and to carry it toward the deposition nozzle,
where the sheath flow focuses it on the substrate to avoid
clogging events. The exhaust flow works to create a pressure
difference in the impactor that allows selecting the dimensions
of the particles suspended in the carrier flow and, thus, the
characteristics of the printed line.

It is important to note that all the printed inks are usually
composed of nanoparticles suspended in a set of solvents.
In order to ensure proper electrical conductivity, it is, thus,
important to propose a proper curing process that eliminates all
the spurious matter and connects the nanoparticles in a homo-
geneous way. Ink producers usually provide recommended
curing process parameters to achieve certain resistivity values.
On the other hand, however, no data are usually provided with
respect to the temperature coefficient of resistance (TCR) of
the material. From these considerations, the aim of this work
is to compare different curing temperatures within the curing
range proposed by the producers, correlating the microscopic
characteristics of the cured ink to the macroscopic ones
(e.g., room temperature resistance and TCR) of the final device
to improve the design process of fully printed RTDs.

Il. MATERIALS AND METHODS

A. Sensor Design

The proposed study aims at evaluating the effect of curing
or sintering temperatures on the conductive materials used in
ink-based printed electronics. To avoid observing unwanted
effects, such as resistance variation due to bending and
stretching, a rigid material was selected as the substrate. The
selected material is AlO3 alumina because of its mechanical
sturdiness and great ability to withstand high temperatures up
to 1500 °C. For the functional materials, two well-known
and widely used commercial nanoparticle-based inks were
selected: silver (SmartAero, Genesink, Rousset, France) and
gold (UTDAUTE, UTDOTS, Champaign, IL, USA). The sen-
sors were then designed in order to maximize the length/area
ratio, to provide easily accessible electrodes for wiring and to

TABLE |
PROCESS PARAMETERS SELECTED FOR THE
PRINTING OF THE TWO INKS

Agink | Auink
Sheath Flow (SCCM) 1240 90
Atomizer Flow (SCCM) 820 23
Exhaust Flow (SCCM) 800 --
UA current (mA) -- 635
Plate temperature (°C) 60 70
Printing speed (mm/s) 5 5
Deposition passes (#) 1 2
Nozzle Size (um) 300 300

produce resistances of a few hundreds of ohms. In the design
of the geometry of the sensors, no considerations were made
in this study about the sensitivity to bending and the possible
capacitive and inductive parasites, since the selected substrate
is rigid and the temperature presents slow changing features
that do not require high-frequency measurements.

This last specification was determined based on the inks’
resistivity as well as the designed geometrical features. The
initial design was used for preliminary printing tests in order
to determine the optimal printing parameters, which were
different due to the different composition and viscosity of
the two inks. The main difference is the atomization process:
the silver ink was atomized using the pneumatic atomizer,
while the gold ink used the ultrasonic one. Thus, the former
uses mainly the atomizer flow to atomize the ink, while the
latter employs a piezoelectric device to perform this task. The
ultrasonic atomizer is usually controlled by means of a current
to determine the atomization power. The preliminary tests
indicated that multiple ink deposition passes are required to
achieve acceptable conductivity values for the gold ink. Thus,
to achieve similar printing times and resistances in the same
order of magnitude for the two inks, the gold sample design
was scaled down. Images of the general dimensions of the
silver and gold devices printed are shown in Fig. 1. For both
inks, a six-sensor design on a single 2.5- x 2.5-in alumina
substrate was printed using an aerosol jet printer (AJ300,
Optomec, Albuquerque, USA) with the process parameters
listed in Table I. Even though the two inks employ two
different atomizers (ultrasonic for the Au ink and pneumatic
for Ag ink) and, thus, required different process parameters,
the production process is the same. First, the substrates were
thoroughly cleaned with ethanol to remove dust particles,
grease, and any kind of dirt. Then, all the samples were
printed in series to reduce the printing variability. For each
ink, five samples were produced (30 sensors for each ink in
total). In order to evaluate the differences in the samples due
to the curing temperature, each one was cured at a different
temperature within the curing range proposed by the ink
manufacturers. The selected curing temperatures are reported
in Table II. After the sample fabrication, they were left on
the deposition plate that was kept heated for 15 min in order
to dry. After that, the samples were moved and left cooling
down to environmental temperature before placing them in a
ThermoScientific VACUTherm Oven (Thermo Electron LED
GmbH, Langenselbold, Germany). Then, the selected curing
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Fig. 1. Example of the produced silver (left) and gold (right) electrodes.

TABLE I
CURING TEMPERATURE FOR EACH OF THE PRODUCED
SAMPLES FOR BOTH SILVER AND GOLD

S1 S2 S3 S4 S5
Silver | 100°C | 120°C | 150°C | 200°C | 250°C
Gold | 275°C | 300°C | 325°C | 350°C | 375°C

temperature was set and reached from room temperature
following an 8 °C/min ramping profile. The target temperature
was kept fixed for 60 min before switching off the oven
and removing the samples when the temperature reached
100 °C. This curing process was conducted at environmental
atmosphere for all the sensors. After the curing process, all the
sensors on each sample were evaluated at room temperature to
assess the quality of the printing and curing processes. A set of
visual evaluations was carried on with an optical microscope
(NB50T, Orma Scientific, Sesto San Giovanni, Milan, Italy)
to measure the linewidth of the printed sensors. The room
temperature resistance was measured using a Hewlett—Packard
34401a (HP, Palo Alto, CA, USA) digital multimeter in a four-
wire configuration. After those preliminary tests, the sensors
were connected in a four-wire configuration to a set of wires
that were soldered using a two-part silver-based conductive
epoxy (CW2400, Chemtronics, Kennesaw, USA). After its
application, the epoxy was oven-cured at 80 °C for 60 min.

B. SEM Imaging

Morphological investigations were carried out using a field-
emission scanning electron microscope (FE-SEM) MIRA-3
(TESCAN, Brno, Czech Republic) at an accelerating voltage
of 5-7 kV to assess the differences produced by the different
curing processes and selected ink. The samples were analyzed
at different magnification values to evaluate the different
features in the microscopic disposition of the nanoparticles as
well as their agglomeration due to the curing process. Then,
the images were elaborated using ImageJ software to evaluate
the particle/pores size. After annotating the required scale to
each image, the images were enhanced with the software to
increase the visibility of the particles. Then, the area of the
particles was extracted and statistically analyzed.

C. Temperature Sensitivity Evaluation

In order to evaluate the behavior of the sensors at different
temperatures, the sensors were placed inside a climatic cham-
ber UC 150/70 (Advanced Material Testing S.R.L., Limbiate,
Italy) programed to change the temperature in steps in the

Climatic Chamber

DUTs

0.5 cm

Fig. 2. Scheme of the experimental setup for the evaluation of the
sensitivity to temperature. In brief, a computer mounting a dedicated
LabVIEW VI was devoted to set the temperature set point (Tget) for the
climatic chamber and to acquire the resistance of the device under test
(DUT) from an array of HP34401a digital multimeters. A commercial
temperature sensor was also measured to retrieve the actual temper-
ature (Ty) in the proximity of the DUTs.

range between —10 °C and +70 °C. All the sensors were
measured by a set of Hewlett—Packard 34401a (HP, Palo Alto,
CA, USA) digital multimeters in a four-wire configuration
controlled by a LabVIEW virtual instrument that sampled their
readings at 1 Hz. Moreover, a Pt100 standard sample was also
placed close to the samples to provide a known and fixed
temperature reference for the measurements. The experimental
setup is shown in Fig. 2.

The collected data were then processed using MATLAB.
A simple code that identifies all the set-point temperatures
was prepared and used to obtain statistical information on
the resistance variation as well as to calculate the TCR in
all the situations. The simplified characteristic equation (1)
for RDT sensors defines Rg as the resistance of the sensors
at the temperature 7y, R as the resistance of the sensors at
temperature 7, and « as the TCR of the sensors. Equation (1)
is expanded to match the explicit equation of a line. Assuming
To = 0 and defining T — Ty = AT as the independent variable,
the collected data points were fit to a line, and the two obtained
parameters (m as slope and g as intercept) were matched to
the ones obtained in (1) obtaining the system in (2)

R=Ry-[1+a(T —Ty)l = Ro - [1+aAT] =aAT Ro+Ro
(D

m =aoakRy
2
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Fig. 3. Room temperature resistance variation on the samples pro-
duced both by silver and gold ink.

The obtained TCRs were then compared and evaluated to
determine differences in behavior due to the curing process
and selected material.

Ill. RESULTS AND DISCUSSION

A. Printing Process Evaluation

After the printing process, all the samples underwent an
accurate microscopical analysis that allowed the evaluation
of the printed linewidth. A few examples of the printed
sensors with details captured by the microscope are reported
in Fig. 1. The silver ink produced on average a linewidth of
(116 £ 9) um, while the gold ink produced a thinner line
on average of (77 = 7) um. Those differences are related to
the different processes employed in the production step and
the different properties of the inks. Even though there were
differences in the production parameters, the obtained lines
were uniform in width without sensible difference between the
samples and between the two selected inks. Then, the room
temperature resistance was evaluated on all the samples for
both functional inks. The measured resistance values of the five
samples cured at different temperatures are shown in Fig. 3.
In general, the overall resistance decreases when the curing
temperature increases, indicating an improved conductivity.
Moreover, the overall variability within the samples (evaluated
by calculating the coefficient of variation) tends to decrease.
According to the collected data, the overall variability was
halved in the silver ink samples (from 6.83% down to 3.09%),
while it was reduced from 17.76% down to 0.89% in the gold
ink ones. However, in the latter situation, a slight increase
in the coefficient of variation was observed at the last curing
temperature. This effect may be due to excessive thermal stress
induced on the printed tracks that leads to random cracking
and, thus, to higher variability [26].

B. SEM Imaging

The SEM images showed microscopic features that allowed
better understanding of the different degrees of sinterization of
the inks related to the applied curing temperatures. The silver
ink shows clear differences in the nanoparticle agglomeration

pattern (Fig. 4). Below 120 °C, the nanoparticles do not
present great differences and appear to be almost unchanged.
Raising the curing temperature up to 150 °C, the nanoparticles
start to agglomerate and fuse with one another creating bigger
clusters. At 200 °C, the particles start to appear increasingly
more uniform and agglomerated, presenting, however, a set of
holes. For the gold ink (Fig. 5), the behavior seems similar to
the one already described for the silver ink. In particular, at the
first tested curing temperature (275 °C), the nanoparticles
are clearly visible, while they cluster in bigger groups as
the curing temperature increases. The cluster size seems to
reach a plateau after 325 °C. Those visual evaluations were
confirmed and quantified through ImagelJ software that allowed
the estimation of the particle sizes. The achieved results for
silver and gold samples are shown in Figs. 4(f) and 5(f),
respectively.

C. Temperature Sensitivity Evaluation

The temperature sensitivity was evaluated on five sensors for
each sample in the climatic chamber described in Section II-C.
The results of those experiments are shown in Fig. 6. The
silver ink samples [Fig. 6(c)] show a linear correlation
(R? = 0.991) between TCR and the curing temperature. On the
other hand, the gold ink samples [Fig. 6(d)] show a TCR that
initially rises with the curing temperature but then reaches a
plateau when cured at 325 °C or above. The cured silver ink
shows TCR values that are comparable to that of bulk silver
reported in the literature [27] (=3.8 X 1073 "C_l), while
the cured gold ink reaches a maximum TCR value of around
25 x 1073 °C~!, lower than that of bulk gold
(3.7 x 1073 °C~1). The TCR results in this section can
be correlated with SEM images in Section III-B to reveal
the relationship between the microscopic agglomeration of
the nanoparticles and the macroscopic characteristics of the
printed devices.

IV. DISCUSSION

In this work, the microscopic and macroscopic properties of
two commercial nanoparticle-based inks have been evaluated
at different curing temperatures. SEM images as well as
room temperature resistance and TCR have been collected and
analyzed for various samples. The sensors were designed as
simple serpentines and then preliminary evaluated to assess the
achieved linewidth and the room temperature resistance. The
overall linewidth presented small variations both using the sil-
ver (CVag = 7.7%) and the gold (CVay = 9.1%) inks
considering all the produced sensors. The room temperature
resistance, on the other hand, presents a reduction of 71.2%
for the gold samples and 75.2% for the silver ones with
increasing curing temperatures. A considerable decrease in
the coefficient of variation of the room temperature resistance
at rising curing temperatures up to 95% is observed, which
indicates how curing the inks at higher temperatures tends
to uniform the variability of the produced sensors. Moreover,
on the macroscopic scale, the behavior in temperature of the
sensors was evaluated by means of a climatic chamber in the
[—10 °C; 70 °C] temperature range. This evaluation produced
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Fig. 4. Results of the SEM evaluation performed on the silver samples cured at (a) 100 °C, (b) 120 °C, (c) 150 °C, (d) 200 °C, and (e

In (f), the estimated cluster size is plotted with respect to the curing temperature.
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Fig. 5. Results of the SEM evaluation performed on the gold samples cured at (a) 275 °C, (b) 300 °C, (c) 325 °C, (d) 350 °C, and (e

In (f), the estimated cluster size is plotted with respect to the curing temperature.

for the silver sample an increasing sensitivity with increasing samples reached a plateau at around 2.5 x 1073 °C~

) 375 °C.

U for all

curing temperatures, with TCRs that reached values up to the samples cured at temperatures above 325 °C. The SEM
3.4 x 1073 °C~!. On the other hand, the TCR of the gold images allowed the understanding of the different nanoparticle



16630 IEEE SENSORS JOURNAL, VOL. 23, NO. 15, 1 AUGUST 2023
1.3 T T 1.25 T T
* 100°C + 275°C
1l * 120°C + 300°C
g * 150°C o 2| + 325°C
= 200°C = 350°C i
8 oq2f o 1 o
B 250°C * w 375°C #
3 % 1151
* 1151 * %] e :
3" , 3 ,
= ¥ 4 = 11r *
E 14 * * E ¥ E *
2 +3 2 . LI
Losh % 105+ ¥ f
*¥ L
+* *
L 0 o 0 20 30 40 50 60 70 Y20 m 6 1.0 zln 3.0 alo s.ln sln 70
Temperature (°C) Temperature (°C)
(a) (W]
a4 %1073 . ‘ . e <10 | . .
247 b
sl
28 % 22
o %) *
= 287 =
— —_ 2
% 24 * 6
= =
22F 18
2
%|6 161 *
1.8
E
16 : - 1.4 * * - * *
100 150 200 250 260 280 300 320 340 360 380
Curing Temperature (°C) Curing Temperature (°C)
© d
Fig. 6. Calibration relationship achieved with (a) silver and (b) gold ink at different curing temperatures. The different TCRs obtained after the

different curing temperatures were reported in (c) for silver and (d) for gold ink.

clustering achieved with the proposed curing temperatures.
The silver ink tends to increase almost linearly the particle
size up to 61.5% until it reaches a bulk-like configuration,
which, however, presents a set of cavities. Gold nanoparticles,
on the other hand, present a plateau in the cluster size after an
increase of 71.0% the size. Those microscopic characteristics
seem to reflect the macroscopic behavior of the sensitivity of
the overall sensors in temperature. As suggested in [28] for the
overall resistivity, this result is related to the different cluster
sizes and to the number of boundaries between the different
grains.

The differences between the two inks are, thus, mostly
related to the different curing parameters that allow different
aggregation of the particles. In fact, as reported in the litera-
ture [29], the melting temperature of a material is dependent
both to the particle size and to the material itself with silver
having lower melting temperature than gold [30], [31].

V. CONCLUSION
In conclusion, in this work, the behavior of two materials
was analyzed both from the microscopic and macroscopic
points of view. The achieved results underline the need to
study the effects of the curing process for any material used in

additive manufacturing as a powerful process parameter to be
considered when designing sensors or systems. In particular,
it was observed how the microscopic structure of the materials,
that is, directly related to the curing temperature, impact
on the macroscopic characteristics of the sensor, such as its
TCR and its room temperature resistance. In general, the
former tends to increase at rising curing temperature, while
the latter decreases. This information implies an increase in
the sensitivity of the material, but at the same time a possible
decrease in the absolute sensitivity of the sensor. It must be
noted, however, that increasing the curing temperature also
highly reduces the process variability and, thus, increases
its repeatability. On the other hand, increasing the curing
temperature over the maximum suggested by the materials
manufacturers can lead to the material degradation due to
the formation of mechanical stresses in the structure and the
evaporation of the functional material. Another constraint that
has to be considered when selecting the curing temperature
is related to the selected substrate that must be able to
withstand the curing process. Future work will take into
account the hereby presented results in order to improve
the design of fully printed temperature sensors and their
interconnections to enhance their metrological characteristics
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and better meet custom and application-specific requirements
as well as furtherly reducing the costs, as well as to try to better
investigate other characteristics, such as the stability over time
of the sensitivity and the performance consistency with quick
temperature changes.
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