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Abstract—Wearable sensors and the Internet of Things
(IoT) will be two buzzwords that will be heard commonly in
the coming decades. The combination of these two tech-
nologies soon will create a great revolution in applications
that require motion recognition, such as health care, sports,
and entertainment. The development of technology has made
wearable sensors one of the most basic tools for human
motion analysis. We believe that IoT is the most powerful
complement to the use of wearable sensors in the analysis
of human body motion. Using wearable IoT, all necessary
human data will be collected and delivered via the Internet to
the experts who can make accurate decisions about the type
of activity, falling situations, freezing of gait (fog), and so on.
In this article, the human motion analysis is presented in a
chart and is divided into two parts: movement measurement
and movement classification. However, this article focuses on movement classification that includes three subsections,
gait analysis (GA), gesture recognition (GR), and human activity recognition (HAR), and is closely related to human
motion recognition. In this article, our goal is to first acquaint the reader with the important steps required to classify the
movement of the human body by wearable sensors and then by using tables to determine the most used algorithms and
methods for each step. After briefly reviewing IoT concepts, directions for further research will be provided.

Index Terms— Activity recognition, gait analysis (GA), gesture recognition (GR), wearable sensors.

I. INTRODUCTION

DEPENDING on the definition of technology, the first
wearable technologies were invented in the thirteenth

century, and this technology was the same as glasses. Later,
in the 16th century, the first portable, wearable watch, the
Nuremberg eggs, was invented. They were designed to be
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worn around the neck and were a popular symbol until
the invention of pocket watches and wristwatches. Another
prototype of technology was an abacus ring made in China
in the 17th century. The first wearable computer was created
by mathematics professor Edward Thorp in the 1960s. In his
book Beat the Dealer: A Winning Strategy for the Game of
Twenty-One, Thorp reveals that he built a computer small
enough to fit in a shoe to cheat in roulette. A timer predicted
where the ball would land from the roulette table and overall
helped Thorp and his colleague Claude Shannon by 44%in
the game [1]. Over the next few decades, newer products
will make wearable technologies more popular and modern.
Reducing the cost of living, saving time, fast and immediate
detection, and many other factors force us to move toward
wearable sensors. The widespread deployment of sensors
and the Internet of Things (IoT) facilitates this. Combining
wearable sensors or wearable equipment in general with the
IoT makes the equipment smarter and increases its efficiency
[2]. Dian et al. [3] have stated that “IoT-enabled wearables
are smart devices that can be worn as external accessories,
embedded in clothing and garments, implanted in the body,
or even adhered to or tattooed on the skin. These devices are
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able to connect to the Internet in order to collect, send, and
receive the information that can be used for smart decision-
making.” Wearable sensors have different types with different
applications. One of the most widely used types of wearable
sensors is inertial sensors. These sensors mainly include
a gyroscope, an accelerometer, and a magnetometer. These
sensors are used either individually or in groups to report the
specific force of the body, angular velocity, and orientation of
the human body [4]. As was mentioned, these sensors have
various applications, one of the most important of which is in
the human body motion analysis. Other types of sensors that
are used in human body motion analysis are introduced in this
article, such as force sensors, pressure sensors, and electrodes.
This article, while providing a general definition of the human
body motion analysis, defines a general and universal chart of
it and, while defining each part of this chart, focuses on the
classification section. When defining each subsection of the
chart, it introduces the steps to perform the project related
to each subsection of movement classification [human activity
recognition (HAR), gesture recognition (GR), and gait analysis
(GA)]. This article will give the reader the idea to adapt
the subject matter to one of the subsections of movement
classification and then know the steps. Finally, the algorithms
for classification, feature extraction, feature reduction, feature
selection, validation, segmentation, the actions desired by the
authors for preprocessing the wearable sensor signals, and
the type of sensors are fully identified and reported based on
repeated use in papers. Also, the most widely used software
in this field is fully identified.

II. MAIN BODY OF THIS ARTICLE

One of the most important applications of wearable sensors
is in the human body motion analysis. Human body motion
analysis is defined as any method that involves any means
to obtain a quantitative or qualitative measurement of it [5].
Human body motion analysis has many applications in various
fields including: 1) medical evaluation; 2) monitoring people;
and 3) activity recognition (activity recognition has subsec-
tions of fitness, health care, entertainment, and games) [6].
Human body motion analysis by wearable sensors is divided
into two parts: 1) movement measurement and 2) movement
classification that has three subsections: GA, GR, and activity
recognition [6] (see Fig. 1).

In the first category, due to the specificity of the body
part, only the estimation of movement parameters (e.g., the
orientation and position of each joint) is needed, and in the
second category, in addition to estimating the uncertainties,
there is a need to classify features or data related to movement
classification, which will require algorithms for classification,
feature extraction, feature reduction, validation, and so on. The
first category focuses on measurements of specific parts of the
body such as the neck, head, torso, and upper and lower limbs
[6], [7]. This category has been briefly reviewed in several
papers. However, the second part is very extensive and has
been studied in many papers in various ways, which require
complex algorithms. This section estimates spatiotemporal gait
parameters, assesses gait abnormalities, recognizes meaningful
human expressions, including hand, arm, and face, and also

includes activity recognition, fall detection, classification of
daily activities, and so on [8], [9], [10], [11], [12], [13]. As it
was mentioned earlier, this section includes three subsections:
HAR, GA, and GR. In HAR, various human activities, such
as walking, running, sitting, sleeping, standing, showering,
cooking, driving, opening doors, and abnormal activities, will
be detected. Data can be collected from wearable sensors or
through video frames or images [14]. An interesting definition
of activity recognition subsets is provided in the paper [15]:
activity recognition can be referred to as the process of
describing and classifying actions, pinpointing specific move-
ments, and extracting unique patterns from the dataset using
heterogeneous sensing modalities. The GA subsection is also
described in [16] as follows: GA is a measure that can be easily
translated from animals to humans, especially in the case of
motor diseases, such as PD. This study involves quantifying
(introducing and analyzing measurable gait parameters) and
interpreting [e.g., different conclusions about mobility (health,
age, weight, speed, and so on)] using the gait pattern. Wearable
sensors play a key role in data collection in this area. GR with
wearable sensors is an active research field that seeks to
integrate the motor channel into human–computer interaction.
GR is a computational process that attempts to detect and
interpret human movements using mathematical algorithms.
The program is also used in virtual environment control, sign
language translation, robot remote control, or music creation
[17]. GR with wearable sensors has received so much attention
from researchers in recent years. In the following, we will
extract the steps taken by scientists and researchers to carry
out the project in each of the above fields, respectively, and
identify the most widely used algorithms for each stage.

A. Data Collection
The first step for all three subsections is the collection of

motion data or, in general, the data related to the movement
classification operation by wearable sensors so that the wear-
able sensors are attached either directly to the relevant parts or
by other wearable devices, such as gloves, shoes, smartphones,
and glasses, which are attached to the body of the person.
In the following, we will see that the available data in this
field can also be used; in fact, many companies and unions
have created their own motion datasets for these issues, and
this dataset can also be used. Now, in this part of this article,
using the studied papers, we will determine the type of sensors
used for data collection, and we will also get acquainted with
some of the available datasets in this field.

1) Wearable Sensors in the Literature: As it was mentioned,
wearable sensors can connect to various parts of the body
such as arms, legs, thighs, chest, head, and neck directly or
can be worn on wearable devices, such as glasses, shoes,
smartphones, and gloves. Wearable sensors available in the
references are categorized and presented in a table (these
sensors are sometimes used individually and sometimes as
a combination of several sensors, and in the meantime, the
fusion of sensors should not be neglected). In the bar chart, you
can see the most commonly used sensors. To avoid increasing
the number of pages of the paper, more information is available
in the table named sensors. For more information, refer to the
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TABLE I
SENSOR CATEGORIES

attached table. The category of sensors used and the sensors
in each category are presented in Table I. How to select a
category is based on the type of application or the type of
signal measured by the sensor, and in another bar chart,
the most commonly used sensor categories are identified.
Of course, before presenting the bar charts, we will define
each sensor category, specify the sensors that are included in
this category, will have a short and general overview of some
sensors, and then we will announce a quantitative analysis.
In this section, we try to introduce the main or lesser-known
sensors, and the sensors whose function can be understood
from their names will not be introduced.

Motion Sensors: Wearable motion sensor data can describe
the type, quantity, and quality of motion-related activi-
ties in the community [18]. This category includes these
sensors: accelerometer, gyroscope, magnetometer, compass,
orientation, and goniometer. As you may know, an accelerom-
eter detects linear motion and gravitational forces by mea-
suring the acceleration in three axes (x, y, and z) [19].
A gyroscope measures the rotation rate [19]. The magne-
tometer detects and measures the magnetic fields of the Earth
[19]. The goniometer is generally used to measure angular
changes caused by body movements, as it is known from
its ancient name. A flexible goniometer can be used to
measure the relative rotation between two parts of the human
body [20].

Bio and Chemical Sensors: These sensors are sensors that
provide measurable signals proportional to the analyte con-
centration [21], [22]. The sensors that fall into this category
are very wide. These sensors include EMG, temperature,
humidity, EOG, ventilation sensor, PPG, ECG, heart rate,
carbon monoxide (CO), galvanic skin response (GSR) sensor,
oximetry, MMG, and EEG. Electromyography (EMG) mea-
sures the electrical signals produced by muscle movement and
contraction. The EMG sensor has two types: surface EMG
or sEMG, and intramuscular EMG (iEMG) [19]. iEMG may
also be referred to as inserted EMG; in any case, this type
of sensor is placed directly in the muscle under the skin,
unlike the first sensor that is placed on the surface of the skin.

Although iEMG may have a better performance in measuring
the electrical signals of muscles, it is used less than sEMG due
to its invasive nature and difficulty of use. In most papers, what
is meant by EMG is sEMG. The temperature sensor is one of
the most famous sensors in this category because temperature
is one of the most important physiological parameters of
the human body, which can be used as a reference value
to monitor human health [23]. A flexible humidity sensor
measures precise humidity by enabling humidity measurement
with very fast and consistent resistance changes depending
on the atmospheric humidity [24]. An electrooculography
(EOG) sensor records eye movement by detecting a voltage
difference between the cornea and retina [25]. The ventilation
sensor attached to the abdomen measures the expansion and
contraction associated with breathing rate and volume, repre-
senting the physiological response to bodily movement [26],
[27]. Electrocardiography (ECG) and photoplethysmography
(PPG) are sensors for heart rate monitoring [19]. ECG can
also be called EKG. Wearable CO sensors are employed to
monitor odorless and colorless CO [28]. GSR is a change
in the electrical properties of the skin. The signal is then
used to capture autonomic nerve responses as a parameter
of sweat gland function [29]. Oximetry sensors are used for
long-term, noninvasive monitoring of SpO2 in human blood
[30]. Mechanomyography (MMG) acts like EMG, but, instead
of using electrodes, it uses a microphone or accelerometer
to measure low-frequency muscle contractions and vibrations
[19]. Electroencephalography (EEG) sensors are placed on a
participant’s head, and then, the electrodes detect brainwaves
from the subject. EEG measures the electrical activity of
the brain as the voltage at different points of the brain
acts as the basis of EEG. It can be used for freezing of
gait (fog) detection [31]. Now, we will introduce the next
category.

Pressure and Force Sensors: This category includes these
sensors: pressure sensor, strain sensor, force, and polyvinyli-
dene fluoride (PVDF). Force and pressure are two sides of
the same coin and have a similar nature. A force sensor helps
to measure the amount of force applied to an object. These
sensors can be either worn in shoes or placed on the ground
using a cover and used. A force-sensing resistor (FSR) is a
good example of these sensors [32]. Pressure sensors can also
be directly attached to body parts, e.g., head or back, or used in
wearable textiles. A pressure sensor detects, monitors pressure,
and converts the data into an electronic signal. A strain sensor
can measure electrical/optical and other responses to strain in
a material [33]. It can be said that the type of signal measured
by this sensor is similar to the previous two sensors. PVDF
material is the basis of the PVDF sensor that measures pressure
with a relatively high range [34].

Now, we come to the next category.
Audio and Visual Sensors: The sensors of this category

include microphones, cameras, audio, and audio input and
output devices. As it is clear from the last two names, these
two names do not clearly define the sensor used and, therefore,
only sit in the definition of the category. In the row related
to the audio name in the attached table, [35] shows that this
article has not specified this sensor precisely. Regarding the
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TABLE II
PREPREPARED DATASET. ACC = ACCELEROMETER, GYRO = GYROSCOPE, COMP = COMPASS, FSR = FORCE SENSITIVE RESISTOR, UWB
TAG = ULTRAWIDEBAND TAG, MFS = MAGNETIC FIELD SENSOR, UST = ULTRASONIC TRANSMITTER (SENSOR), MAG = MAGNETOMETER,

ECG = ELECTROCARDIOGRAPHY, PPG = PHOTOPLETHYSMOGRAPHY, TEMP = TEMPERATURE, ORIENT = ORIENTATION SENSOR,
HR = HEART RATE MONITOR, TOU = TOUCH SENSORS, CAM = CAMERA, LAC = LINEAR ACCELERATION SENSOR,

MIC = MICROPHONE, RTC = REAL-TIME CLOCK, TI-SW = TILT SWITCHES, LIGHT = LIGHT SENSOR, PROXI = PROXIMITY

SENSOR, AUDIO = AUDIO SENSORS, IR/V LIGHT = INFRARED/VISIBLE LIGHT SENSORS, HF LIGHT = HIGH-FREQUENCY

LIGHT, PRESSURE = PRESSURE SENSORS, HUMID = HUMIDITY SENSORS, AND GPS = GPS SENSORS
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TABLE II
(Continued.) PREPREPARED DATASET. ACC = ACCELEROMETER, GYRO = GYROSCOPE, COMP = COMPASS, FSR = FORCE SENSITIVE

RESISTOR, UWB TAG = ULTRAWIDEBAND TAG, MFS = MAGNETIC FIELD SENSOR, UST = ULTRASONIC TRANSMITTER (SENSOR),
MAG = MAGNETOMETER, ECG = ELECTROCARDIOGRAPHY, PPG = PHOTOPLETHYSMOGRAPHY, TEMP = TEMPERATURE, ORIENT =

ORIENTATION SENSOR, HR = HEART RATE MONITOR, TOU = TOUCH SENSORS, CAM = CAMERA, LAC = LINEAR ACCELERATION

SENSOR, MIC = MICROPHONE, RTC = REAL-TIME CLOCK, TI-SW = TILT SWITCHES, LIGHT = LIGHT SENSOR, PROXI = PROXIMITY

SENSOR, AUDIO = AUDIO SENSORS, IR/V LIGHT = INFRARED/VISIBLE LIGHT SENSORS, HF LIGHT = HIGH-FREQUENCY

LIGHT, PRESSURE = PRESSURE SENSORS, HUMID = HUMIDITY SENSORS, AND GPS = GPS SENSORS
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name of audio input and output devices, the same condition
is established, and this sensor is used in the paper [36].

Positioning and Tracking Sensors: This category includes
sensors such as global positioning system (GPS) that uses
different approaches such as position detection and location
tracking [37]. These sensors are mostly used in location
context pattern recognition and location-based movement clas-
sification. GPS sensors, Bluetooth beacons, UWB tags, and
tracking sensors are the sensors placed in this category. GPS
has been developed to enable accurate positioning and navi-
gation anywhere on or near the surface of the Earth [38]. GPS
sensors are often used for positioning and localization, provid-
ing geographical longitude, latitude, and height. However, their
application in movement classification is more limited due to
challenges such as the difference in sampling frequency with
other sensors and occlusion in indoor environments, such as
buildings and malls. It is expected that, due to the increasing
growth of smartphones, this sensor will be used more in the
field of activity recognition, GA, and GR. Devices that provide
the ability to communicate with smart devices via Bluetooth
are called beacons. Beacons are only signal transmitters; they
only send signals to smart devices, such as smartphones.
Many applications of Bluetooth beacons have been proposed
for interested ones. These applications include indoor local-
ization, proximity detection, and activity recognition [39].
They have been used for activity recognition according to
Table XVII. Their signal strength reads are used for activity
recognition via smartphones [40]. Ultrawideband (UWB) is
an indoor positioning technology with several advantages over
other related methods; one important advantage is providing
long-term data on movement patterns without the influence
of the presence of the observer [41]. Other sensors in this
category are position-tracking sensors or simply trackers,
which can calculate the positions and orientations of wearer
subjects. These sensors are used in two papers according to
the table. The paper [42] used two cyber gloves and two
3SPACE-position trackers for each hand to recognize Chinese
sign language and perform some kind of GR. Tao et al. [20]
have used an electromagnetic tracking system (ETS) that can
calculate the positions and orientations of an object in the field
of GA.

Optical and Light Sensors: These sensors detect and quan-
tify various properties of light, such as intensity, frequency,
wavelength, and polarization [43]. These sensors convert the
light energy into an electrical signal output and include light
and linear optical gesture sensor rows in Table XVII.

Proximity Sensors: A proximity sensor is a sensor that
detects information about an object’s presentation [44]. Capac-
itive sensors for measuring height and distance, infrared, and
electric field sensors are the sensors that fit in this category.

Bend/Flex Sensors: Bend/flex sensors include bend sensors
that are composed of a flexible substrate and a conductive
layer, which changes its electrical resistance with the bending
or the angular displacement [45].

Motion Detectors: These sensors include passive infrared
and ultrasonic sensors in Table XVII. A motion detector is
a sensor that detects nearby motion. Ogris et al. [46] have
demonstrated how ultrasonic hand tracking can be used to
improve the performance of a wearable, accelerometer, and

gyroscope-based activity recognition system. In the paper [47],
this sensor is used along with other sensors to learn the
activities of the user with minimal user attention. If you check
the table in the attachment carefully, you will notice that,
in two papers [47] and [48], touch and light detection and
ranging (LiDAR) sensors are used, respectively, and we have
considered the category of these sensors as other categories.
The first sensor is used to detect the physical touch of the
object, and the second sensor is used to detect different ranges.
Even though these sensors have been used much less than
other sensors, it is not without grace to introduce them and
get to know their performance in the three mentioned areas.
Now, we introduce a quantitative analysis in general, and with
approximate numbers, we introduce the most used sensors
in the field of human motion analysis and the most used
category in this field. With these numbers, it becomes easier to
understand Fig. 2(a) and (b). In these two figures, the vertical
axis represents the frequency of use based on the number of
repetitions in the papers, and the horizontal axis is the sensor
name and sensor categories, respectively. This contract is also
valid for other similar figures. The names of the sensors in
this article have been used a total of 358 times in the studied
papers. Now, the sensors have been used in combination with
each other, alone, or they have been mentioned as widely used
sensors, and so on. The accelerometer with 138 repetitions is
the most popular sensor name and, in a way, the most widely
used wearable sensor. The percentage of accelerometer usage
is about 39%. The gyroscope has been mentioned 71 times
in all the studied papers, which is about 20% of the total
value. The next sensor that is used the most is EMG, which
has about 7% of the total value with 24 repetitions. Force
and pressure sensors are ranked next with 5% and 4% of the
total amount, respectively. The force sensor has been used in
17 papers and the pressure sensor in 14 papers. The next sensor
is the temperature sensor, which is examined in nine papers
and constitutes 3% of the total value. The magnetometer holds
the same rank, and it is mentioned in nine papers; this sensor
has something like 3% of the total amount, too. The light
sensor and the microphone are used in seven and six papers,
respectively, and have an equal share of about 2%. Other
sensors are used less than six times and have been excluded
from Fig. 2(a). Now, we present a detailed numerical analysis
of the existing categories. The motion sensors category has
been used 225 times and has a share of about 63% of all
available categories. Bio and chemical sensors have been used
54 times and have a share of about 15%. The third category
is pressure and force sensors, which has a share of 10% with
37 repetitions. Audio and visual sensors with nine repetitions
have 3% of the total share. The positioning and tracking
sensors category has the same number of repetitions in the
papers and has a share similar to the previous category. Optical
and light sensors with eight repetitions and proximity sensors
with seven repetitions have an almost equal share of 2%.
Other categories are used less than seven times and have been
excluded from Fig. 2(b).

2) Available Datasets: The preprepared datasets in the stud-
ied papers are also presented in this article. Of course, these
datasets are not necessarily related to IoT, but they are
generally public datasets for use in movement classification
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Fig. 1. Chart of human body motion analysis [6].

Fig. 2. (a) Most commonly used sensors based on the number of
repetitions in the papers. Vertical axis: the number of times the sensors
are used. Horizontal axis: the names of the sensors. (b) Most commonly
used sensor categories based on the number of repetitions in the
papers. Vertical axis: the number of times each sensor category is used.
Horizontal axis: the names of the sensor categories.

by wearable sensors. Researchers can even find papers about
preprepared datasets [49], [50].

As you can see in Table II, the UCI machine learning
repository is one of the most important available data sources,
and generating a dedicated dataset for a paper can also be a
significant issue. The current explanations provided are very
qualitative, and we need to describe the table related to this
section in a little more detail. A total of 46 papers have used
the specific dataset or have named their prepared dataset and
made it publicly available. Some of the papers in this section
are only for presenting the dataset and have not been used in
the general reviews of the paper. This is because these datasets
are very popular with those interested in the field and have a

very high number of citations. The presentation of their other
information does not have much effect on the charts, other
tables, and numerical analyzes presented in this article. Before
presenting the numerical analysis, we try to provide brief
information about each dataset. First, we must announce that
Table II has six columns that have names (reference number,
datasets, application, sensors used, reference, and repository).
The reference number column specifies the reference number
that has used the mentioned dataset. The datasets column
specifies the name of each dataset. The names of the datasets
of the paper [19] have been used to name some of the datasets
presented in this article. The application column also speci-
fies which of the movement classification sections that each
dataset belongs to, namely, GA, HAR, and GR. Movement
classification sections generally overlap, the recognition of
walking activities largely overlaps with GA, the recognition
of body gestures can also be interpreted as the recognition of
human activities, and the first overlap is less important than
the second overlap and will not be discussed, but the second
overlap is mentioned in the table. The column named sensors
used fully specifies the sensors used to collect the respective
dataset. The last columns specify the main reference as the
dataset provider and the repository. The ActRecTut dataset is
the result of an educational example for recognizing different
hand gestures using inertial sensors attached to the upper and
lower arms. The eight gestures in this article are opening
a window, closing a window, watering a plant, turning the
pages of a book, drinking from a bottle, cutting with a knife,
chopping with a knife, stirring in a bowl, forehand, backhand,
and smash [51]. Although this dataset is used to detect
hand gestures, the authors somehow interpret its application
as activity recognition. The Car Quality Control dataset is
the result of the development and testing of real industrial
activity tracking systems in the Škoda automobile factory and
is somehow related to the fields of activity recognition and
GR. Here, wearable sensors are attached to the hand too. The
four activities of this article are inserting the lamp, mounting
a supportive plastic bar using three screws and a cordless
screwdriver, attaching the lamp body using two screws and a
cordless screwdriver, and verifying the lamp’s adjustment [52].
Providing a new method for continuous activity recognition
based on ultrasonic hand tracking and motion sensors attached
to the user’s arms has led to the presentation of the Car
Quality Inspection dataset [53]. Blanke et al. [54] propose a
new type of feature based on the polynomial approximation of
signals and report the results of their tests on the Car Quality
Inspection, the Woodshop, and the Drink and Work datasets.
The Car Quality Inspection dataset contains 20 activities
performed during a car quality inspection. Example activities
are checking gaps in the car’s body or inspecting movable
parts. The woodshop dataset contains data from eight different
people’s overall task of building two wooden book boxes.
Building mentioned bookshelf needs a variety of activities,
for example, sawing, drilling, or screw driving. In total,
22 activities are needed to get the job done. The Drink and
Work dataset consists of several drinking events embedded in
daily scenarios [54]. According to the UCI machine learning



15260 IEEE SENSORS JOURNAL, VOL. 23, NO. 14, 15 JULY 2023

repository, the Mobile Health (MHEALTH) dataset used in
[55] comprises body motion and vital signs recordings for ten
volunteers. Activities in this dataset include standing still, sit-
ting and relaxing, lying down, walking, climbing stairs, waist
bends forward, the frontal elevation of arms, knee bending
(crouching), cycling, jogging, and so on. The Daphnet dataset
used in [56] is related to Parkinson’s disease and analyzes
the gait patterns of Parkinson’s patients with fog symptoms.
Users performed three kinds of tasks: straight-line walking,
walking with numerous turns, going to different rooms while
fetching coffee, opening doors, and so on. This information
is fully contained in the UCI machine learning repository.
Mahmud et al. [57] proposed a multistage long short-term
memory (LSTM)-based deep neural network to integrate mul-
timodal features from numerous sensors for activity recogni-
tion. For the training and evaluation of the proposed scheme,
they have used a publicly available dataset from Physionet.
This dataset contains wrist PPGs recorded during walking,
running, and bike riding. Simultaneous motion estimates are
collected using both accelerometers and gyroscopes to give
multiple options for the elimination of motion interference
from the PPG traces. A reference chest ECG is also used to
allow a gold-standard comparison of heart rate during exercise.
The description given for the HAR Using Smartphones dataset
in the UCI machine learning repository is that this dataset
is an activity recognition database built from the recordings
of 30 subjects performing activities of daily living (ADLs)
while carrying a waist-mounted smartphone with embedded
inertial sensors. Each person performed six activities (walking,
walking upstairs, walking downstairs, sitting, standing, and
laying). This dataset is one of the most used datasets. Another
dataset publicly available in the Physionet presented in the
paper [58] contains measures of gait from 93 patients with
idiopathic Parkinson’s disease (66.3 years; 63% men) and
73 healthy controls (mean age: 66.3 years; 55% men). The
PAMAP2 Physical Activity Monitoring dataset contains data
on 18 different physical activities (such as walking, cycling,
and playing soccer), performed by nine subjects wearing
three inertial measurement units (IMUs) and a heart rate
monitor. The dataset can be used for activity recognition and
intensity estimation while developing and applying algorithms
of data processing, segmentation, feature extraction, and clas-
sification. This information is provided in the UCI machine
learning repository, and the dataset is used in the paper [59].
According to the UCI machine learning repository, the Daily
and Sports Activities dataset provided by Bilkent University
comprises motion sensor data of 19 daily and sports activities,
each performed by eight subjects in their own style for
5 min. This dataset can be used for activity recognition [60].
Kawaguchi et al. [61] have started a project named “HASC
Challenge” to collect a large-scale human activity corpus using
accelerometers. The HASC dataset is the result of the research
of the mentioned paper and is used for activity recognition
and activities, including staying, walking, jogging, skipping,
stair-up, and stair-down [62]. Chen et al. [63] have stated
that the wearable motion capture device is used to take the
kinematics data of the key nodes of the human body and
fuse the data with the human skeleton data extracted from the

video image by Openpose. In fact, in the mentioned paper,
the Openpose dataset is used for GR, and the mentioned
activities and gestures are squat, squat down and up, wave
left hand, raise left hand, wave both hands, and raise both
hands. The USC-HAD dataset is a Daily Activity dataset
for activity recognition using wearable sensors; 12 different
activities in this dataset are walking forward, walking left,
walking right, walking upstairs, walking downstairs, running
forward, jumping, sitting, standing, sleeping, the elevator up,
and the elevator down. [64], [65]. The SHO dataset uses
smartphone motion sensors for physical activity recognition.
In the data collection experiments, they collected data for
seven physical activities. These are walking, running, sitting,
standing, jogging, biking, walking upstairs, and walking down-
stairs [66]. According to the UCI machine learning repository,
the Opportunity dataset is a dataset designed to benchmark
HAR algorithms. The dataset contains the readings of wearable
motion sensors recording users’ daily activities. It is useful
for wearable activity recognition [67]. The Opportunity dataset
comprises a set of complex naturalistic activities performed by
four subjects in a daily living scenario performing morning
activities. During the recordings, each subject performed a
session five times with ADLs and one drill session. During
each ADL session, subjects perform the activities without
any restriction, and examples of activities are (preparing and
drinking a coffee, preparing and eating a sandwich, and so on).
During the drill sessions, each subject performed a predefined
sorted set of 17 activities 20 times [67]. In the Skoda Mini
Checkpoint dataset, one person performed activities in a car
maintenance scenario using 20 accelerometers, placed on the
left and right upper and lower arms. This dataset contains ten
activity recordings, including writing on a notepad, opening
the hood, closing the hood, checking gaps in the front door,
opening the left front door, closing the left front door, closing
both left doors, checking trunk gaps, opening and closing
the trunk, and checking steering wheel [68]. The Actitracker
dataset consists of triaxial accelerometer data samples. Sub-
jects carried an Android phone in their front pants pocket
and walked, jogged, ascended or descended stairs, sat, stood,
and lay down for specific periods [69]. The Darmstadt Daily
Routines dataset contains seven days of continuous data. The
routines include dinner, commuting, lunch, and office work.
Every routine contains various types of low-level activities;
for example, dinner contains preparing food, eating dinner,
and washing dishes [67], [70], [71]. The ubicomp08 dataset is
recorded in the house of a 26-year-old man. Seven different
activities were annotated, namely, leaving the house, toileting,
showering, sleeping, preparing breakfast, preparing dinner,
and preparing a beverage. Times during which no activity is
annotated are referred to as Idle [72]. In paper [73], to evaluate
their activity recognition model, they use two datasets called
Bookshelf and Mirror. Bookshelf is a realistic dataset in a
workshop scenario, in which subjects construct a wooden
bookshelf. The dataset consists of a variety of activity events
and types. The second dataset called Mirror is recorded and
used in this article. Similar to the bookshelf, it contains a
wide variety of activities, too. The first dataset is similar
to the woodshop dataset described before [54], but they are
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used in different movement classification models. The Intel
Research dataset is a dataset that contains various sensor data.
The data have recordings of various human activities, such
as sitting, walking, jogging, riding a bike, and driving a car
[35], [74]. The MIT Place Lab dataset is recorded from a
single subject wearing five accelerometers and a wireless heart
rate monitor to perform a set of household activities. The
activities include preparing a recipe, doing dishes, cleaning
the kitchen, doing laundry, making a bed, and light cleaning
around an apartment. In addition to the activities above, the
subject also performs other everyday tasks such as searching
for items and talking on the phone [65]. The UC Berkeley
WARD dataset or simply the Wearable Action Recognition
Database (WARD) dataset is developed by the University
of California at Berkeley (UC Berkeley). WARD includes
20 human subjects (13 male and seven female) and a set
of 13 activities, such as walking, standing, and jumping.
The researchers have placed sensors at five body locations:
two wrists, two ankles, and the waist. Each built multimodal
sensor unit contains a three-axis accelerometer and a two-axis
gyroscope [65]. The CMU-MMAC database was collected in
the Carnegie Mellon University’s Motion Capture Laboratory
and contains multimodal measures of the human activity of
subjects. The dataset focuses on cooking and food preparation.
Wearable sensors that are used in data collection include
a camera, an accelerometer, and a gyroscope. Five subjects
performed cooking five different recipes: brownies, pizza,
sandwiches, salad, and scrambled eggs, and related data were
recorded [75]. Kwapisz et al. [76] presented a system that
uses phone-based accelerometers to perform activity recog-
nition and collected a dataset named wireless sensor data
mining (WISDM) that contains labeled accelerometer data
from 29 users as they performed daily activities, such as
walking, jogging, climbing stairs, sitting, and standing. The
paper [77] presents the UTD-MHAD dataset that consists of
four different data modalities that include RGB videos, depth
videos, skeleton positions, and inertial signals from a Kinect
camera and a wearable inertial sensor for recording 27 human
actions. 27 actions performed constitutes sports actions, such
as bowling; hand gestures, such as drawing x; daily activities,
such as knocking on the door; and training exercises, such
as the squat. Wearable inertial sensors are placed on the
right thigh and the right wrist. Stisen et al. [78] have recorded
the HHAR dataset for detecting six different user activities:
biking, sitting, standing, walking, stair up, and stair down.
They have gathered data on nine users using smartphones and
smartwatches. Smartphones were carried by the users around
their waist, while smartwatches, were worn on each arm.
The Sussex-Huawei Locomotion (SHL) dataset consists of
multimodal transportation data, recorded by three individuals
in eight different modes of transportation in real environments.
Data were recorded using sensors of four smartphones located
at the torso, backpack, hand, and pocket. The eight main
activities in the dataset include standing or sitting, walking,
running, biking, bus standing or sitting in a bus, driving and
sitting in a car, and standing or sitting on a subway. The
SHL dataset can be used in a wide variety of studies such
as transportation recognition, activity recognition, mobility

pattern mining, localization, tracking, and sensor fusion [79].
For the collection of the SARD dataset, the authors developed
a data collection application for Android devices. This Android
app currently collects data from the GPS, an accelerometer,
a magnetometer, and a gyroscope at a rate of 50 Hz. They
used four smartphones for data collection. Using these smart-
phones, they recorded data for six different physical activities,
including walking, running, sitting, standing, and walking
upstairs and downstairs. Four smartphones were located in
four body positions (right jeans pocket, belt, right arm, and
right wrist) [80]. Micucci et al. [81] propose a new dataset
named UniMiB SHAR of acceleration samples collected using
an Android smartphone designed for HAR and fall detection.
The subjects placed the smartphone in their front trouser
pockets: half of the time in the left one and the other half
time in the right one. The dataset contains samples of nine
types of ADLs, including running, sitting down, and so on,
and contains samples of eight types of falls, including falling
rightward, falling leftward, syncope, and so on in [82]; a
mobile application (app) called ExtraSensory is developed,
with versions for both iPhone and Android smartphones, and
a companion application for the Pebble smartwatch that inte-
grates with both. The ExtraSensory dataset contains data from
60 users, 34 of the subjects were iPhone users, and 26 subjects
were Android users. The dataset contains data from various
activities, such as walking, laying down, and bicycling. The
phone was located in different places, such as in a bag, in hand,
in a pocket, or on the table. Kyritsis et al. [83] propose a
method for detecting food intake cycles during a meal using
a wristband. They have presented a method that aims at
detecting intake cycles. The FIC dataset contains acceleration
data of eight subjects, and their proposed method detects
five micro movements related to eating food. The WHARF
dataset is presented as a freely available dataset of acceleration
data, coming from a wrist-worn wearable device, targeting
the recognition of 14 different human activities. Activities are
mentioned in a table and include Brushing teeth, combing hair,
getting up from the bed, lying down on the bed, and so on [84].
For the Smartphone-Based Recognition of Human Activities
and Postural Transitions Dataset (SBRHA) collection, a group
of 30 subjects was recruited. They were asked to perform
six activities (walking, laying, sitting, climbing up the stairs,
climbing down the stairs, and standing). The authors placed
a smartphone on the waist and used it for the activity data
recording using the built-in triaxial accelerometers and triaxial
gyroscopes [85]. Liu et al. [86] present uWave, an efficient
GR algorithm using a single triaxial accelerometer. They
evaluate uWave with a gesture vocabulary identified by a
VTT research for which they have recorded a library of
4480 gestures for eight gesture patterns from eight participants
over multiple weeks. They have made the dataset open source.
OU-ISIR and HAPT datasets are presented in the paper
[87], which are datasets related to human activities, such as
walking gathered by accelerometers and gyroscopes attached
to the waist. The HAG dataset was collected from 50 subjects
performing seven different activities in a controlled laboratory
environment using an IMU sensor [88]. The HAG2 dataset
is collected from 25 subjects using wearable IMU sensors
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for six different walking activities [89]. Raj et al. [90] have
collected the robita-gait dataset of different gait using an
accelerometer. For collecting the HAG3 dataset, 25 different
subjects’ data are collected for the identification of seven
different walking activities using accelerometer readings [91].
The CASIA-B dataset contains the human walking pattern
of 124 subjects collected using a camera, and CASIA-C
contains 153 subjects and considers four variations of walking
collected using the infrared camera that captures thermal
images [92]. It can be easily shown that many preprepared
datasets have set their agenda to identify walking activities
because human walking styles, such as walking, running, and
jumping, are an important field for activity recognition. Now
that we have briefly introduced all the datasets, we want
to perform a quantitative analysis of the information in the
relevant table columns. Names ActRecTut, the Car Quality
Inspection, the Woodshop, the Drink and Work, the Daily and
Sports Activities dataset, HASC, Openpose, USC-HAD, SHO,
Opportunity, the Skoda Mini Checkpoint dataset, Actitracker,
Ubicomp08, Bookshelf, Mirror, Intel Research, the MIT
Place Lab dataset, the UC Berkeley WARD Dataset, CMU-
MMAC, HHAR, SHL, SARD, UniMiB SHAR, ExtraSensory,
FIC, WHARF, SBRHA, HAG, HAG2, HAG3, robita-gait,
CASIA-B, CASIA-C, and uWave are each used in only one
paper. From the Physionet website, two separate datasets have
been used once each. The Car Quality Control dataset, OU-
ISIR, HAPT, and UTD-MHAD are used twice. The Daphnet
dataset and the Darmstadt Daily Routines dataset are used in
three papers. PAMP2 is used four times. WISDM is used five
times. MHEALTH has been used six times. HAR Using the
Smartphones dataset has been used seven times. 46 separate
datasets have been introduced, 12 of which are related to the
application of (HAR and GR), 30 of which are related to HAR,
one is related to GR, and three of which are related to GA.
The use of (HAR and GR) is usually related to the activities
that are done by the subject’s hand and can be interpreted as a
gesture. This is clear from the description of each dataset.
By checking the sensors used column, we get interesting
results. The definition of sensor categories in Section II-A1 is
valid here as well. Only in this section, there are some sensors
that were not used in Section II-A1, and we will have a brief
overview of them. The new sensors presented in this section
are magnetic field sensors, linear acceleration sensors, real-
time clocks, tilt switches, and IR/V light sensors. Magnetic
field sensors and linear acceleration sensors are motion sensors
that act in a way like magnetometers and accelerometers,
respectively, and generally, are not considered separate sensors
from them. The real-time clock is generally not included in the
work scope of this article and is not addressed, but, due to the
respect of the producers of the datasets, it is only present in the
according table and is not present in the statistical analysis. Tilt
switches or tilt sensors, sometimes called inclinometers, are
used for measuring the angles or tilts of objects. Infrared light
sensors are used to detect infrared light emitted by individuals
or objects and are not capable of detecting visible light. The
visible light sensor does not need a special definition. As in
Section II-A1, we perform numerical analysis on the number
of sensors used, then place the sensors in the mentioned

categories, and analyze the results seriously. The accelerometer
has been repeated 67 times and has been ranked first again.
The second place, as before, belongs to the gyroscope with
43 uses. The magnetometer has been used 21 times and ranks
third. The fourth place goes to the temperature sensors with
eight uses. The ECG ranks fifth with seven uses. Camera,
light, and heart rate are ranked sixth with five uses each.
The orientation sensor and compass are ranked seventh with
four uses, followed by tilt switches that are used three times.
The FSR force sensor along with the UWB tag, pressure
sensor, microphone, and GPS is ranked ninth. All these sensors
have been used twice. The magnetic field sensor, ultrasonic
transmitter (sensor), PPG, touch, linear acceleration sensor,
proximity, audio, and humidity each with only one use is
ranked tenth. The accelerometer and gyroscope sensors have
kept their position, and to some extent, these results confirm
the validity of the above results. Now, we specify the sensors
that are placed in each category. Sensors placed in the motion
sensor category are accelerometers, gyroscopes, compasses,
magnetometers, magnetic field sensors, orientation sensors,
linear acceleration sensors, and tilt switches. This category
has been used 144 times. The sensors that make up the
category of biological and chemical sensors are temperature,
ECG, HR, PPG, and humidity. This category has been used
22 times. The sensors that make up the category of audio
and visual sensors are the camera, microphone, and audio
sensor. These sensors have been used a total of eight times.
Optical and light sensors, including light sensors, IR/V light
sensors, and HF-light sensors, are used five times. Position
and tracking sensors’ categories include UWB tags and GPS.
This category is used four times. The category of pressure and
force sensors has been used four times again. Motion detectors
with an ultrasonic sensor as their representative along with
proximity sensors are used only once. The other categories,
which include touch sensors, were repeated one time, too.
Bend sensors are not used in preprepared datasets. As you
can see, the first and second places go to the categories of
the motion sensor and bio and chemical sensors as in the
previous section. Because the total number of sensors used
in this section was 193 and was much less than the number of
sensors in Section II-A1, we refused to provide the percentage
share. Also, due to the smaller number of sensors, unlike
Section II-A1, we provided a complete statistical analysis.
The similarity of the results of these two sections confirms
the validity of the presented results, and in a way, the analysis
results of Section II-A1 are confirmed.

B. Preprocessing
Preprocessing actions convert raw data into a suitable and

preferred format for data processing and further analysis,
and improve the quality of the dataset. These preprocessing
actions were identified from studied papers, and segmentation
and feature extraction are considered separate steps in this
article, but, due to respect for the authors who consider it
as a member of preprocessing, they have been identified as
preprocessing in this section. Preprocessing actions are fully
presented in Table III. For a better understanding of this table,
we first briefly define each preprocessing action defined in the
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TABLE III
PREPROCESSING ACTIONS

table, specify its use, and then proceed to provide statistical
analysis. The first row presented in the relevant table belongs
to interpolation and papers that used this preprocessing action.
The main reason for using this preprocessing action is to fill
in unknown or missing data values. Increasing the sampling
rate of the sensor leads to the creation of data with unknown
values. Of course, this is not the only reason for creating
missing or unknown data. It may happen due to sensor signal
loss, failure of sensor equipment, and many other reasons. For
example, GPS data may be lost when entering a building. The
next preprocessing action is filtering. Whenever the discussion
of filtering in sensors comes up, it is unconsciously referred
to as the discussion of noise in the sensor output. Sensor
noise in signal processing is a general term for unwanted
and unknown modifications that a signal may suffer during
capture, storage, transmission, processing, or conversion [93].
This definition is very general, and in this section, we do
not intend to discuss the noises in different wearable sensors
and different filtering methods. The third preprocessing action
mentioned in the table of this section is data normalization.
Data normalization is actually a method that converts data
to the same scale and maps them all to the same range.
The main purpose of this preprocessing action is to reduce
the redundancy of the data, and in fact, it makes the data
consistent, that is, the data from different sensors with very
different values in the records have the same range. If the
sensor output changes independently for the same value as
the input, drift has occurred. Physical changes in the long term
cause drift, and it must be removed. The next preprocessing
action is rectification. By rectifying the output signal of the
wearable sensor, its positive or negative part is practically
removed. The rectifier has two types: full wave and half wave.
The next preprocessing action is calculating signal magnitude,
which is not as well-known as the previous preprocessing
actions. This preprocessing action is used in three papers

[94], [95], and [96]. In the papers [94] and [95], just before
extracting the features, the magnitude of the accelerometer
signal was calculated, and then, the features were extracted
from this value; in the paper [96], this action was done on the
gyroscope in addition to the accelerometer. Truncating and
trimming data preprocessing actions have been used in two
papers [97] and [98]. It is somehow related to the concept
of labeling, which is necessary for classifier training. In these
papers, the data are limited to the beginning and end of the
video clips associated with the labeling. Labeling is associated
with the training phase of classifiers and creates labeled data
for classifier training, which will be explored in the following.
In some papers, as indicated in the table, labeling is considered
a preprocessing action. Smoothing is a method to adapt to
long-term changes in the output of sensors and, at the same
time, smooth out short-term changes in the output. Smoothing
makes it easier to follow important data patterns. Signal
segmentation in the papers in the segmentation row in the
table is considered a part of the preprocessing, but, as we have
already announced, we will fully examine it as a separate step.
The next preprocessing action is creating an extra dimension
or new dimensions. This preprocessing action has been used in
two papers [99] and [100]. In the paper [99], they create a new
dimension with a special formula, such as signal magnitude,
and extract the features from four dimensions. Li et al. [100]
create four composite axes from the three main axes of each
sensor and extract features again. Calibration is a widely used
preprocessing action. Sensors must be calibrated to increase
accuracy, that is, calibration must be done on the sensor
so that the sensor works as accurately as possible. Feature
normalization, such as data normalization, actually prepares
features with different scales for use in machine learning
models. Providing the same scale for raw data, as it is clear in
the table, it has been used in only one paper [101]. Because
the sensor data from different participants are different in
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terms of amplitude, they have provided a special formula
that standardizes the raw data. To define signal amplification,
we are satisfied with this general definition, signal ampli-
fication causes the output to be larger and its value to be
proportional for subsequent applications, and, in a way, it will
increase the signal strength. Wavelet transform (WT) mainly
for noise reduction preprocessing action acts like filtering in
terms of application, but, since it uses a special filter to reduce
noise, we will deal with it separately. Research to find new
methods of noise removal is still ongoing; a WT is a powerful
tool for this field, and its combination with other noise removal
methods will improve performance [102]. Most of the time
information can be seen in the frequency domain much easier
than in the time domain. It is very important to get the
time–frequency characteristics of nonstationary signals. WT is
particularly suitable for noise removal in these cases [102].
Removing the offset or distributed classifier (DC) component
is the last preprocessing step because feature extraction will
be explained fully later. The DC component or DC bias is the
average amplitude of the waveform usually in the time domain,
and the sensor offset means that the sensor output is higher or
lower than the original value. In papers [103] and [104], they
removed the DC component by subtracting the mean of signals
from the raw data of the sensors. Hegde et al. [105] have
presented a new signal preprocessing methodology to elim-
inate the offset of insole pressure sensors. Now, we provide a
general quantitative analysis of preprocessing actions and the
number of uses of each. A total of 163 times the mentioned
preprocessing actions have been used. Filtering mainly for
noise removal has been the most used preprocessing action
with 63 repetitions and a share of about 39%. The second
place goes to data normalization, which has a share of about
12% with 20 uses. Calibration with 12 times of use has a
share of about 7%. Amplification is in the next rank with
nine times of use and a share of about 6%. Segmentation has
a share of about 5% with eight uses. Each of interpolation,
rectification, and smoothing has a share of 4% with seven
uses. Drift removal and labeling have a share of 3% with
five uses. WT mainly for noise reduction, with four times
of use, has a share of 2%. Calculating signal magnitude,
removing offset or DC component, and feature extraction
have been used three times each and have a share of about
2%. Truncating and trimming data, and creating an extra
dimension or new dimensions along with feature normalization
have a small share of 1% with two times of use each. For
providing the same scale for raw data, we consider a 1%
share by being it in only one paper. As it is known, a total
of 18 preprocessing actions are known in the papers, a total
of 163 times have been repeated in the corresponding table,
and the share of using each and the number of times of use
for each action were determined. Fig. 3 is provided for a
better understanding of this numerical analysis and visually
compares the number of times each preprocessing action
is used.

C. Data Fusion
Data fusion is the process of combining data from different

sensors to have a single data. After reading several papers,

Fig. 3. Most commonly used preprocessing actions based on the
number of repetitions in the papers. Vertical axis: the number of times
the preprocessing actions are used. Horizontal axis: the names of the
preprocessing actions.

Fig. 4. Data-level fusion.

Fig. 5. Feature-level fusion.

three levels of fusion are considered for the data: 1) data
level; 2) feature level; and 3) classification level [106], [107],
[108], [109], [110], [111], [112]. To define each of these levels,
we use the figure drawing. However, we will briefly introduce
some famous algorithms for these levels, or we will introduce
a reference paper for more familiarity with related algorithms.
Figs. 4–6 show the data-level fusion, the feature-level fusion,
and the classifier-level fusion, respectively. According to the
studied papers, estimation algorithms are mostly used for
level 1. When we hear the word estimation, we remember
the Kalman filter. Kalman filter and its nonlinear variants, i.e.,
extended Kalman filter (EKF) and unscented Kalman filter, are
recursive filters for estimation. The first two will be discussed
in detail. The weighted average fusion algorithm is one of
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Fig. 6. Classifier-level fusion.

the easiest and most popular algorithms for data-level fusion,
which takes the weighted mean of the redundant information
from multiple sensors as the fused value. The next data-level
fusion method is concatenation, which concatenates the raw
data of sensors; for example, accelerometer, gyroscope, and
EMG sensor data can be concatenated into a single input
vector [106]. The least-squares method is a nonrecursive esti-
mation method and is normally used only to merge redundant
data [108]. This method works by minimizing the squared
difference between the observed data and the expected values.
Particle filter somehow acts like Kalman filter and estimates
the posterior distribution of the state of the dynamical system
conditioned on the data. Classification algorithms are the most
widely used methods for level 2, and inferential algorithms are
used in level 3. Now, we introduce some of the famous clas-
sification algorithms for use at the feature-level fusion. These
algorithms include SVM, k-nearest neighbor (KNN), k means,
LSTM, and ELM. The support vector machine (SVM) is a
supervised learning method. A standard SVM is a binary
linear classifier. The key idea is to generate an optimized
discriminant, hyperplane, to classify the training data into
two classes. The optimal hyperplane in SVM means that the
classification has minimum errors and the maximum margin
between the two classes [108]. Assigning a point to one of the
+1 or −1 classes is done using a linear classifier function.
To classify more than two classes with SVM, we need to
change the structure, which is known as one versus all. The
KNN algorithm is a very widely used supervised classification
algorithm. The algorithm calculates the distance between the
unknown data and all data samples usually using the Euclidean
distance function, but it also can use distance functions, such
as Minkowski, correlation, and Chebyshev. Then, select the K
closest samples to the unknown sample, and according to what
class the neighbors of this data belong to, it determines the
class of the unknown data by voting. Unlike KNN, k means is
an unsupervised method. In this algorithm, K is the number of
clusters defined in advance by the user, and when the algorithm
comes across unknown or unlabeled data, it selects the final
data class from K clusters through an iterative method. In fact,
in this algorithm, the final answer is determined through the
minimization or maximization of an objective function. The

LSTM network is a special type of recurrent neural network
(RNN). RNN is a type of feedforward neural network that has
internal memory. This network is a neural network that has a
loop in its structure through which the output of the previous
step is entered into the network along with the new input. This
feature makes it able to work with sequential data. RNNs may
struggle with long-term dependencies. LSTMs, which have
built-in cell states and gates, i.e., the forget gate, the input
gate, and the output gate to control the flow of information,
solve the long-term memory problem of the RNN network and
capture dependence at different time intervals. An extreme
learning machine (ELM) is a special type of single-layer
feedforward neural network. Unlike in traditional feedforward
neural networks where training the network involves find-
ing all connection weights and biases, in ELM, connections
between input and hidden neurons are randomly generated
and fixed, which means that they do not need to be trained.
Thus, training an ELM becomes finding connections between
hidden and output neurons only, which is simply a linear
least-squares problem whose solution can be directly generated
by the generalized inverse of the hidden layer output matrix
[26]. By applying Mercer’s condition to traditional ELM,
a kernel ELM (KELM) is obtained [26]. Traditional ELM
has less generalizability than KELM. To address the issue
of imbalanced classwise data distribution, a weighted ELM
(WELM) can be used [26]. ELM may cause the overfitting
problem and also does not perform well in the presence of
outlier data; that is why regularized ELM is introduced to
solve such problems. The variants of ELM, including KELM,
WELM, and regularized ELM, are used directly to handle the
multiactivity classification problem, without involving the one-
versus-one or one-versus-all method [26]. Interested parties
should refer to the paper [112] to learn about some of the
famous classification-level fusion algorithms. Anyway, we will
also introduce some of the most famous and widely used
classification-level fusion algorithms. Majority voting is one
of the most famous classifier-level fusion methods, which is
a member of the family of voting methods, However, this
algorithm has been examined separately both in statistical
analysis and performance introduction [112]. In this method,
there are several classifiers in the system, each providing a
single class label; the algorithm sums the predictions for each
label and selects the label with the majority vote. The Bayesian
fusion methods can be applied to the classification-level fusion
under the condition that the outputs of the classifier are
expressed in posterior probabilities [112]. Bayesian fusion
methods include algorithms that work based on the Bayesian
theory; these algorithms can be used both in feature-level
fusion and classification-level fusion. Boosting algorithms are
algorithms that combine several weak classifiers and create a
stronger classifier. These algorithms have led to the production
of new classification algorithms. Adaboost and Gradient boost-
ing are such algorithms that are usually created by combining
decision trees. In general, joint boosting is very similar to
boosting in terms of performance and structure [51] and is
not considered separately in the statistical analysis. These
algorithms are a bit more complicated than boosting, and as
a result, they are slow algorithms, but they are more robust
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against uncertainties. Stacking algorithms, which are one of
the most widely used algorithms at this level, are algorithms
in which the classification results of several classifiers are
provided to a metaclassifier that determines the final clas-
sification result. Fuzzy integral algorithms, fuzzy template
algorithms, Dempster–Shafer methods, products of experts,
and neural networks have similar performances to Bayesian
fusion methods. These algorithms operate on classifiers that
produce so-called soft outputs. The outputs are the real values
in the range [0, 1]. These values are referred to as fuzzy
measures, which cover all known measures of evidence. Mea-
sures of evidence are used to describe different dimensions
of information uncertainty. These algorithms try to reduce
the level of uncertainty maximizing suitable measures of
evidence [112]. The intersection of Neighborhoods and Union
of Neighborhoods are based on a class set reduction, and their
objective is to reduce the set of considered classes to as small
a number as possible but ensure that the correct class is still
represented in the reduced set. These algorithms try to find the
tradeoff between minimizing the class set and maximizing the
probability of inclusion of the true class [112]. The highest
rank method, the Borda count method, and logistic regression
aim at a class set reordering to obtain the true class ranked as
close to the top as possible. These algorithms try to improve
the overall rank of the true class [112]. It is not bad to know the
strengths and weaknesses of these algorithms. An advantage
of the highest rank method is that it utilizes the strength of
every single classifier, which means that, as long as there is
at least one classifier that performs well, the true class should
always be near the top of the final ranking. The weakness is
that combined ranking may have many ties, which have to
be resolved by additional criteria. The Borda count method
is easy to implement. The weak point of this technique is
that it treats all classifiers equally and does not take into
account individual classifiers’ capabilities. This disadvantage
can be reduced to a certain degree by applying weights and
calculation of the Borda count as a weighted sum of a number
of classes. The weights can be different for every classifier,
which, in turn, requires additional training [112]. The Borda
count method does not recognize the quality of individual clas-
sifiers’ outputs. An improvement can be achieved by assigning
the weights to each classifier reflecting their importance in
a multiple-decision system and performing so-called logistic
regression [112]. All these proposed algorithms, i.e., Intersec-
tion of Neighborhoods, Union of Neighborhoods, the highest
rank method, the Borda count method, and logistic regression,
may be applied to the same problem so that the set of classes
is first reduced and then sorted [112]. A bagging algorithm
creates a metaclassifier that runs each of the constituent
classifiers on random subsets of the target dataset and then
aggregates their predictions to form a final decision. Dynamic
classifier selection, classifier structuring and grouping, and
the hierarchical mixture of experts operate on the classifiers
rather than their outputs, trying to improve the classification
rate by pushing classifiers into an optimized structure [112].
The hierarchical mixture of experts does not seem to be
applicable to high-dimensional data because high-dimensional
data can lead to increased variance and numerical instability

[112]. Voting methods, of which majority voting is one of the
main algorithms, are similar to the behavior-knowledge space
(BKS) method in terms of performance. Classifiers producing
crisp, single-class labels provide the least amount of useful
information for the fusion process. The fusion process with
these classifiers can be upgraded by voting methods [112].
Voting strategies can be applied to multiple classifier systems
assuming that each classifier gives a single class label as
an output. There are several approaches to the combination
of such uncertain information units to obtain the best final
decision. However, they all lead to the generalized voting
definition [112]. The BKS method can efficiently aggregate
the decisions of individual classifiers. This method provides a
K -dimensional knowledge space by collecting the records of
the decisions of all K classifiers for each learned sample, then
combines decisions generated from individual classifiers, and
enters a BKS method unit of the mentioned space. A unit of
BKS is an intersection of decisions of every single classifier
and makes a final decision by a rule that estimates the balance
between the current classifiers’ decisions and the recorded
behavior information the knowledge in the BKS unit [112].
Now that we are familiar with the performance of famous
and widely used fusion algorithms of every level, we intend
to specify more precisely the algorithms that can be used
at each level. Papers that have used these levels directly
with mentioned names or mentioned the fusion algorithm
precisely are listed in Table IV. Also, the papers that have
used data fusion without presenting the level are not present
in this table and are not counted among the final statistics.
In this table, d, f, and c stand for the data level, the feature
level, and the classifier level, respectively. Now, we present
a detailed numerical analysis of the algorithms used at each
level. First, we start with the data level. Eight papers directly
refer to this level of data fusion and present 13 algorithms.
A total of seven papers have mentioned the Kalman filter
algorithm for data fusion at this level. Six papers mentioned
the Kalman filter algorithm, and one paper mentioned both
the Kalman filter and the EKF algorithms. Therefore, the
Kalman filter with seven times of use has a share of about
54%. The weighted average method along with concatenation
each has a share equal to 15% by being used only twice.
The least-squares method and the particle filter have the least
number of uses and have a share of about 8% with one
use. Feature-level fusion has been proposed in 14 papers.
In total, these 14 papers have proposed 26 algorithms for data
fusion at this level. SVM is one of the leading algorithms
at this level with three times of use and a share of about
12%. According to the table, three different variants of ELM
have been used in only one paper for feature fusion. These
variants are KELM, WELM, and regularized ELM. Therefore,
this fusion algorithm is one of the most widely used fusion
algorithms at the feature level, with three uses and a 12%
share. The k means, KNN, and LSTM derivatives (bi-LSTM
and stack of LSTM layers) have been used twice and have
a share of 8%. All subsequent feature fusion algorithms have
been used only once and have a share of 4%; these algorithms
include concatenation, cluster analysis, Kohonen feature map,
learning vector quantization, artificial neural network (ANN),
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decision tree, GMM, PCA, CCA, combining features into a
single matrix, conditional random field (CRF), CNN, a score-
based sensor fusion scheme, and the fuzzy logic. Fusion at
the classifier level has been proposed in 27 papers. A total
of 72 algorithms have been proposed, which are divided into
35 distinct algorithms. In the meantime, majority voting is
the most widely used classifier-level fusion algorithm with
ten uses and a share of 14%. After that, Bayesian approaches
with seven uses have a 10% share. The terms that specify
these algorithms in the relevant table are Bayesian inference,
Bayesian inference, such as naïve Bayes, Bayesian fusion
methods, Bayesian fusion, naïve Bayes combiners (NBCs),
Bayesian framework, and Bayesian inference. The third place
goes to boosting with six times of use in papers and a
share of about 8%. The closest follower of boosting is the
fusion method named stacking. This method is used only
once less than the previous method and has a share of about
7%. Fuzzy methods have also been used four times (6%
share); in total, three papers have used these methods, and
according to the table, one paper has mentioned two different
methods. The terms that are referred to as fuzzy methods are
fuzzy, fuzzy logic, fuzzy integrals, and fuzzy templates. The
Dempster–Shafer method is ranked next with three uses and
has a small percentage of 4%. The Borda count method also
has the same conditions. Neural networks, highest rank, logis-
tic regression-based methods, bagging, hierarchical weighted
decision (HWD), and class-based weighted fusion all have a
share of about 3% with two times of use. Now, we specify
more precisely the terms that are included in some of these
methods. Two variants of HWD have been used in only one
paper. The terms presented in this method in general numerical
analysis are HWD and a novel HWD algorithm, called DC.
Class-based weighted fusion has the same conditions as the
previous one, and the terms presented in this method in
general numerical analysis are posterior-adapted class-based
weighted fusion and class-based weighted fusion. All next
algorithms used at this level are used only once and have a
share of 1%. These algorithms include average output, genetic
algorithms (GAs), evolution algorithms, topic models, equal
weight fusion, recall combiners, body multipositional decision
selection, plurality voting, an average of probabilities, dynamic
classifier selection, classifier structuring, grouping, a hier-
archical mixture of experts, voting methods, BKS method,
Intersection of Neighborhoods, Union of Neighborhoods, the
product of experts, summation, the logarithm opinion pool
(LOGP) technique, hierarchical decision (HD), model-based
fusion, a decision tree, and multistream hidden Markov models
(HMMs).

D. Signal Segmentation
Segmentation is used frequently in papers and identifies

important information in the preprocessed dataset. To define
signal segmentation precisely, we use the definition of [113].
Azami et al. [113] describe signal segmentation as follows:
“signal segmentation is the act of splitting a signal into smaller
parts that each has the same statistical characteristics, such as
amplitude and frequency.” In [51], it is stated that segmenta-
tion can be done using the following approaches: 1) sliding

window; 2) energy-based segmentation; and 3) additional
sensors and contextual sources. Of course, other approaches
in addition to these three methods are presented in the papers.
In this section, we present the segmentation algorithms used in
papers. Before providing a comprehensive numerical analysis
of the number of each algorithm or approach used, we first
provide a brief description of the performance of each member
of the column named segmentation algorithm used in Table V.
The first and perhaps the most widely used approach in this
field is the sliding window. In the sliding window approach,
a window is moved over the time series data to “extract” a
portion of the data that can be used in subsequent processing
steps [51]. Energy-based segmentation relies on the fact that
different activities are performed with different intensities. The
intensity difference is directly related to the different energy
levels of the sensor signals. The signal energy (E) is calculated
through the signal energy formula. By thresholding on E ,
data segments belonging to the same activity can be found
[51]. Additional sensors and contextual sources that we simply
refer to as additional sensors are the third approach discussed
for segmentation. Sensor data recorded with one modality
can be segmented through information derived from other
modalities [51]. For example, using GPS traces, acceleration
data recorded using mobile phone accelerometers can be seg-
mented [51]. The head-based segmentation scheme, which is
proposed in two papers, was proposed by Bulling et al. [114].
They developed a segmentation approach that requires only
a single-axis accelerometer on the head. Their segmentation
is based on two hypotheses. First, the reading happens only
when the subject’s head is down. Second, the up and down
movements of the head can be detected using the mentioned
accelerometer. They detect these head movements by thresh-
olding the x-component of the denoised, mean-subtracted head
acceleration signal [114]. Blanke et al. [73] use a segmen-
tation technique that replaces the standard sliding window
approach. This segmentation technique is based on the human
body model. Assuming low-motion moments at the beginning
and end of interactions, segments of interest are created using
such points [73]. Symbolic aggregate approximation (SAX)-
and GA-based approaches are proposed in the paper [115].
The former approximates a given time series by piecewise
constants encoded in a discrete alphabet, and the latter uses
evolutionary search to find a suitable segmentation. The seg-
mentation approach proposed in the paper [116] is obtained by
thresholding the acceleration variance and pairwise combined
segments. In the paper [117], a rectangular window function
with a window length of 4 s is used for segmentation. The win-
dowing itself is done in steps of 0.5 s. Khairuddin et al. [118]
have segmented the EMG signals into two distinct sections:
preintention and intention. Their purpose was to identify the
intention of the movement. The intention signal is recorded
based on the definition of a muscle burst that transpires
between 40 and 100 ms prior to any muscle activities. In the
paper [119], the autocorrelation function (ACF) is used for
the segmentation of accelerometer data by devising a concept
of tuning parameters that are based on minimum standard
deviation. It does not seem necessary to provide numerical
analysis in this section because the sliding window is at the
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TABLE IV
FUSION STRATEGY AND METHODS USED

top by a large margin compared to other approaches. Despite
this general analysis, a more detailed numerical analysis is not
without grace. Papers have announced their used segmentation
approach a total of 52 times. The sliding window approach
with 34 uses and a 65% share is the most used segmentation
approach. The second place is dedicated to energy-based
approaches with seven uses and a 13% share. Additional
sensors with two times of use and a share of 4% along with
the head-based segmentation scheme are ranked third. Other
algorithms and approaches are ranked next by being used in
only one paper and about 2% share each.

E. Feature Extraction
In this section, we present feature extraction methods, the

predominant type of features mentioned in papers, and the
domain of features of papers. Of course, it is also pos-
sible for data to be used raw, and some newer machine
learning methods, namely, deep learning methods, auto-
matically extract features and do not require handcrafted
features. First, we describe the feature extraction methods
presented in Table VI. The spectral analysis feature extraction
method for extracting the features of the frequency domain
is described in the paper [27]. This method can also be
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TABLE V
SEGMENTATION ALGORITHMS

TABLE VI
FEATURE EXTRACTION METHOD

used to extract time–frequency-domain features [120]. Fourier
transform and its derivatives such as the fast Fourier transform
(FFT) or short-time Fourier transform (STFT) are mainly
used to transform the signal from the time domain to the
frequency domain and are widely used methods in extracting
features with frequency information. This transform is useful
in extracting features with frequency and time–frequency
domains. In the paper [57], methods including principal com-
ponent analysis (PCA), linear discriminant analysis (LDA),
independent component analysis (ICA), and factor analysis
(FA) are known as traditional feature extraction methods.
In these methods, the feature domain is not provided clearly.
WT and its continuous (CWT) and discrete (DWT) derivatives
are used to extract features in frequency and time–frequency
domains. Usually, WT coefficients provide suitable features
for classification. In paper [121], the histogram method is
used to extract features from American Sign Language signs.
Perumal and Sankar [58] extracted various gait features using
peak detection and pulsewidth estimation techniques. Dis-

crete cosine transform is a special case of Fourier trans-
form that uses only real numbers, unlike the aforementioned
transformation that uses complex numbers. In paper [122],
empirical-mode decomposition (EMD) is used for extract-
ing time–frequency features. The paper [92] included fea-
ture extraction techniques, namely, gait energy image (GEI),
histogram of gradients (HOG), and Zernike moment with
radon transform for object identification. Regarding the type of
feature, it should be explained that the signal-based statistical
feature refers to the statistical properties obtained from the
sensor data, for example, the variance or the mean of the
acceleration signals. Statistical features available in the papers
are mean, standard deviation, variance, minimum, maximum,
median, percentiles, mean absolute deviation, mode, skewness,
rms, interquartile range, zero crossings, and so on. Regarding
structural features, it should be said that these features are also
based on polynomials of signals. Transient features are trends
(increasing and decreasing), the magnitude of change, and so
on [123]. Medical features, especially found in medical appli-
cations, are defined by physicians such as freezing index prop-
erties and exercise intensity [99], [124]. Body model-based
features are features based on motion primitives defined in
papers [54], [125], [126]. Gait features are also features that
have a spatial, temporal, or spatiotemporal domain, such as
stance time, step velocity, and step width, refer to Table VII
for more information [127]. We briefly explain some of the
items in the table related to the domain of features. The
time and frequency domains do not need a special definition,
but, for the time–frequency domain, we must state that we
will check this domain by mentioning an example; if we
calculate the Fourier or wavelet coefficients for a signal in
time windows and average these coefficients at each window,
we will have a feature with a time–frequency domain. The
spectral features themselves are actually frequency domain
features, but, in some papers, they are considered separate
domains. Spatial features are caused by changes in space due
to body motion, while temporal features represent time and
its related factors during motion. Therefore, the second case
can be considered as a kind of time feature. Spatial features
are mainly related to gait features. Spatiotemporal features
will have spatial and temporal information on wearable sensor
signals. Now, we present the complete statistical and numerical
analysis of all three tables related to this section. In total,
the feature extraction methods are presented 41 times. Fourier
transforms and its derivatives are ranked first with a share of
44% and 18 times of use. The second place goes to WT and
its derivatives with nine uses and a share of 22%. Spectral
analysis with two uses has a share of 5%. Discrete cosine
transform has a similar condition to the mentioned method. All
subsequent feature extraction methods have been used in only
one paper and have a share of 2%. A total of 110 times, papers
have specified the type of feature that they use. Signal-based
statistical feature with 90 times of use has the largest share
equal to 82%. Gait features have a share of 7% with eight uses.
Medical features have a share of 6% with seven uses. Body
model-based features have a share of 3% with three uses, and
other types with a one-time use have a share of 1%. According
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to Table VIII, a total number of 100 times, papers have
presented the domain of their features. The time domain with
51 times of use has a share of 51%. The frequency domain has
a share of 32% with 32 times of use. The spatial domain has
a 7% share with seven uses. The time–frequency domain with
four times of use has a share of 4%. The other two domains
have a share of 3% with three uses. At the end of the statistical
analysis, we intend to do a comparative analysis between some
of the items in the table related to feature extraction methods.
First, we want to make a comparison between the spectral
analysis method and the Fourier transform. The main feature
domain of both of these methods is frequency, but the spectrum
is the appearance and shape of a signal in the frequency
domain, and the Fourier transforms generally transform a
signal in the time domain into a function in the frequency
domain. In general, it can be stated that all feature extraction
methods that take the signal to the frequency domain can be a
basis for the spectral analysis method. That is, by using these
methods, the signal is transferred to the frequency domain,
and then, spectrum analysis is done. Therefore, all three
proposed feature extraction methods, i.e., Fourier transform,
WT, and discrete cosine transform, can be used for this issue.
We try to have a comparative analysis between these methods.
The comparison of WT and Fourier transform has also been
discussed in Section V, but, in this section, we are also trying
to make a general comparison of these methods. The Fourier
transform decomposes a signal into simple sines and cosines.
Unlike the Fourier transform that is limited to a scaled single
sinusoidal function, the WT generates a two-parameter family
of wavelet functions by scaling and shifting the function [31].
It can be stated that the WT displays the signal in both the
time and frequency domains, while the Fourier transforms
displays the signal only in the frequency domain. Discrete
cosine transforms express a signal in terms of the sum of
cosine functions. The discrete cosine transform is very similar
to the discrete Fourier transform, and the obvious difference
between the discrete cosine transform and discrete Fourier
transform is that the former uses only cosine functions, while
the latter uses both cosine and sine. Therefore, the result of the
discrete cosine transformation has only real values. A discrete
cosine transform is equivalent to a discrete Fourier transform
of twice the length. EMD, which is another feature extraction
method proposed in this article, is a well-known method for
data analysis that breaks a signal into intrinsic mode functions
(IMFs) that describe the behavior of the signal [122]. They
consist of a single frequency or a narrowband of frequencies.
This method breaks the time signal into a series of basic
functions just like the Fourier transforms and the WTs, but,
unlike the two announced methods, this method extracts the
basic functions from the data itself. PCA is an unsupervised
linear transformation that can be used for feature extraction
and feature reduction. We are trying to provide a general
definition of how PCA works, which can be used for both
feature extraction and feature reduction. This algorithm obtains
the relationships between data using the covariance matrix.
Then, using special relations from the covariance matrix,
eigenvalues and eigenvectors are obtained. Eigenvectors are
used to transform the data into principal components, and

finally, the important principal components are selected by
examining the eigenvalues. Unlike PCA, which is an unsuper-
vised feature extraction method, LDA is a supervised feature
extraction method that is also used as a machine learning
classification algorithm. Feature extraction or feature reduction
is performed by this algorithm in such a way that the algo-
rithm calculates intraclass and interclass variances of data or
features and tries to extract or reduce features by minimizing
intraclass variance and maximizing interclass variance. ICA is
an unsupervised feature extraction method and the machine
learning algorithm that decomposes signals into independent
subcomponents of non-Gaussian nature. This algorithm can
be used for feature reduction, too. FA is also an unsupervised
machine learning algorithm that is used for feature extraction
and feature reduction; this algorithm removes the correlation
between a huge set of data or variables and extracts the basic
factors that represent the dependents. The factors that are
created show the variance caused by similarity and correlation.
Incremental FA (IFA) is the FA that calculates covariance with
an incremental approach; incremental approaches are espe-
cially used in feature reduction and feature extraction methods
to reduce time complexity and save storage space. It is not bad
to have a comparison between the performances of the above
algorithms. All these algorithms look for linear combinations
of variables that best describe the data. PCA is defined as
an orthogonal linear transformation that aims to create new
components that capture the maximum input variance. LDA
creates new components that separate classes. The goal of ICA
is to recover the original features that are mixed in a linear
combination in the input dataset. FA tries to describe a dataset
via a linear combination of variables called factors. It was tried
to check and compare the performance of the most widely used
and famous feature extraction algorithms. For more familiarity
with other feature extraction methods in the table, refer to the
relevant papers.

F. Feature Selection
Feature selection has many applications in various fields,

such as machine learning, classification, pattern recognition,
data mining, and clustering, for reducing the size of the feature
space [128], [129]. Feature selection algorithms and their type
will be specified in this section. There are three different meth-
ods for feature selection: filter methods, wrapper methods,
and embedded methods [129], [130]. Some papers have also
discussed hybrid methods for feature selection [129], [131],
[132]. Jović et al. [129] have described all these methods.
Filter methods select features based on a performance measure
regardless of the employed data modeling algorithm. Only
after the best features are found, the modeling algorithms
can use them [129]. Filter methods are mostly based on
similarities and statistical measurements. In this article, the
wrapper method is also defined as follows: wrappers consider
feature subsets by the quality of the performance on a model-
ing algorithm. Embedded methods perform feature selection
during the modeling algorithm’s execution. These methods
are, thus, embedded in the algorithm either as its normal or
extended functionality [129]. Hybrid methods were proposed
to combine the best properties of filters and wrappers. First,
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a filter method is used in order to reduce the feature space
dimension space. Then, a wrapper is employed to find the best
candidate subset [129], [132]. Before dealing with the sta-
tistical analysis, we are going to introduce the items in the
feature selection table. The minimal-Redundancy Maximal-
Relevance (mRMR) method measures the relevance and redun-
dancy of the feature candidates with the target class based
on mutual information and selects a promising feature subset
that has maximal relevance and minimal redundancy [27].
Generally, it can be said that mRMR, joint mutual information
(JMI), conditional mutual information maximum (CMIM), and
double-input symmetrical relevance (DISR) methods are based
on “relevance” and “redundancy,” and they can be considered
mutual information-based feature selection methods. The JMI
method just calculates the JMI between a target class and
each of the features, and selects the feature with the highest
performance. DISR has a similar structure to JMI. These
two methods differ only in the objective function. CMIM
selects features by maximizing mutual information with a
target class, given the preselected features. The information
gain-based feature selection method calculates the information
gain (entropy) for each feature. Features that contribute more
information will be selected, and those with lesser informa-
tion will be removed. The correlation-based feature selection
method selects the most useful features. This feature selection
method is fast and simple [59]. According to our studied
papers, this method selects features that are highly correlated
in a certain class but not correlated with each other. Relief
is a feature selection algorithm or method that calculates a
score for each feature, then uses this score for ranking, and
selects high-scoring features to continue. Many updates have
been made to fix the limitations of the ReliefF algorithm
[97]. These limitations include inadequate performance in
the presence of missing data, unreliable performance in the
presence of noise, and so on. One of the most famous of these
updates is the ReliefF algorithm, which removes some of the
limitations of the original algorithm, such as poor performance
in the presence of missing data, and can be used in multiclass
classification problems, unlike the original algorithm, which
was designed for binary classification problems. The t-test,
f-test, paired t-test, Wilcoxon sum rank test, and analysis of
variance (ANOVA) methods are statistical methods for feature
selection. All of them select the best features by thresholding
the p-value, that is, they compare this value for each feature
and select the best feature. It is better to do a comparative
analysis of how these methods work. The t-test is a statistical
test used to compare the means of two groups. The t-test can
be used as a statistical feature selection method that assigns
a p-value to the features based on their discriminability and
then selects the appropriate features based on the value of the
p-values. Paired t-test is a special type of t-test that stands in
front of an unpaired t-test; this test shows the mean difference
between two dependent groups, and the second one shows
the mean difference between two independent groups. The
f-test compares the variance of the two groups, while the
t-test compares the mean of the two groups. The Wilcoxon
sum rank test is a nonparametric statistical analysis method
that selects the most relevant features [31]. The method can

be considered as the nonparametric version of the t-test. This
method calculates the p-value and removes features that have
a p-value less than a certain threshold [31]. ANOVA is a
statistical test that can be used to analyze the difference
between the means of two or more than two datasets. It can be
said that ANOVA is a generalization of the t-test. To select the
features in this method, a variable called f-value is calculated
for each feature from the variance of the data, and then, it is
converted into a p-value, which determines the importance of a
feature, and features are selected again by applying a threshold
on this value. The p-value threshold is usually set to 0.05 [31],
[58]. All the algorithms and methods mentioned above were of
the filter type; now, we introduce the wrapper-type methods.
Backward elimination (BE), also named backward selection
or sequential backward selection (SBS), is a wrapper-type
feature selection method that starts with all the features, then
eliminates the weaker features by scoring, and selects the new
feature set. This method is a type of sequential feature selec-
tion method. The sequential feature selection method has two
types (forward feature selection and backward feature selection
or elimination) and greedily selects features. In the paper
[101], the type of this feature selection method is specified as
the sequential forward selection method, so we also explain the
forward selection method. Forward selection works exactly the
opposite of the BE method, that is, there are no features in the
model, and then one by one, features are added to the model.
In this method, the features that improve the performance of
the model in the best way are added one by one until the
addition of features does not improve the performance of the
model. Inoue et al. [62] reduced these 27 feature variables
to 13 by applying stepwise feature selection using logistic
regression. Logistic regression is a classification algorithm that
can perform feature selection by using regulatory rules and
determining penalty variables. In the paper [91], the important
features for gait activity recognition are selected using the
biogeography-based optimization (BBO) technique. BBO is
an evolutionary method. This algorithm is derived from the
theory of biogeography and is inspired by the analysis of
the geographical distribution of species. The greedy heuristic
feature selection method looks at the feature selection problem
as an optimization problem and finds local optimal solutions
for the problem. In the paper [118], the best features of the
classification process are attained by means of an extremely
randomized tree (ERT) technique. The ERT is a tree-based
ensemble learning technique that combines the results of mul-
tiple decorrelated decision trees collected. The entropy-based
information gain is essentially used as the decision criteria for
the significant features [118]. In the paper [122], to search for
the near-optimal subset of features, which maximizes classifier
performance, a floating forward–backward feature selection
algorithm was employed. The performance of each feature
subset was assessed using cross-fold validation. Sequentially,
by selecting the best feature from an unselected pool of
features, the algorithm adds the feature to the existing selected
set of features, provided that the addition of this feature
increases the classification accuracy. After the selection of
each feature, the removal of a feature from the selected set of
features was also considered. The selection procedure stopped
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TABLE VII
DOMINANT FEATURE TYPE

when no further classification performance improvement was
observed through the addition or removal of a feature from the
unselected pool [122]. Recursive feature elimination (RFE)
is a feature selection method that starts feature selection
with all features and removes weak features until a certain
number of important features remain. Ranking of features is
done using model coefficients or feature importance attributes.
RFE with cross-validation, which is abbreviated as RFECV,
as a type of RFE, performs the same feature ranking process
using the cross-validation score of the model. The brute-force
feature selection algorithm or method, which is also known
as exhaustive search feature selection, examines all candidate
feature subsets and, finally, selects the best subset in terms
of performance criteria. If the number of features is large,
this method will have a very high computation time. The last
wrapper-type feature selection algorithm that is introduced is
the Boruta algorithm, which is based on the random forest
classifier and finds the importance of a feature using shadow
features. Shadow features are random copies of all features.
This method compares the importance of the features with
their shadow features using a criterion and selects the more
important features. In total, 34 feature selection methods are
described. 20 methods are filter methods. The mrMR algorithm
is the most widely used algorithm with seven times of use
and having a share of 35%. Information gain-based feature
selection, correlation-based feature selection, and relief-based
algorithms have been used twice and have a share of 10%.
Other feature selection algorithms in Table IX are used only
once and have a share of 5%. In total, 14 methods are wrapper
methods. Two papers have not presented a specific name for
the algorithm used for feature selection; the greedy heuristic
approach along with the backward selection method has been
used two times and has a 14% share; and all the other
algorithms used for feature selection with this method are used
only once and have a share of 7%.

G. Feature Reduction
Feature reduction is one of the most famous machine

learning glossaries and terms. Feature reduction is also known
as dimension reduction, and according to the deepAI, machine
learning dictionary is the process of reducing the number of

TABLE VIII
FEATURE DOMAIN

TABLE IX
FEATURE SELECTION (METHODS AND ALGORITHMS)

features without losing important information. To differentiate
between feature selection and feature reduction, we need to
know that in feature selection, and we simply choose from
the features and do not change them, while, in dimension
reduction, some kinds of features with smaller dimensions are
produced. In this section, feature reduction or dimensionality
reduction methods are examined. Since we have explained the
main feature reduction algorithms (such as PCA, LDA, and
IFA) in the feature extraction section and considering that
the feature reduction algorithms can be used in the feature
extraction step, the performance of the remaining algorithms
will be fully investigated in Section V. Statistical analysis of
the table in this section is not necessary because the PCA
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TABLE X
FEATURE REDUCTION ALGORITHMS

algorithm is the most widely used. This algorithm has been
used in 13 papers. Since 30 times algorithms are introduced for
dimensionality reduction, the algorithm has a share of 43%.
The discriminant analysis (DA) algorithm consists of rows
with names LDA, kernel DA (KDA), and DA in Table X. This
algorithm is used in six papers and has a share of about 20%.
All the other algorithms have been used once and have a share
of 3%.

H. Classification
In the classification section, we categorize our datasets into

two or more classes, patterns, groups, and templates. We assign
a special label to each dataset. Classification as we have
specified in this article is the last step of the project. It has
also been mentioned in other papers as the last step [51], [118],
[133]. A classification algorithm, in general, is a function that
weighs the input features so that the output separates one class
into positive values and the other into negative values [134].
SVM, LDA, ANNs, KNN, logistic regression, decision trees,
and naïve Bayes can be easily used to classify the two classes.
However, most of the time, it might be necessary to classify
more than two classes; for example, we need to distinguish
between walking, running, sitting, and standing activities as
movement classes, which is needed at this time to make
changes to the structure of binary classifiers, such as SVM,
while multiclass classifiers, such as gradient boosting, do not
require structural modification. The classification algorithms
used in the papers along with their types are specified in
Table XI. An overview of the table shows that SVM and neural
networks are the most widely used classifiers, but, since neural
networks are so diverse, we have introduced each member of
this family separately in the table. Note that SVM is a neural
network only when we face a binary classification problem,
and since binary classification problems are less common
in movement classification, we consider SVM as a separate
classifier. We have shown the most commonly used machine
learning algorithms based on the number of repetitions in

the papers in the bar chart. The classification algorithms in
the papers are divided into two categories: machine learning
algorithms and classical classification algorithms. We chose
the classical term because it is hard to choose a name for the
algorithms that go against machine learning, and that choice
is because these algorithms existed somehow before scien-
tists became familiar with the concepts of machine learning.
We first turn to classical classification algorithms because,
as you can see in the table, they are less commonly used
and, of course, weaker than their competitors, the machine
learning algorithms. The most widely used of these algo-
rithms are threshold-based algorithms and correlation-based
algorithms. Threshold-based algorithms are typically used in
conjunction with flowcharts. Binary classification can be com-
pleted by identifying the threshold (usually experimentally)
and applying it to the discriminative feature. If you have
more than two classes, you need different thresholds for
different classification classes that must be properly embedded
in the flowchart. Correlation-based classification investigates
the correlation between features or raw data in order to create
a classification model. To learn more about these algorithms,
see the papers in the rows of the table called discrete WT,
threshold-based algorithms, linear classifiers, and so on. Other
algorithms are included in the table just for the sake of
familiarity. In this article, we are not interested in dealing
with classical classification algorithms, and these algorithms
will not be discussed further. The rows, which are light blue,
contain machine learning algorithms that are very versatile.
These algorithms have different categories. We have tried to
introduce a general category in this article that includes all
the different categories of these algorithms. The category that
we are considering contains supervised, unsupervised, com-
bined, rule-based, probabilistic, and reinforcement algorithms.
As you may know, supervised algorithms require labeled data
to be first trained and then tested, and unsupervised methods
do not need labels to identify the pattern. Therefore, these
two can be named the most familiar types to determine and
identify classification algorithms. Some papers, as you can
see, combine classification algorithms and invent new ones.
FFSVC, SRC-SVD, and FMM-cart fall into this category. This
can lead to the production of semisupervised methods for cases
where we have a few labeled or trained data. Probabilistic
algorithms are used when we have uncertainty in our model
or data; perhaps, the main uncertainty that we all know is
noise. According to the table data, it is easy to determine
that the most famous rule-based classification algorithm is
fuzzy logic. This logic, which is a kind of extension of
Aristotelian logic, is the best way to deal with human logic.
Fuzzy logic is the best option when we are faced with the
ambiguities of human logic in classification, and we want to
translate these ambiguities in the best way for the machine.
Of course, as you can see in the table, fuzzy logic is not the
only rule-based algorithm, and there are other types, including
rough sets. Of course, other categories can also be found
in various papers, and unfortunately, in our studied papers,
reinforcement learning algorithms, such as genetics, have not
been used. However, it is possible to use such machine learning
algorithms for the classification. As you can see, supervised
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(Continued.) CLASSIFICATION ALGORITHMS

algorithms are the most widely used algorithms in this field.
We use bar charts to identify the most commonly used types
of machine learning algorithms. For a better understanding of
bar charts, a full numerical analysis will also be provided.
However, before that, we are trying to introduce some com-
monly used machine learning algorithms, some algorithms
have been implicitly introduced in Section II-C, and we will
not introduce them in this section again. Decision trees are one
of the most widely used nonparametric supervised machine
learning algorithms. The nonparametric means data analysis
is done without different assumptions or specific parameters.
This algorithm has a branched tree-like structure. The decision
tree consists of different nodes. The main node is the root
node, which is considered the starting point of the algorithm,
and the leaf nodes are the endpoints of the tree branch and can
represent the endpoint of the set of decisions; the leaf with the
most records can be introduced as a class. A random forest is
a metaclassifier consisting of several decision tree classifiers.
This classifier usually has a better classification accuracy
than a decision tree and prevents overfitting. AdaBoost is a
metaclassifier that can combine several weak classifiers, such
as decision trees, and improve performance. AdaBoost is an
abbreviation for adaptive boosting. Logistic regression is an
example of a binary supervised machine learning algorithm
used for classification. It can be used to calculate or predict
the probability of an event with two states (0 and 1). In general,
this algorithm is used for binary classification problems, but,
by changing the structure and creating the multinomial logistic
regression algorithm, it can also be used in multiclass problems
[123]. The HMM is a statistical Markov model that models
the system as a Markov process with hidden states. The
HMM is a generative probabilistic classifier. HMMs have
been successfully used in modeling different types of time-
series data, such as speech recognition and gesture tracking
[35]. Neural networks, also known as ANNs, form a large
class of machine learning classifiers and have different types

that are specified separately in the table of classification
algorithms. We try to introduce famous types of algorithms
in the relevant table. Neural networks simulate the way the
human brain classifies related concepts. A neural network
consists of several neurons in a layered structure. The neural
network forms a mathematical function that takes the input
data, transfers it to the output, learns the pattern, and performs
the classification. The feedforward neural network is a neural
network that does not form a cycle or loop in the connections
between the constituent units. This neural network is the first
and simplest type of neural network. In this neural network,
information is transferred in one direction from input to output.
The multilayer perceptron neural network is also a special
type of these neural networks, which, in its simplest form,
consists of three layers: the input layer, the hidden layer,
and the output layer. Information is transferred from the
input to the output, and the output layer is responsible for
the classification process. The backpropagation (BP) neural
network (BPNN) is the feedforward neural network trained by
the backpropagation method, which is a mathematical method
to increase classification accuracy. A fully connected net (FC
net) is one of the most commonly used neural networks. In FC
net, every neuron in layer I have a connection with every
neuron in layer I + 1, while the nonfully connected networks
only have partial connections [106]. Deep neural networks
refer broadly to neural networks that exploit many layers
of nonlinear information processing for feature extraction
and classification, organized hierarchically, with each layer
processing the outputs of the previous layer [67]. A deep belief
net (DBN) is a deep neural network model that is made by
stacking several restricted Boltzmann machine (RBM) layers.
The output of the RBM at the previous layer is set to be
the input of the RBM at the current layer, and there will
be a soft-max layer at the top RBM layer. The purpose
of the soft-max layer is to transform the model scores for
each class into the normalized probability distribution [106].
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A convolutional neural network (CNN) is a feedforward deep
neural network that uses convolution operation in some layers.
CNN typically consists of a combination of three different
layers: a convolutional layer, a pooling layer, and a fully
connected layer. In the convolutional layer, the convolution
operation is applied to learn local features automatically.
A pooling layer is added to reduce the training time and
avoid overfitting by reducing the feature representation. The
output of the pooling layer provides high-level distortion-
invariant features. Both convolutional and pooling layers could
be applied multiple times depending on the CNN structure
[55]. The automatically extracted features by these layers
are used to train a fully connected neural network layer.
The output of this fully connected layer is used to compute
the probability distribution over the learned activity classes
inside a soft-max layer [55]. One of the main benefits of
using CNN is that it does not require any prior knowledge
about the data [55]. Gated recurrent units (GRUs) follow a
very similar approach to LSTM units. GRU has an updated
gate and a reset gate that are responsible for the flow of
information vectors. These gates combinedly decide what part
of the tensor needs to be remembered in the next step and
which may be updated [88]. Dynamic neural networks are
actually opposite to static neural networks and are created with
structural changes in routine neural networks, for example,
creating feedback from output to input in the structure of a
static neural network can lead to the creation of a dynamic
neural network. So far, we have tried to introduce numerous
neural network algorithms that are used for classification. Now,
we introduce some other famous or widely used algorithms in
this field. To get acquainted with other less-used algorithms in
the table, refer to the papers provided for them. As we have
previously announced, DA divides the data into two or more
classes by increasing the interclass variance and decreasing
the intraclass variance. There are two types of DA classifiers,
namely, LDA and quadratic DA (QDA) classifiers. In LDA
classification, the decision boundary is linear, while the deci-
sion boundary in QDA is nonlinear. The second one is more
flexible than the first one. Gaussian mixture models (GMMs)
are probabilistic machine learning classification models that
assume that a dataset can be considered as a mixture of several
Gaussian probability distributions and perform classification
based on these criteria. CRF is a class of statistical modeling
methods used for structured learning and prediction. CRF can
support more complex and useful feature sets by modeling the
posterior probabilities [40]. We already explained the KNN
classification algorithm; if k in that algorithm is considered
equal to one, the nearest neighbor algorithm is born. In this
algorithm, the output is simply labeled to the nearest neighbor.
Topic models stem from the text processing community. They
regard a document—e.g., a scientific paper—as a collection
of words, discarding all positional information. This is called
a “bag-of-words” representation. As a single word captures a
substantial amount of information on their own, this simplifi-
cation has been shown to produce good results in applications
such as text classification [70]. Perhaps, the presence of
this classification algorithm among movement classification
algorithms is surprising. However, Huynh et al. [70] have

introduced a novel approach for modeling and discovering
daily routines from on-body sensor data based on this machine
learning algorithm. Inspired by machine learning methods
from the text processing community, they have converted a
stream of sensor data into a series of documents consisting of
sets of discrete activity labels. These sets are then mined for
common topics, i.e., activity patterns, using latent Dirichlet
allocation. In an evaluation using seven days of real-world
activity data, they have shown that the discovered activity
patterns correspond to the high-level behavior of the user and
are highly correlated with daily routines. String search (or
string matching) algorithms are for finding places where one
or more strings are found in a larger string or text. They are
used to find the strings of a text or string. The use of this
algorithm in the field of movement classification is also a bit
surprising, so, to disambiguate, we present some examples of
how to use it. In the paper [114], eye movements are recorded
using an EOG system. The string matching algorithm is used
for explicitly modeling the characteristic horizontal saccades
during reading. In the paper [115], string matching is used to
spot occurrences of gestures in a continuous stream of data.
Now, we will check the statistics of the algorithms in the
table. The total number of papers presented in Table XI is 402,
including both machine learning and classical algorithms. The
SVM algorithm with 67 uses has a share of 17%. The KNN
algorithm with 35 uses has a share of 9%. Bayes derivatives
include all the classification algorithms that use the Bayes
probability law for classification, such as naïve Bayes and
Bayes net. These algorithms also have a share of about 8%
with 31 uses. The decision tree with 27 uses has a share of
7%. HMM, with 24 times of use, has a share of 6%. Random
forest with 17 uses and a 4% share is in pursuit of HMM.
Neural networks or ANNs have a share of 4% with 16 uses.
CNN also has a share approximately equal to the previous
algorithm with 15 uses. The DA algorithm is in the next rank
with 13 uses and a share of about 3%. This algorithm has
different types, such as linear and quadratic, which are used
in papers for classification. The multilayer perceptron is also
used in 13 papers and has a share of 3%. LSTM is used
ten times in papers and has a 2% share. Fuzzy algorithms
are used eight times in papers and have a share of 2%.
Other machine learning algorithms have a percentage share of
about 2% or less and are used less than eight times, so their
presence in the related bar chart has been omitted. As can
be seen, supervised algorithms, such as SVM and KNN, are
at the top of use, which is not far-fetched and is predictable,
because these algorithms have proven their usefulness over the
years. In total, there are 402 proposed classification algorithms,
21 are classical algorithms, and their presentation in Fig. 7(b)
is omitted; 280 algorithms are supervised and have a share of
about 70%. The number of probabilistic algorithms is 65, and
their share is 16%. Combined algorithms have been used in
21 papers and have a share of about 5%. Rule-based machine
learning algorithms are used nine times and have a share
of 2%. Six algorithms are unsupervised and have a share
of 1%. With these numbers in mind, the reader can have
a better understanding of bar charts and can choose freely
from the most used classification algorithms and classification
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Fig. 7. (a) Most commonly used machine learning classification
algorithms based on the number of repetitions in the papers. Vertical
axis: the number of times the algorithms are used. Horizontal axis: the
names of the algorithms. (b) Most commonly used machine learning
classification algorithm types based on the number of repetitions in the
papers. Vertical axis: the number of times the classification algorithm
types are used. Horizontal axis: the names of the classification algorithm
types.

algorithm types. Unfortunately, reinforcement algorithms are
not used for classification in this field.

I. Software or Language Used and Their Field of
Application

This article does not cover the hardware part as it can be
extensive, vary, and also depends on the taste of the author
or researcher, and it does not follow a specific pattern. In this
section, the software or language used in the papers and the
application area of this software or language will be specified.
The sensors section is perhaps the most common piece of
hardware. However, this part is very important, and it can
be a great help to researchers and authors to complete the
project by introducing the software or language used and
their application area. Of course, not all researchers mention
the software or the language that they use in the paper,
and this also depends on their taste in writing the paper.
Sometimes, all data processing is done with just one software
or language [47], [135], [136], and in some papers, several
software, language packages, and even device software are
used in combination to complete the task [26], [103], [110],
[115], [137], [138], [139], [140], [141], [142], [143], [144].
The papers mainly describe the dominant area of using the
software or language. The software or the language is present

in all the mentioned steps of the project from data collection
[137], [145], preprocessing [32], [97], [110], [135], [143],
[144], signal segmentation [115], feature extraction [110],
feature selection [110], [139], and feature reduction [104] to
classification. Classification software or classification language
has been reviewed in many papers as you can see in the
table. Of course, there are miscellaneous applications, such
as creating a graphical user interface or creating a musical
environment [141], [142], [146]. The purpose of this section
is to get acquainted with the most widely used toolboxes,
software packages, and languages and their area of application.
As can be deduced from Table XII, the most widely used
software in this field is MATLAB, the second place goes to
Weka, and classification is the most widely used area by these
two popular software programs. However, this information is
very general and we intend to fully specify the software and
programming languages used in this field and also specify
their use in each step of movement classification. A total
of 61 papers have introduced their software or programming
language, and movement classification steps are presented
85 times. MATLAB software is used in 36 papers. Weka
software is used in 14 papers. Scikit learn python library is
used five times. C and C++ languages have been used five
times each. LabVIEW is a graphical programming language
that is used three times same as the TensorFlow-Keras python
library. SPSS is a statistical software that has been used
twice. Objective C programming language, rapid miner data
science software, and MAX as a visual programming language
for music and multimedia have been used only once. Now,
we introduce the steps of movement classification that are
implemented by these software or programming languages.
In the application area column of the corresponding table,
only steps related to movement classification are counted
in numerical analysis. Evaluation is also not presented in
statistical analysis because it can be considered a part of the
classification step anyway. The steps of movement classifi-
cation are presented in the relevant table in total 85 times.
The classification step has been implemented 51 times by
these software or programming languages and has a share of
about 60%. Preprocessing has been done 12 times by these
software or programming languages, so this step has a 14%
share. Feature extraction has been done ten times and its share
is about 12%. The segmentation step has been implemented
seven times and has a share of 8%. Feature selection and
feature reduction were implemented two times each and have
a share of 2%. Data fusion is presented only once in the table
without mentioning the level and has a share of 1%. The
software and languages used for preprocessing are MATLAB,
which was used ten times, C, which was used two times, and
C++ and LabVIEW, which were used once each. Weka is
used two times for feature selection. MATLAB was used nine
times for feature extraction, and C and C++ were used once
each in the same paper for feature extraction. Feature reduction
is done two times with MATLAB software. It can be inferred
from the table that the software and languages used in the
classification step along with their usage rate are MATLAB
software 27 times, Weka 14 times, scikit-learn python library
four times, TensorFlow-Keras python library three times, and
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C and C++ two times each in the same paper and rapid miner
once. MATLAB software has been used once for data fusion.

J. Evaluation
As it was mentioned earlier, the classifier allows us to

identify unknown data, tag it, and specify its motion class. This
occurs when the quality of the trained classifier is evaluated
using the evaluation step [147]. In some papers, evaluation is
divided into two parts, training and testing, and in some other
papers, this step is divided into three parts: training, validation,
and testing. Of course, it should be noted that unsupervised
classification does not require a specific training step and
directly infers activities from sensor data. Ground truth, a con-
cept related to the training phase that leads to the production of
labeled data, is not discussed in all papers, and we ignore it and
only get acquainted with this concept. Generally, papers that
deal with hyperparameter tuning or optimization parameter
tuning need validation [106], [124], and papers that do not
need this part or use default hyperparameters will only run the
training and testing part. Because validation is not an essential
part, its methods will not be covered much, but validation
methods are like evaluation methods. Now, we will define each
part of the evaluation. The definition of training datasets and
test datasets is very comprehensive. We use the training dataset
to fit the model and, in a general sense, to train and create the
desired model and for understanding the relationship between
the dataset and its corresponding class. This dataset contains a
large part of the entire existing dataset and usually determines
the weights of the nodes. Test datasets are also unknown
and unlabeled datasets that determine how well our model
performs the labeling operation and examines the quality of
the created model. To get acquainted with validation, we need
to know what hyperparameter optimization is and why the
hyperparameter needs to be tuned and then define validation.
The paper [148] has stated that hyperparameter optimization
is a process to find suitable hyperparameters for predictive
models. It typically incurs highly demanding computational
costs due to the need for the time-consuming model training
process to determine the effectiveness of each set of candidate
hyperparameter values. There is no guarantee that hyperparam-
eter optimization leads to improved performance. However,
this can be achieved by thinking of measures. Hyperparameters
from the classifier in the toolbox of various softwares have a
default value that the model performance can be maximized
by tuning the hyperparameter. Hyperparameter tuning is very
common in SVM and neural networks, but hyperparameter
tuning of classifiers such as decision tree, random forest, KNN,
naïve Bayes, linear discriminate analysis, and AdaBoost has
also been discussed in the papers [148], [149]. As the last
recommendation of this section, we want to announce the
data split rate for all three sections of training, testing, and
validation. They usually allocate 70%–75% of the data for
training and 20%–25% for testing. If the hyperparameters need
to be tuned, 70% of the data are generally intended for training,
20% for validation, and 10% for testing [150]. Evaluation
methods, metrics, methods of obtaining metrics, and methods
of announcing the results are discussed in Tables XIII–XVI,
respectively.

In Table XIII, evaluation methods are presented. First,
we summarize the proposed methods as specific methods and
then define each specific method. Evaluation methods under
the titles of tenfold cross-validation, k-fold cross-validation,
twofold cross-validation, fivefold cross-validation (5-foldCV),
threefold cross-validation, sevenfold cross-validation, fourfold
cross-validation, sixfold cross-validation, 20-fold cross-
validation, and random split k-fold cross-validation are
methods with the same structure and are considered as k-fold
cross-validation. Evaluation methods with the titles leave-one-
subject-out cross-validation, leave-one-out cross-validation,
leave-one-participant-out cross-validation, leave-one-out
test cross-validation, leave-one-day-out cross-validation,
leave-one-person-out cross-validation, leave-one-user-out
cross-validation, leave-one-instance-out cross-validation,
and leave-one-out cross-comparison also have a similar
structure and are considered leave-one-out cross-validation.
Biased cross-validation is considered a special method. Titles
such as subject-based cross-validation, cross-validation, and
individual-based cross-validation are also considered cross-
validation methods. Hold-out cross-validation is considered
a special method. User-specific training also has the same
condition as the previous method. Titles such as repeated
leave-one-out random subsampling cross-validation and
repeated random subsampling cross-validation are considered
as repeated random subsampling cross-validation methods.
The titles subjectwise leave-one-out, grouped stratified k-fold
cross-validation, and stratified k-fold cross-validation will
also be defined separately. First, we define the concept of
cross-validation. Cross-validation is a method that determines
how generalizable the classification results will be to an
independent and unknown dataset. The most widely used
method of this concept is k-fold cross-validation, which
is used 52 times in the total of 106 evaluation methods
proposed in the table, has a share of 49%, and is the most
used method. In this evaluation method, the dataset is divided
into k groups of equal size. A subset is used to test the
classification model, and k − 1 subsets are used to train
the classification model; this process is repeated k times.
The next most used method is leave-one-out cross-validation,
which is used a total of 37 times in the studied papers and
has a share of 35%. In this method, the dataset is divided into
several groups; all groups except one are used for training
and only one is used for testing; and this is done so much
that all groups are selected as the test group once. The
third place goes to cross-validation, which has a share of
7% with seven repetitions. Repeated random subsampling
cross-validation with three repetitions and a 3% share is
ranked fourth. This method is also known as the Monte Carlo
method. This method works in such a way that the dataset
is randomly divided into training and testing, the model is
evaluated as many times as desired by the user, and the
overall result is averaged. When this method is combined with
the leave-one-out method, the repeated leave-one-out random
subsampling cross-validation method is created, in which one
set is randomly selected for testing and the rest for training,
the evaluation is performed, and the result is averaged.
The next rank is grouped stratified k-fold cross-validation
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TABLE XII
SOFTWARE USED ALONG WITH THEIR APPLICATION AREA

with two uses and a share of about 2%. However, first,
we explain the stratified k-fold cross-validation, which has a
1% share with one use. This method is a variant of k-fold

that provides stratified folds, which means that each fold has
the same percentage of samples with a given label. Grouped
stratified k-fold cross-validation benefits from the advantages
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TABLE XIII
EVALUATION METHODS

of grouped k-fold and stratified k-fold at the same time; the
first case is a special variant of k-fold that ensures that the
same group is not present in both test and training sets, and
the stratified variant ensures that each fold has the same
percentage of samples with a given label, and generally, folds
are stratified. Hold-out cross-validation with one repetition
and a share of about 1% is the next method. In this method,
which is done only once, the dataset is divided into two
unequal parts: the larger part is used as usual for training,
and the smaller part is used for testing. User-specific training
is used only once and has a share of 1%. In this method,
classifiers were trained on each subject’s activity sequence
data and tested on that subject’s obstacle course data [151].

For each iteration of biased cross-validation, a different subset
of the available recorded datasets has been chosen for training,
and the remaining sets have been used for testing. However,
an additional constraint has been applied for each iteration:
out of three available datasets per bike repair subject, always
choose two for training and the remaining one for testing
[46]. This method is similar to the previous method in terms
of numerical analysis. The subjectwise leave-one-out method,
which statistically has the same conditions as the previous
two methods, is placed in a separate category only because
of the term subjectwise. Subjectwise is a strategy that is
opposed to recordwise. In this case, the training and testing
folds carry the information and data of other subjects, while,
in the second strategy, the data of the same subject may be
included in the training and testing. It is not bad to have a
performance comparison between some of the most famous
evaluation methods at the end. Before starting, we introduce
the concepts of bias and variance in classification. High
bias in classification algorithms causes underfitting, and high
variance causes overfitting. A compromise can be made
between these two cases, which we will not deal with.
We start performance comparison with the most widely used
method, k-fold cross-validation, and introduce its advantages
and disadvantages. This method has less computational time
and is, therefore, suitable for use in large datasets. Due to
the large amount of data used for training, it has little bias
compared to other methods. However, in general, it will not
be suitable for use in imbalanced datasets. Leave-one-out
cross-validation is a very simple method, but it takes a lot
of computing time and should be used for small datasets or
when time is not as important to us as other classification
parameters. The system may lead to higher bias under this
method. Hold-out cross-validation is also one of the simplest
evaluation methods, and it takes little computing time, but,
because a large amount of data is missing in the training
model, it has a high probability of overfitting. This method is
also not suitable for imbalanced datasets. Repeated random
subsampling cross-validation has the advantage that the ratio
of dataset divisions to training and testing does not depend on
the number of repetitions or folds. One of the disadvantages
of this method is that, due to the random nature of selection,
some samples or data may not be selected for training and
testing at all, and this method is not suitable for imbalanced
data, too.

In Table XIV, we introduce the major types of metrics;
the first type of metric is the threshold. These metrics are
defined in the paper [152] as follows: metrics based on
a threshold and a qualitative understanding of error. These
metrics mainly are derived from the confusion matrix, and
among the metrics that fall into this category are accuracy,
error rate, sensitivity, specificity, precision, recall, f score,
geometric mean, macroaveraged accuracy, kappa statistic, and
more [152], [153], [154]. Metrics based on a probabilistic
understanding of error, i.e., measuring the deviation from the
true probability, are the second category of the metrics, and
we know them as probabilistic metrics [152]. These metrics
include mean absolute error (MAE), mean square error (mse),
Brier score, log loss, cross-entropy, rms, MAPE, calibration
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(CAL), and more [152], [154], [155]. Metrics based on how
well the model ranks the examples are ranking metrics [152].
The area under the receiver operating characteristic (ROC) and
precision/recall curves are the most important rank metrics.
These are the three main types of metrics for evaluating
classifiers, but other metrics exist, which do not fall into
these categories. Therefore, in this article, the main evaluation
metrics will be presented along with their formula, and those
who are interested can refer to the relevant paper to get
acquainted with other metrics. You need to know this as a rec-
ommendation from us that accuracy in this field is introduced
either based on the formula [correct/total] [94], [109] or based
on [(tp+tn)/(tp+tn+fp+fn)] [156], [157], [158], [159], [160],
[161], [162]; this, metric alone, especially with imbalanced
data, is not a good measure of classification performance.
Therefore, the authors of this article strongly recommend
that other metrics are be used to report classification results
too. In Table XIV, we introduce the well-known evaluation
metrics, and the following equations provide formulas for
the more well-known metrics. Most of the formulas and
definitions are derived from [163], [164], and [165]. See [51]
for more information on time-based evaluation metrics, such
as insertion, overfill, and underfill, and event-based evaluation
metrics. These types of metrics are less common in contrast to
the other metrics in this field and, thus, are not mentioned in
this section. However, in a few of the reference papers of our
paper, those metrics have been used along with the metrics
in Table XIV. The most widely used metrics are threshold
metrics that have been repeated a total of 398 times. As you
can see, some of the names presented in the table have the
same formulas; however, we presented each possible name
for a formula separately in the table. Accuracy is at the top
of usage with 151 times of use and a share of 38%. Precision
ranks second with 52 uses and a 13% share. Recall ranks third
with 46 uses and a 12% share. The f score ranks next with
34 uses and a 9% share. Specificity ranked fifth with 27 uses
and a share of 7%. Sensitivity takes sixth place with 26 times
of use and about 7% share. EER is in seventh place with

16 uses and a 4% share. The error metric also has a share of
4% with 14 uses. The support value with eight uses has a share
of 2%. Other proposed metrics have a share of about 1% or
less and are presented in the table only for information. About
the probabilistic metrics, we must also announce that they have
been used ten times. Root mse (RMSE) is used three times and
has a share of 30%. MAE, mse, and mean absolute percentage
error (MAPE) metrics are used twice each and have a share
of 20%. Brier score and adjusted B are used in one paper
and have a share of about 10%. Ranking metrics have been
mentioned 14 times in total, 13 of which are assigned to AUC,
and the share of this metric is 93%. The c-index and adjusted
c also have a share of 7% by being used in only one paper.
In Table XV, we will present the methods for obtaining these
metrics or, in fact, the graphical evaluation methods. At this
level, we want to introduce you to each of these items in
the table. Han et al. [166] have described confusion matrices
comprehensively. As they have described, “a confusion matrix
is a useful tool for analyzing how well your classifier can
recognize tuples of different classes. True positive (TP) and
true negative (TN) tell us when the classifier is getting things
right, while false positive (FP) and false negative (FN) tell us
when the classifier is getting things wrong.” Han et al. [166]
have described ROC as a visual tool for comparing two
classifiers and have clarified that ROC shows the tradeoff
between the TP rate (TPR) and the FP rate (FPR). In order
to respect the authors of scientific papers, other definitions of
ROC are reviewed in this article. Shaafi et al. [167] described
ROC that it shows the variation of TPR concerning false
alarm rate. Another definition is that the ROC shows the
variation of correct acceptance concerning false acceptance
[168]. Zinnen et al. [125] consider the ROC as recall changes
in terms of precision. Tahafchi and Judy [169] define ROC
as the ratio of the true accept rate to the false accept rate.
In [95], the ROC curve is expressed as sensitivity changes
in terms of FPR. Papers [58] and [170] describe the ROC
curve as sensitivity changes in terms of specificity. In the
paper [171], in the figure that describes the ROC diagram,
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the vertical axis is considered to be 1-fmr, and the horizontal
axis is considered to be false rejection rate (FRR). In the
papers [144] and [172], the ROC curve is plotted in terms
of FRR and false acceptance rate (FAR). In [173], the ROC
curve is plotted for the genuine acceptance ratio (GAR) and
the FAR. The error division diagram (EDD) shows the ratio
of the entire dataset, including error classes and other related
items. The event analysis diagrams (EADs) show counts of
predefined events as a proportion of the total ground-truth
event count. The use of these diagrams is not as extensive
as other items in the table. For more information, you can
refer to papers [114] and [174]. The precision–recall curves
are known as a suitable complement to ROC curves, which are
less commonly used, and these curves display precision values
on the vertical axis and recall values on the horizontal axis
for different thresholds. Saito and Rehmsmeier [175] show the
advantages of this curve over the ROC curve for imbalanced
datasets for binary classifiers. The specificity/sensitivity curve
is introduced in the paper [117] and shows the values of
specificity in the vertical axis and the sensitivity axis in
the horizontal axis, and this curve shows the distribution of
sensitivity and specificity for detection accuracy in the paper.
To evaluate the performance of the classifier, a curve can
be used, which is the FAR diagram versus the FRR. This
curve is called decision error tradeoff (DET). The DET curve
shows the performance of a biometric system under different
decision thresholds [176]. 102 methods of obtaining metrics
are mentioned in the relevant table, where the confusion matrix
is at the top with 67 repetitions and a share of 66%. ROC
is in second place with 20 repetitions and a 20% share.
Precision/recall curves with seven repetitions have a share of
7%. Other methods have a share of 3% or less. In the last table
of this section, you can see the methods of announcing the
results and comparing the results of the metrics, for example,
for several types of classifiers, comparing different values
of hyperparameters. Announcing and comparing the results
by the table have been most used due to their ease of use.
However, if we want to go into the statistical analysis of this
table in a little more detail, we must state that 171 times the
methods of announcing and comparing the results have been
presented in the papers, and the table with 116 repetitions has
a share of 68%. The bar chart with 41 repetitions has a share
of 24%, the box plot with six times of repetition has a share
of 4%, the scatter plot with five repetitions has a share of
3%, and the other two methods have a share of 1% or less.
These methods include the cumulative matching score (CMS)
curve and the cumulative match curve (CMC), which can be
used as metrics or for announcing and comparing recognition
results. Now, we are familiar with all the steps, and we can
easily do projects related to activity recognition, GR, and GA
based on this information. The authors hope that this article
would be of great help to engineers, students, and researchers
interested in doing a project in the field of movement
classification.

III. OVERVIEW OF FINDINGS

First, we must state that data collection for human motion
analysis is usually done with three methods: 1) wearable

sensors; 2) specialized systems, such as Vicon (Vicon Motion
Systems Ltd., Oxford, U.K.) or Optotrak (Northern Digital
Inc., Waterloo, ON, Canada); and 3) Kinect systems [6]. The
second and third cases usually create image and video data
and have limitations [6], [51]. Specialized systems, such as
Vicon or Optotrak, have high accuracy when operating in
controlled environments [6]. These systems can provide a
large amount of redundant data. Also, these systems are very
expensive compared to the other two. Ambulatory systems,
such as those using a Kinect (Microsoft Corporation, Red-
mond, A, USA) to capture human motion, are set in relatively
uncontrolled environments and have a restricted field of view.
These systems have a restricted margin of maneuverability
and are intended for indoor use mainly. In contrast, wearable
sensors have the advantage of being portable and suitable
for outdoor environments [6]. It is not bad to announce the
other reasons for favoring wearable sensors. In addition to
being portable and cheap, it can be said that these sensors
are more ubiquitous, and it is easy to use them. The use of
these sensors does not require special knowledge. It is easy
to teach the user how to use the wearable system with a little
training. By equipping the wearable system with a memory,
it is possible to analyze the wearer’s behavior at any time.
Considering the variety of wearable sensors and the possibility
of measuring different parameters by these sensors, it can
be said that these sensors provide more diverse information
compared to other methods. Wearable systems are easier to
update, can adapt to changes in society, and can advance with
fashion. For these reasons, we have focused on human motion
analysis by wearable sensors, and we have tried to review
movement classification by wearable sensors. Of course, there
are challenges in this area that will be discussed in the follow-
ing. The purpose of this section is only to present a summary
of the findings, and for the readers to be familiar with the
main results of the statistical analysis by reading this section
and for a more general understanding, refer to the previous
sections. In this article, a wide variety of papers have been
studied, each of which is related to three areas of movement
classification, namely, activity recognition, GR, and GA; for
the first time, all three of these areas have been addressed
simultaneously, and other review papers in this area have only
addressed one area [10], [14], [19], [20], [50], [51]; and in
the common concepts associated with the steps, our research
is much broader. In identifying the movement classification
chain, the number of algorithms proposed for each part of
this chain in this article is very large and very diverse. For
example, only Table XVII introduces many different types of
sensors available in this field, and the set of sensors introduced
in this article is very diverse, which is the leader compared
to the existing review papers in this field, because different
sensor categories are presented, and the state-of-the-art papers
in human motion recognition fields or IoT-based wearables
area may only mention some of these categories or sensors
[3], [19], [20], [51]. A large number of datasets related to
movement classification are presented in this article. We iden-
tified 18 preprocessing actions, which is a significant number.
After identifying the levels of data fusion, we introduced many
different algorithms for each level. Different algorithms have
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been identified for signal segmentation. Topics related to the
feature extraction step have been discussed extensively. Also,
a comparative analysis has been done on the performance
of some feature extraction methods. It has been tried to
introduce all kinds of algorithms related to feature selection.
Each of the algorithms is defined separately, and the way they
work is specified. Various feature reduction algorithms have
been proposed. The functioning of the algorithms has been
investigated, and a comparative analysis has been done on
the performance of some of them. In the classification step,
a very large number of algorithms have been introduced if we
ignore the classic classification algorithms; a wide range of
machine learning algorithms have been identified along with
their types; and in this field, papers can be found that only deep
learning algorithms have been discussed [19], [50], but these
algorithms are only a part of machine learning algorithms. The
functioning of widely used or famous classification algorithms
has been fully investigated and analyzed. In evaluation, a wide
range of metrics has been proposed along with their formula
and type. There are many different evaluation methods, and a
standard definition is provided for each one. Also, the most
famous and most used of them have been examined in terms
of performance. The methods of obtaining the metrics and the
methods of announcing and comparing the results have been
fully investigated in this article. In fact, the authors have tried
to provide the readers with a suitable guide to continue and
conduct research in the field of movement classification. The
reason for this effort is that there are major reasons that force
the world community to refer to wearable sensors, and also,
the need increases with human motion recognition. Due to the
aging of the global society, and the loneliness and inability of
patients to attend medical centers, by using wearable sensors
to detect human movement, patients can be saved from visiting
these centers, and costs can be reduced. Since the doctor can
notice changes in the patient’s movement pattern and may call
the patient to inquire about their condition. Alternatively, a
special alarm may be activated to notify the patient. Even
considering that the world society is facing the problem of
obesity, it is easy to know the weight, degree of obesity, or the
discomfort of their organs by analyzing the walking of people
or the speed of movement. In general, identifying human
activity through walking, examining the pattern of human
walking make people aware of the current state of health, and
based on these, decisions can be made about the future state of
health. Of course, this issue is not exclusive to human walking.
Many movements of the human body can be used to evaluate a
person’s body condition and health. Thus, GR, GA, and activ-
ity recognition by wearable sensors have many applications
in the fields of medicine, education, entertainment, sports,
and games. With these explanations, the human movement
recognition chain or the movement classification chain has
been identified in general, and each part of this chain has
been discussed in detail. The numerical analysis has been fully
presented in relevant sections, and now, we only qualitatively
repeat the results. After categorizing the human body motion
analysis with wearable sensors in a general and global format,
and briefly explaining why we have to combine this technology
with IoT, the common steps for doing a project in each section

of movement classification were examined. All the steps are
presented together with the corresponding algorithms in this
article. The purpose of this article was to clarify all the
common steps of the project in the movement classification
of the global chart so that the readers of this article can easily
do the project in the field of movement classification. Common
steps of project implementation in the studied papers are data
collection, data fusion, preprocessing, segmentation, feature
extraction, feature selection, feature reduction, classification,
and evaluation. Some of these steps may not have been
used in all papers. Using the corresponding tables, the most
commonly used topics and algorithms can be easily identified.
Bar charts are also used for a better understanding of some
steps of the operational plan. As can be seen from Table XVII
and the bar chart, the most widely used sensors in this
field are accelerometers, gyroscopes, EMGs, force sensors,
and pressure sensors, respectively. In the following, we have
specified the category of sensors, and we have specified the
most used sensor categories through a bar chart. There are also
preprepared datasets produced by universities, companies, and
so on, which are a great help in creating papers in this field,
and with these datasets, there is no need for a data collection
step. For the preprepared datasets, we specified both the most
used sensors and the most used category, and the results were
almost similar to Section II-A1. A side result of this section
is to specify the importance of human movement in the field
of activity recognition because most of the datasets related to
HAR contain data on walking activities with different styles.
Then, in this article, various sensor fusion strategies were
discussed, and the corresponding algorithms were identified.
We then introduced the signal preprocessing, specified the
preprocessing actions in the table, and then identified the most
commonly used actions using a bar chart. The most common
preprocessing actions are filtering, data normalization, sensor
calibration, amplification, segmentation, smoothing, rectifica-
tion, interpolation, labeling, and drift removal, respectively.
In Section IV, along with the definition of signal segmentation,
we present various segmentation algorithms. Next, feature
extraction methods, dominant feature type, and feature domain
are specified. Fourier transforms and WT are the first and sec-
ond most widely used feature extraction methods, respectively.
The signal-based statistical feature is the dominant feature
type, and the other feature types are used lesser than this
feature type. The time domain and the frequency domain have
the highest number of uses as feature domains. The issue of
feature selection in the next step is examined. Feature selection
methods have been introduced, and from the reviewed papers,
we find that filter and wrapper methods have been two of the
authors’ favorite methods for feature selection in this field.
Dimensional reduction algorithms were also examined, and
PCA is a dominant algorithm in this field. For classification,
after defining and clarifying the purpose of using it in papers,
we recognized it as the last step of the project and completely
identified the algorithms used in the papers in Table XI, and
then, we exhibited the most commonly used algorithms and
their types by bar charts. SVMs are the most widely used
classifier, followed by KNN and Bayes derivatives (naïve
Bayes, Bayes net, and so on). Decision trees, HMM, and
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random forest are also preferred by authors for classification,
and they hold the next ranks. Supervised algorithms are at
the top. Probabilistic algorithms have taken second place.
Combined algorithms are ranked third, and rule-based and
unsupervised machine learning algorithms are ranked next.
In the section, software or language used and their field of
application, we introduced the software or languages that can
be utilized in movement classification steps. For each step or,
in some way, each piece of the human motion detection chain,
we specified the software or language used. Most of the papers
in this field mentioned the software used for classification; for
classification, the first rank of the most widely used software
goes to MATLAB, and another software that ranks second
is named Weka. Both well-known brands are widely used to
implement classifiers, while they can be active in other steps
of the project. Side results can also be obtained about other
software or languages used in papers related to the field of
movement classification, which has been omitted from the
presentation due to their low importance. In the last part of this
article, we have announced the methods of evaluating the per-
formance of the model, the relevant metrics and types of them,
graphical metrics or methods of obtaining the metrics, and
methods of presenting and comparing the results. In general,
evaluation cannot be identified as a separate step, and it should
be considered as a part of the classification, but, because there
are different concepts and parts related to it, we dealt with it
separately. Different evaluation methods are presented in this
article, and in general, k-fold cross-validation is considered a
popular evaluation method. The most widely used metric types
for evaluating the performance of classification are threshold-
based metrics. It is recommended to use several metrics to
evaluate the performance of the model to have a more accurate
understanding of the performance of the model. In Table XV,
we have presented the methods for obtaining these metrics
or, in fact, the graphical evaluation methods. The confusion
matrix with a relatively large difference is the most widely
used method to obtain the metric. ROC and precision/recall
curves are ranked next in terms of usage rate, respectively.
In the last table, the methods for announcing the results and
comparing the results of the metrics are presented. Announcing
and comparing the results by tables are the most common
methods. Bar charts also are used but not as many as the
previous method. Box plots are placed in the next rank in
terms of usage. These results are presented quantitatively
in more detail in the relevant sections, be careful that the
numbers presented are approximated and rounded, and this
approximation may cause the sum of the share percentage to
not be 100%, but there will be no change in the overall results.

IV. RELATED CONCEPTS ON THE INTERNET
OF THINGS IN THIS FIELD

The IoT has many different applications and is not limited
to motion recognition. The IoT provides insights into many
applications in various sectors of a variety of industries and
businesses. It brings efficiency and safety, and can revolution-
ize the way many businesses and industries operate [2]. In this
section, we intend to briefly present the structure of the IoT,
its implementation methods, and concepts related to machine

learning or artificial intelligence in general. The IoT can have
various components, the most important of which are sen-
sors/devices, gateways and connections, cloud and database,
analytics, and user interface. The first component is related
to collecting and sending information by objects. Sensors can
be temperature, accelerometer, compass, proximity, humidity,
pressure, light, or any other sensor. As mentioned, these
sensors can be used alone or fused with other sensors. All the
sensors mentioned in the data collection section can be used
in the first component, and when talking about the device,
you can easily remember things such as smartphones. The
second component is related to how the data reaches the cloud
and is related to data flow management. There are various
methods for connecting sensors to the cloud, such as Wi-Fi,
Bluetooth, and ZigBee, and the choice of each of them depends
on the application of the IoT. The third component provides a
location to store and access IoT data. In the analytics section,
the data of the sensors and the device are examined, and
various decisions are considered according to the conditions
of the data. The user interface section informs the end user
of the results of the analysis and, actually, the decisions
made or the conditions and also gives the user the ability to
perform some operations related to the conditions. IoT can
be implemented using many IoT connectivity schemes that
connect an IoT device to other devices through the Internet.
The Internet connection can be either wired or wireless [2].
Wired and wireless communications have their advantages
and disadvantages, and should be chosen depending on the
application. Understanding the benefits and drawbacks of
wired and wireless connectivity schemes enables us to make
an informed decision regarding IoT implementation [2]. Wired
connections are reliable, fast, and secure. They are more
reliable than wireless connections since they are less prone to
packet loss as a result of path loss or interference from other
electronic devices. However, they suffer from the higher cost
of implementation and lack of mobility support. Scalability
is also another problem with wired networks. The wired IoT
network is only practical if IoT devices not only are close to
each other to reduce the cabling cost but also at least one of
them is located close enough to a wired Internet access point.
For many IoT applications, wired connectivity is not very
practical, and wireless IoT implementations are the common
solutions [2]. For a wireless connection, there is a need for an
IoT gateway, especially for short-range communications [2],
[3]. IoT gateway connects sensors, devices, and so on to the
internet at the network’s edge and can perform computing
locally [2]. Regardless of whether the implementation is
wireless or wired; there are four types of data communication
in IoT: device-to-device, device-to-cloud, device-to-gateway,
and back-end data shape. Only wireless protocols related to
each model are presented because of practicality; for wired
protocols, refer to [2]. In device-to-device communication,
two or more devices are connected directly to each other.
Bluetooth protocol is one of the most widely used protocols
in this type of communication. In connecting the device to the
cloud, a device is directly connected to the Internet cloud.
Some of the widely used protocols in this connection are
Wi-Fi and low-power wide-area networks (LPWANs). In the
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TABLE XV
METHOD OF OBTAINING THE METRIC

TABLE XVI
METHODS FOR ANNOUNCING AND COMPARING RESULTS

model of connecting the device to the gateway, there is an
application on the desired gateway that acts as a communi-
cation interface. One of the protocols used in this model is
Wi-Fi. The back-end data-sharing model is the extension of
the device to the cloud connection. In this connection, the
user can use cloud data along with data from other devices
and sources. Artificial intelligence continuously improves per-
formance and decision-making capabilities and enhances the
true potential of IoT. Artificial intelligence or specifically
machine learning is an integral part of motion recognition.
In general, the wearable IoT has many applications in motion
recognition. We have tried to examine some of the algorithms
and techniques available in these applications briefly. Motion
recognition by IoT-based wearable sensors has applications in
health, gaming, sports, safety, and so on. The health wearable
IoT device is mainly used for remote patient monitoring,
treatment, and, in some cases, rehabilitation purposes. The
sensors such as blood pressure, temperature, accelerometer,
and heart rate monitor collect health-related data, and the
user/patient’s health information will be sent to the Internet
for further analysis. In many applications, wearable devices
are connected to smartphones to analyze the collected data
and then transmit it to a cloud computing-based framework,
such as Microsoft Azure or Amazon Web Services (AWS) in
order to store, process, and analyze the data [3]. Detection and
prevention of falls are other applications of wearable sensors
based on the IoT. To be able to detect falls, usually, inertial
sensors such as a gyroscope or accelerometer are used. The

fall detection system must be fast enough to detect fall fast to
be beneficial. However, in order to detect fall events accurately
and minimize FPs, the fall detection system must differentiate
between a fall and other daily activities [3]. Machine learning
algorithms, such as SVM, along with other motion recognition
steps, such as feature extraction and feature selection, can
be used to detect falls from raw sensor data, and this is
one of the important issues of artificial intelligence related
to the IoT. Other applications have similar conditions, but we
tried to examine the most used applications. In general, the
benefits of IoT by adding human-like awareness and decision-
making using machine learning algorithms can lead to increase
efficiency and improve motion recognition.

V. SCOPE FOR FUTURE RESEARCH

Usually, to be able to provide a scope for future research
in any scientific subject, we must fully understand the chal-
lenges and opportunities in that field. There are many public
challenges in the field of human body motion recognition
by wearable devices. Challenges such as power consumption
or battery life, ergonomic designs, user safety from wireless
transmission radiation, miniaturization, memory capacity, pri-
vacy, security issues, training the end user to use these devices
and trust them, equipment flexibility, cheap and affordable
price, user comfort, wearability issues, and reliability are com-
monly raised when commercializing products. The discussion
of creating standards in user interfaces and related application
updates is also somehow included in this category. Dealing
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TABLE XVII
SENSORS

with such commercial or public challenges should be the
responsibility of economists, marketers, researchers, managers
of famous companies in this field, and even governments.
By addressing each of these commercial or public challenges,
researchers and students can help solve a societal problem by
providing a solution to the challenge. Our goal is not to deal
with these types of challenges, and we have another intention
of providing the scope of the future section, but we will

provide examples that address some of these challenges briefly.
You can find solutions for other challenges in different papers.
Since information security and privacy are one of the most
important challenges in this field, governments must consider
strict laws for stealing information from wearable devices and
implement security policies. As another example in the field
of power consumption or battery life, Bluetooth low energy
has been proposed instead of Bluetooth in mobile phones and
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has not been very successful, but, with the progress in the
semiconductor industry, integrated circuits with lower power
consumption can be produced. Also, energy harvesting tech-
nology provides additional means to extend battery life [177].
Our goal in this section is to address the technical challenges
of identifying the human body’s movement. In general, data
collection from different people is very time-consuming and
challenging. Especially, since the ground-truth data need to be
collected for the training of the supervised classifiers, there are
various issues related to the sensors that should be addressed,
such as accelerometer bias [178], magnetometer dysfunction
in the presence of the intrusive magnetic field, and the loss of
GPS signals. The presence of noise in the output of sensors
is challenging because the presence of noise generally affects
the recognition performance. In the paper [97], it is stated that
removing the noise from the corresponding wearable sensors
has improved the classification performance of walking on
the stairs. It is stated in the paper [144] that the presence
of noise in the output of the accelerometer generally causes
problems in identifying the phases of gait. In general, it can
be concluded from the studied papers that noise disrupts
the motion recognition process and weakens performance by
reducing recognition accuracy. The motion recognition process
should be robust to noise. Generally, a higher signal-to-noise
ratio will provide better results. The noise of the sensors and
the data noise, in general, deteriorate the classification perfor-
mance because the machine learning algorithm or any other
classification algorithm can identify the noise as a pattern,
so misleading generalizations begin and eventually cause the
false identification of patterns. Classification accuracy reduc-
tion is only one of the problems that noise will cause, com-
plicating classification, overfitting, increasing training time, or
maybe the whole system’s execution time, and so on are other
problems caused by the noise. In this section, we want to talk
a little more about the concept of noise in data preprocessing
because the filtering action, which is generally mixed with
the concept of noise, is the most widely used preprocessing
action. Eliminating noise, in general, is challenging, so we
try to define the challenges related to the concept of noise in
this field to some extent. Noise is present in all the wearable
sensors presented in this article. For example, there is noise
in the output of EEG, accelerometer, gyroscope, EMG, EOG,
and other sensors [31], [88], [96], [104], [114], [144]. In the
paper [88], it is stated that, in general, the reading in IMU
is noisy due to environmental noises, self-occlusions, reduced
accuracy due to fast movements, and so on in data collection.
In the paper [104], it is stated that noise should be removed
from the EMG sensor, and a common problem in sEMG is
motion artifact that produces low-frequency noise. This type
of noise is caused by the movements of the muscles under
the skin, and the movement of the electrode relative to the
skin is another reason. There are various sources of noise in
wearable sensors. Therefore, identifying noise sources in the
output of different sensors is a challenging task, and it is very
important to deal with it. In the studied papers, the presence of
intrinsic noises of sensors and motion artifacts, respectively,
has been challenging for researchers. Intrinsic noises are
the noises that exist in the output model of the sensors.

For example, the output of three sensors, an accelerometer,
a gyroscope, and a magnetometer, is affected by bias, scale
factor, and white noise. As stated, motion artifacts generally
change the performance of the sensors and occur when the
user’s movements affect the placement of the sensors or other
factors related to sensors. The next source, which is perhaps
less mentioned than these two, is the environmental factors,
examples of which were mentioned a little earlier for GPS
and magnetometer. Although these three cases are the most
famous causes of noise in wearable sensors, the main challenge
for researchers is to fully understand the causes of noise in
the sensors, and they choose motion recognition. The next
challenge is choosing the right filter, which is somehow related
to the recognition of the sensor noise. According to the studied
papers, the filters that are used to remove the noise are a
notch filter, a linear Kalman filter, an EKF, an infinite impulse
response filter, a finite impulse response filter, a high-pass
filter, a bandpass filter, a low-pass filter, a median filter, and so
on. The need to produce preprepared datasets specific to GR
is strongly felt. In the field of GR, it is necessary to collect
the sign language datasets, publish the datasets, and make
them available to researchers for further research. Activity
recognition through human walking has led to the production
of many datasets, which shows the importance of human
walking for activity recognition and GA; this is because human
walking is a basic activity of daily living, and human walking
or gait is defined as a particular way or manner of moving
on foot [179] and has many applications in health monitoring,
sports, rehabilitation, video surveillance, and so on. If we try
to provide examples, we must announce that, according to the
studied papers, human walking activities recognition has many
medical applications in the fields of poststroke rehabilitation,
detecting gait abnormality, Parkinson’s disease rehabilitation,
fog detection, analyzing neuropathy disorders, pathological
gait assessment, walking stability detection in older people,
postural stability analysis, postinjury rehabilitation, and so on,
so there is a need that the data collection are to be more
application-specific, which means that researchers collect data
related to specific diseases, sports, and so on. Data fusion for
different sensors from different categories is very challenging.
Regardless of the specific model, the challenges in this field
should be identified. Challenges related to data fusion mainly
include data association and management, sensor uncertainty,
dynamic system modeling, and system validation [108], [111].
They arise from the inherent uncertainties in the sensory
information, which are caused by not only device imprecision
but also noise sources within the system and the sensor itself
[108]. One of the examples of the uncertainty of sensor data
can be missing data. Target environments and natural behav-
ioral conditions can be responsible for these challenges, too,
especially in system validation challenges [111]. The strategies
of data fusion should be capable of dealing with these uncer-
tainties and result in a consistent perception efficiently [108].
A proper data fusion mechanism or strategy is expected to
reduce overall sensory and even nonsensory uncertainties and,
thus, serve to increase the accuracy of system performance and
find the optimal structure for the structure of the recognition
system [106], [108]. Perhaps, one of the most important factors
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in the optimality of the structure and choosing the best strategy
is the recognition delay, which affects real-time performance
[106]. The other challenge is choosing between data fusion
algorithms that can be used at the same level, and many
factors are effective in this choice, but we will try to answer
this challenge by mentioning an example. Although we have
addressed this issue to some extent in the explanation of the
previous challenge, in this example, we are going to somehow
evaluate the performance of the Kalman filter and the EKF.
Of course, these two algorithms have not been used in the
studied papers on a common system according to Table IV,
but an indirect comparison of their performance will be
useful. In general, to compare the performance of estimation
algorithms for data-level fusion on a shared system, usually,
the accuracy of their performance on the system should be
considered, and after that, issues such as computational load
and ease of implementation can be considered. These cases
can be generalized to the selection of fusion algorithms at
all three levels. However, in any case, prechecking a series of
issues related to algorithms will be effective in choosing them.
The Kalman filter is a recursive type estimator and is utilized
in many engineering applications. Traditional Kalman filters
need an accurate linear model of both the system dynamics and
the observation process to be optimal in a least-mean-squared-
error sense [108]. The main advantages of the Kalman filter are
its computational efficiency and ease of implementation. The
main limitations of this filter are its restriction to linear and
Gaussian assumptions and low accuracy [108]. EKFs linearize
the system model using Taylor series expansions around a
stable operating point [108] and overcome the limitation of
the linear Kalman filter. The main advantages of the EKF
are computational efficiency, intuitiveness, ease of use, and
stability in practical estimations. The main limitations of these
filters are being limited to Gaussian noise and the need for the
derivability of the system model and the measurement model
[108]. Therefore, when it is necessary to choose an algorithm
for data fusion in each of the three levels, it is necessary
to know the advantages and disadvantages of that algorithm
or even its structure. According to the statistical analysis in
this article, the Kalman filter and its nonlinear derivatives are
an important part of data-level fusion algorithms; although
various algorithms are announced in Table IV for data-level
fusion, the Kalman filter algorithm is by far the most widely
used. To the list of algorithms in the mentioned table, you can
also add algorithms such as the complementary filter, which
is a data-level fusion method that consists of a low-pass filter
and a high-pass filter, and is generally widely used in attitude
estimation. Therefore, we should also talk a little more about
how to use this filter in the field of movement classification.
In general, it can be said that the Kalman filter is often used
to fuse accelerometer and gyroscope information to provide
better estimates, an example of which is the use of the KF
to detect postural sway during quiet standing (standing in
one spot without performing any other activity or leaning
on anything) [111]. For biomechanical modeling, the Kalman
filter can be used to estimate the states [111]. Therefore, fusing
accelerometer, gyroscope, and magnetometer data to obtain
related directions and angles can provide comprehensive infor-

mation for movement classification. Therefore, by placing the
mentioned sensors in different places of the body and using
the Kalman filters to obtain orientation-related concepts, such
as quaternions and Euler angles, different activities can be
recognized. Since the authors of the papers studied in Table IV
have not fully mentioned the linear or nonlinear model used for
data fusion by the Kalman filter in their papers, we present two
models for use in data fusion of the mentioned sensors, which,
in general, is used in the movement classification. The authors
of these papers have only mentioned the general names of the
algorithms, and we have shown these names in the relevant
table to respect them. In the paper [180], a quaternion-based
EKF is developed for determining the orientation of a rigid
body from the outputs of a sensor, which is configured as
the integration of a triaxis gyroscope and an aiding system
mechanized using a triaxis accelerometer and a triaxis magne-
tometer. The suggested applications are for studies in the field
of human movement. In the proposed EKF, the quaternion
associated with the body rotation is included in the state
vector together with the bias of the aiding system sensors.
Moreover, in addition to the in-line procedure of sensor bias
compensation, the measurement noise covariance matrix is
adapted to guard against the effects that body motion and
temporary magnetic disturbance may have on the reliability
of measurements of gravity and the Earth’s magnetic field,
respectively [180]. Another version of the quaternion-based
Kalman filter can also be found in the paper [181]. The
paper [182] presents a successful design of a wearable device
to monitor walking patterns. It offers a low-cost wearable
fitness monitoring device utilizing a six-axis IMU embedding
a three-axis gyroscope and a three-axis accelerometer. The
Kalman filter has been employed to provide reliable angle
measurements that, in turn, are used to estimate the stride
length. In this article, a linear Kalman filter has been used to
measure foot angles; the system states in the linear Kalman
model were the angle of the accelerometer and the bias
value of the gyroscope; and the measurement model consisted
of the angle of the accelerometer. In the process of signal
segmentation for choosing the length of the window, factors
should be considered so that both feature extraction is done
well and the system does not suffer from delays. However, it is
better to examine the performance of different segmentation
algorithms to identify the effective factors in choosing a better
segmentation algorithm. Comparing the performance of the
classifier under different segmentation algorithms is one of
the factors in choosing the proper segmentation algorithm
[109], [114]. In the paper [109], an algorithm for segmentation
has been devised, its performance has been compared with
sliding windows by different approaches, and it has a better
performance than sliding window segmentation in terms of
precision and recall. The paper [114] has investigated the
performance of two segmentation algorithms, i.e., sliding
window and head-based segmentation using the SVM classifier
performance. By examining the classification results, it has
been stated that, by using a head-based segmentation scheme,
precision and recall percentages are increased. It has also been
announced that this algorithm is computationally lightweight.
However, the lack of adaptation to different head movements
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while reading (depending on the fact that the head should be
down while reading) is one of the limitations of this method,
especially in short reading sequences. In the paper [115], one
of the important factors in choosing a signal segmentation
algorithm is the computational load of the algorithm. For
performance comparison reasons, three algorithms, which are
commonly used for segmentation, have been implemented
and applied to the same dataset: 1) SAX; 2) SWAB, and
3) a GA-based approach. A table indicates the CPU time
required by each of the algorithms. Their availability for
real-time execution is compared. According to the above
literature review, computational load and overall recognition
performance are the main reasons for choosing the superior
segmentation algorithm. One of the most important technical
challenges can be the feature extraction step. Such a step
imposes the need for feature selection/feature reduction steps.
This is because this step is very time-consuming. As men-
tioned earlier, we should go for deep learning classification
algorithms because these algorithms eliminate the need to
extract the features. Perhaps, another reason that increases
the need to remove this step is that the extracted features
may only perform well in a specific application and are
somehow application-specific. The next challenge is to choose
the algorithm or method of feature extraction. Although, in the
feature extraction section, feature extraction methods have
been tried to be fully explained, it is not bad to compare the
feature extraction methods because choosing between these
methods is also a challenging matter. This issue is addressed
by citing an example. Handojoseno et al. [31] investigated the
EEG features determined by both Fourier and wavelet analysis
in the confirmation and prediction of FOG. In this study, they
attempted to find discriminating features by investigating the
performance of Fourier-based features and their counterpart in
the wavelet domain. This article somehow compares Fourier
and wavelet feature extraction methods and has announced
the reasons for the superiority of WT. Over the past few
decades, wavelet analysis has been developed as an alternative
and improvement to Fourier analysis. Its main advantage in
analyzing physiological systems is its capability to detect and
analyze nonstationarity in signals, and its aspects such as
trends, breakdown points, and discontinuity since wavelets
are localized in both the time and frequency domains [31].
Even they have declared that the continuous WT has a better
frequency (scale) representation compared to the discrete WT.
The sensitivity, specificity, accuracy, and the area under the
ROC curve of the classification system were calculated by the
authors to measure the performance of the features and feature
extraction methods. By announcing the classification results,
they have compared these methods. In this article, the compu-
tational time has also been discussed as a comparative measure
of the performance of two feature extraction methods, and
this criterion has been examined in two methods and declared
that the continuous time WT has limitations for practical use.
Thus, general classification performance, computational cost
and time, and suitability for the nature of the data are the
main criteria in choosing feature extraction methods. It can
be said that feature selection is also very challenging, and the
main challenge of feature selection is choosing the optimal

feature subset, which is very difficult and tiring. To avoid this
complicated search operation, three types of feature selection
methods were generally introduced. To choose the type of
feature selection method, many factors should be considered,
which will be discussed in general. However, first, it should
be noted that, if we already have an algorithm for feature
selection in mind, regardless of its method type, we must
first know whether that algorithm is useful for classification
or not because some feature selection algorithms are useful
exclusively for regression or clustering and are not useful
for classification [129]. However, algorithms such as relief or
mRmR are used in both classification and regression topics,
or the information gain algorithm is only used in the field of
classification. This issue should be considered especially in
the selection of filter methods. Although the feature selection
algorithm specific to regression or clustering may also be used
in the subject of classification, caution must be observed. This
caution might act as a catalyst to speed up the work. For
comparing the performance of the methods, several datasets
should be employed, aiming at reviewing the performance of
three methods in the presence of a crescent number of irrel-
evant features, noise in the data, redundancy, and interaction
between attributes, as well as a small ratio between the number
of samples and the number of features [130]. Finally, announce
which algorithm’s classification accuracy or, in general, which
type of algorithm’s performance accuracy is better. Because
there is no silver bullet method [129], it is possible to state the
advantages and disadvantages of all three methods in general.
The advantages of filter methods are independence from
the classifier, lower computational cost than wrappers, being
fast, and good generalization ability. The main disadvantage
of this method is having no interaction with the classifier.
An embedded method interacts with the classifier, has a
lower computational cost than wrappers, too, and captures
feature dependencies, but its feature selection is classifier-
dependent. Wrapper methods are like embedded methods in
terms of interactions with the classifier and capturing feature
dependencies, but they have high computational costs, they
have overfitting risk in classification, and their feature selection
is classifier-dependent, too [130]. Future research should focus
on optimizing the efficiency and accuracy of the feature
subset search strategy by combining earlier the best filter and
wrapper methods to produce hybrid methods. Most research
tends to focus on a few datasets on which their method-
ology works. Larger comparative studies should be pursued
in order to have more reliable results [129]. In the feature
reduction step, it is still necessary to apply different feature
reduction algorithms on the preprepared dataset and compare
their performance in classification. Of course, according to
the table related to the feature reduction step, this issue has
been presented in a few papers. These papers have expressed
the classification results for different feature reduction algo-
rithms in terms of accuracy, sensitivity, specificity, recall,
precision, and so on, and compared the performance of these
algorithms. From reviewing all of these papers, it can be
understood that the feature reduction algorithm should increase
the recognition accuracy and reduce the computational
complexity [156], [159]. Thus, the best feature reduction
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algorithm is an algorithm that reduces the computational
load while increasing the classification accuracy. Also, the
algorithm must be compatible with the type and complexity
of the data; these factors are especially useful in choosing the
linearity or nonlinearity of the algorithm. These are the main
factors for comparing the performance of feature reduction
algorithms. It is recommended to familiarize yourself with the
dos and don’ts of your movement classification problem and
then choose the best feature selection algorithm by examining
the advantages and disadvantages of the algorithms. It is stated
in the paper [156] that the most feature reduction methods
used to combine with the machine learning classifiers are
the unsupervised feature reduction methods (e.g., PCA) and
DA feature reduction methods (e.g., LDA). However, there
are some limitations in using the mentioned feature reduction
methods to deal with classification problems; for example, the
eigenvectors extracted by PCA are not robust to variations
in the durations of subjects’ activities, and only most C – 1
(number of classes minus one) features can be produced by DA
feature reduction methods. That is, the DA feature reduction
has a poor performance on high-dimensional classification
problems. However, PCA is a suitable algorithm from the
point of view of computational load, and LDA is generally
considered an easy algorithm. To get to know more about the
feature reduction algorithms, we try to analyze the rest of the
feature reduction algorithms available in the feature reduction
section. The main feature reduction algorithms are explained
in the feature extraction section. CPCA stands for Common
PCA [156]. CPCA is a generalization of ordinary PCA. The
latter works only on one group or dataset, but CPCA applies to
several datasets or groups. The nonparametric weighted feature
extraction (NWFE) is a feature extraction or feature reduction
method used to assign every sample with different weights and
to define nonparametric between-class and within-class scatter
matrices for finding a linear transformation that can maximize
the nonparametric between-class scatter and minimize the
nonparametric within-class scatter [156]. As we said before,
the main disadvantage of the DA feature extraction is that
only most C – 1 (number of classes minus one) features can
be extracted. In order to solve the abovementioned problem,
NWFE is developed for obtaining more than (C – 1) features
to deal with high-dimensional classification problems [156].
Kernel PCA (KPCA) and KDA are nonlinear counterparts of
PCA and LDA, respectively. These algorithms are extensions
of mentioned algorithms based on kernel techniques. In the
paper [156], the combined feature extraction methods are used,
which are PCA + LDA, NWFE + PCA, and NWFE + LDA.
The authors have compared the recognition performances
between the six feature reduction methods, such as PCA, LDA,
NWFE, PCA + LDA, NWFE + PCA, and NWFE + LDA,
once the optimal dimensions of each of the feature reduction
schemes were estimated. Algorithms have also been examined
from the point of view of computational time. In the paper
[60], 1-D local binary patterns (1-D-LBPs) were employed
in order to exact relevant features. 1-D-LBP was based on
LBPs. In 1-D LBP, all values in the 1-D signal are compared
with their neighbors and the histograms of the results of the
comparisons or the statistical features of extracted histograms.

Locality-preserving projections (LPPs) are linear projective
maps that arise by solving a variational problem that optimally
preserves the neighborhood structure of the dataset. LPP
should be seen as an alternative to PCA [183]. Since LPP
is derived by preserving local information, it is less sensitive
to outliers than PCA [183]. Canonical correlation analysis
(CCA) summarizes the data correlation into fewer statistics
while preserving the main aspects of the relationships. The
motivation for CCA is very similar to PCA; however, in the
latter, the next new variable represents the maximum variance
in the individual datasets. On the other hand, in CCA, the new
variable is identical for both sets of data such that the corre-
lation between the two resulting new variables is maximized
[159]. MRMI-SIG is an optimal data class separator that can
be used as a linear feature reduction algorithm. The method
uses a nonparametric estimation of Renyi’s entropy for feature
reduction by maximizing an approximation of the mutual
information between the class labels and the reduced features
[184]. In the classification step, there are many challenges,
such as the null class problem (which is the presence of
various activities that do not belong to the set of desired
activities) [185], class imbalance (it happens when there is an
unequal distribution of classes in the training data), interclass
similarity, intraclass variability, overfitting, underfitting, and
computational complexity that must be addressed seriously.
Interclass similarity is a challenge caused by classes that are
fundamentally different, but that shows very similar character-
istics in the sensor data [51]. Intraclass variability occurs when
the same activity may be performed differently by different
individuals [51]. One of the main challenges in the discussion
of classification is analyzing and comparing the performance
of classification algorithms. Classical algorithms for classifi-
cation are generally simpler than machine learning algorithms
but perform weaker, and according to statistical results, they
are not comparable to machine learning algorithms in terms
of usage. Specific disadvantages can also be found for these
algorithms. We present some of the disadvantages of the most
used classical algorithms. When threshold-based algorithms
are used for multiclass problems, it will be very difficult
to find threshold values. For correlation-based algorithms,
it should also be stated that, in general, the correlation-based
search cannot provide information about why the relationship
is found. Thus, to investigate this challenge, it is better to first
compare different types of machine learning algorithms, and
finally, we declare a general rule for comparing the overall
performance of all classification algorithms. We try to express
the main advantages and disadvantages of each machine learn-
ing algorithm type. As we stated, the most widely used type of
classification algorithm is the supervised algorithm. In general,
it is useful to know the advantages and disadvantages of these
algorithms. One of the advantages of these algorithms is that
we can choose the labels carefully, and as a result, we can
easily determine the number of classes. Considering that we
know the data well along with their labels, we can say that
these algorithms are usually more accurate, especially com-
pared to unsupervised algorithms. These algorithms also have
disadvantages. The main disadvantage of these algorithms is
ground-truth annotation [54]. Ground-truth annotation is an
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expensive and tedious task, as the annotator has to do the
annotation in real time or skim through the raw sensor data and
manually label all instances. Although motion data recorded
from motion sensors, such as an accelerometer or gyroscope,
are often more difficult to interpret than data from other
sensors, such as cameras [54], in daily life settings, ground-
truth annotation can be much more difficult [54]. In addition,
more computation time is needed for training. Unsupervised
methods generally do not have the problem of labeling and
can be used when labeled data are scarce or not available.
However, these algorithms are less accurate than the previous
algorithms. In these algorithms, it is not possible to accurately
comment on the relationship between input and output. Also,
the number of classes is not known in advance, which creates
some kind of confusion. Probabilistic machine learning algo-
rithms can be supervised or unsupervised. The naïve Bayes
algorithm is a supervised probabilistic algorithm, and GMM is
an unsupervised probabilistic algorithm. The main advantage
of these algorithms is that they express uncertainty, while
other algorithms are unable to do so. Their main disadvantage
is that, due to their probabilistic nature, they require many
assumptions that may not always be true. The main advantage
of rule-based classification algorithms is that they are easily
interpreted due to being close to human logic. However,
providing a list of related rules is very difficult and requires
experience and skill. Reinforcement learning algorithms do
not require labeled data. This is one of their advantages
over supervised algorithms [54]. These algorithms are used
to solve more complex classification problems, for example,
finding the best structure for a neural network. However,
reinforcement learning algorithms often have high compu-
tational complexity. Combined algorithms are kind of the
future of machine learning algorithms because, by adding the
capabilities of one classifier to another classifier, many of
the flaws and disadvantages of other types of classification
algorithms can be avoided. For example, the combination of
different algorithms leads to the production of semisupervised
algorithms that solve the problem of supervised algorithms
and perform classification well with a few labeled data [54].
However, the difficulty here is that we must know the structure
of the algorithms that we want to combine, choose compatible
algorithms, and know what defect of each algorithm, which
we want to solve by combining algorithms. This work requires
expertise and time, and may require trial and error. So far,
we have announced some factors that must be considered for
choosing a classification algorithm and even comparing the
performance of different classification algorithms. Now, we are
trying to declare a law that makes it possible to analyze the
performance of classification in general. For having a good
classification performance, a classification algorithm must be
robust to the effective factors in classification; these factors
are numerous and can be mentioned, such as class imbalance
[153], noise in the data, and different distributions of train and
test data [26]; robustness increases the generalization ability
of the classifier; and a robust algorithm can achieve higher
accuracy. Now, we will discuss the challenges related to the
concepts of the evaluation section. First, we will examine
what criteria are important for choosing the evaluation method.

In the paper [103], 5-foldCV and leave-one-participant-out
cross-validation (LOPOCV) have been considered as the two
evaluation methods widely used for recognition. The authors
have announced that they focused on the LOPOCV evaluation
results because, usually, it is more difficult to obtain good
recognition results when the subject’s signals are not involved
in the training set. The recognition accuracy of these two
algorithms has been considered, and they have announced
that, according to the results, LOPOCV is a more suitable
evaluation method for their considered application. The paper
[120] also mentions the problem of overfitting the classifier,
which should be considered when choosing the evaluation
method; a good evaluation method can help us avoid this
problem. Tahafchi and Judy [124] have stated that all the algo-
rithms used in the motion recognition steps, including cross-
validation algorithms, must be accurate and reliable. They also
stated that one of the criteria for choosing cross-validation
algorithms is that they should work well with imbalanced
data. They have stated that stratified-K-fold cross-validation is
helpful for imbalanced datasets. In the paper [151], classifiers
were trained and tested using two protocols (user-specific
training protocol and leave-one-subject-out validation). Recog-
nition accuracy was significantly higher for all algorithms
under the leave-one-subject-out validation process. Because
of larger training sets, this protocol may have resulted in
more generalized and robust activity classifiers. The markedly
smaller training sets used for the user-specific training protocol
may have limited the accuracy of classifiers. Another issue
that is important is the computational load; for example, if we
have two algorithms that have almost the same performance
in terms of accuracy, recall, precision, recall, and so on, then
the algorithm with less computational load should be selected.
Now, we are trying to select the criteria for choosing the best
evaluation method from the overview of the papers presented
above and the papers in Table XIII. The selection criteria of
evaluation methods are low computational load, robust and
generalizable recognition performance, dealing with overfitting
of the classifier, suitable performance on imbalanced data, and
so on. The next challenge is to choose the desired metric to
evaluate the performance of the classifier. As we mentioned,
the evaluation metrics are categorized into three different
types: threshold, probabilistic, and ranking metrics. Graphical
metrics, such as confusion matrix and ROC, have also been
examined in the evaluation section, but these metrics can
be considered as methods for obtaining the metrics. Overall
comparison of metrics makes it easy to choose between these
items. It is not bad to first have a practical comparison
between three types of evaluation metrics and introduce useful
metrics in each of the applications. All these types of metrics
are scalar and present the performance using a single score
value [153]. These types of metrics are mostly used in three
different evaluation applications [153]. First, the evaluation
metrics are used for evaluating the generalization ability of
the trained classifier. Second, the evaluation metrics are used
to select the best classifier among different types of classifiers.
Third, the evaluation metrics are employed to discriminate
and select the best solution among all generated solutions
during training [153]. In the first and second applications, all
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three types of metrics can be used [153]. However, only a
few types of metrics can be employed in the third one [153].
The third application is less common in motion recognition.
For more familiarity with the metrics that can be used in
the third application, refer to the paper [153]. The paper
[153] has offered factors for the construction of new metrics
for use in the third application. These factors, more or less,
can be used even to compare and select metrics in all three
applications. Before dealing with these factors, we intend
to analyze the performance of some most frequently used
metrics. Before starting, we should point out that most of
the evaluation metrics are made for binary classification, and
through modifications, they can be extended to multiclass
mode as well. Through accuracy, the classification quality
is evaluated based on the percentage of correct predictions
over total instances. The error rate is the complement metric
of accuracy and evaluates the classification by its percentage of
incorrect predictions [153]. Sensitivity measures the fraction of
positive patterns that are correctly classified [153]. Specificity
does the same for negative patterns. Precision measures the
correctly predicted positive patterns rate to total predicted
patterns in a positive class [153]. Recall measures the rate
of correctly predicted positive patterns. The f score is the
harmonic mean between recall and precision values [153].
The declared cases were the most famous threshold metrics.
We also introduce some probabilistic methods. The mse is
a measure of the difference between the predicted solutions
and actual solutions. The smaller the mse value, the better
the classification results [153]. RMSE is the square root of
the mse. The area under the ROC curve, known as the AUC,
is also one of the most famous examples of the ranking
type of evaluation metrics. Unlike the other two types of
metrics, this value shows the overall ranking performance
of a classifier [153]. Now that we are familiar with a few
evaluation metrics of the classification performance, we cite
the advantages and disadvantages of some metrics, and then,
we will provide the general reasons that can be used to choose
the desired metric. According to the paper [153], accuracy and
error rate are easy to compute; applicable for multiclass and
multilabel problems; and easy to understand by humans. This
article also states that accuracy has many weaknesses. For
example, accuracy is not a good metric when dealing with
imbalanced class distribution and is biased toward majority
class data. Another disadvantage of accuracy is that this metric
produces less distinctive and less discriminable values. The
mse is also not suitable for working with imbalanced class
data. The AUC is proven to be better than the accuracy metric
for evaluating the classifier performance, but it has a very
high computational cost [153]. Factors can now be introduced
for the comparison of existing metrics. It is better to choose
a metric that can be used in multiclass problems and is not
limited to binary classification. It is better to choose a metric
that has a lower computational load. A good metric should
not be biased toward the majority class and must work well
on imbalanced data. Of course, the factors raised are largely
public factors. It is not bad to look at the matter a little
more technically. Another challenge is that learning methods
that perform well on one metric may not perform well on

other metrics; for example, SVM classifiers optimize accuracy,
while neural networks optimize probabilistic metrics, such as
RMSE and cross-entropy [154]. Therefore, after choosing one
or more classifiers for our work according to the stated criteria,
in addition to considering the above factors, it is better to get
familiar with what metric these classifiers optimize best and
choose that metric to evaluate the classifier. Of course, it is not
bad to provide a general answer to the question that, in general,
if we do not know the correct evaluation metric, which metric
should we use by default? The paper [154] generally stated
that RMSE might serve as a good general-purpose metric
to use when a more specific optimization criterion is not
known. Now with these factors in mind, one can choose a
suitable metric for the classification problem. Now, we want
to discuss the data communication model, power efficiency,
and propagation delay since these concepts are very relevant
for movement classification using wearable IoT. Familiarity
with these concepts can also solve many existing challenges.
Before dealing with the topics, we will talk about body sensor
networks (BSNs) that are an inseparable part of wearable IoT.
BSN is a set of sensors connected to the body that together
forms a network and collects the necessary information. The
BSN used in this field is usually wireless and can be con-
sidered a type of wireless sensor network (WSN). BSN is
an important component of the IoT [186]. First, we want to
specify the data communication model in BSN. The general
architecture of a BSN consists of sensor nodes that are placed
in the body to collect data and perform preliminary processing.
The data are gathered by a sink node and then transmitted to
a base station to share over the Internet [186]. This method
of data communication with a slight modification is also
presented in the paper [187]. However, the entire structure
has the same skeleton. Sensors are the key components of
BSN, as they connect the physical world with electronic
systems. They are mainly used to collect information about the
human body. Sensor nodes, which have a sensor as their main
part, are responsible for processing information by format
conversion, logical computing, data storage, and transmit-
ting. One sensor node generally comprises a sensor module,
a processor module, a wireless communication module, and
a power supply module. The sensor module is responsible
for collecting the status of measurements and converting data
to electrical signals. The processor module is responsible for
controlling the sensor nodes. The wireless communication
module, consisting of the network layer, the MAC layer, and
the wireless transceiver in the physical layer, is responsible
for communication among sensors and computers. The power
supply module is responsible for providing energy for the
entire sensor node [186]. Nowadays, BSN research still faces
many key technical challenges, such as energy consumption
and service quality [186], [187]. Energy consumption and
power efficiency are among the most important challenges in
these networks, which, of course, was briefly mentioned at
the beginning of this section, but, now, we intend to look
at the issue a little more generally. BSNs can be battery-
powered. They can also be powered by kinetic energy and
heat [186]. Our energy resources are limited, so we try to
explain the methods of reducing energy consumption and, thus,
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improving power efficiency. First, we start energy consumption
reduction concerning BSN sensors. Low-power design is one
of the main challenges for sensors in this network. Familiarity
with the classification of sensors can be useful in reducing
their energy consumption. According to the types of measured
signals, sensors in BSNs can be divided into two categories.
The first category that collects signals continuously includes
accelerometers, gyroscopes, ECG sensors, EEG sensors, EMG
sensors, and so on. The second category, including temperature
sensors, humidity sensors, and so on, collects discrete-time
signals. Usually, the first category’s power consumption is
more than the second one. Therefore, it is better to choose the
second type of sensor among sensors that may measure sim-
ilar signals for movement classification (of course, if energy
consumption is the priority). Another possible way to reduce
energy consumption is using the sleeping mode [186], [187].
The most commonly used sensors in BSNs can be divided
into the following three categories according to the types
of data transmission media: wireless sensors, which employ
wireless communication technologies, such as Bluetooth or
Zigbee, and radio frequency identification devices (RFIDs),
to communicate with other sensors or devices. Wired sensors,
employing wired communication technologies, can replace
wireless sensors if wearability is not seriously affected. The
transmission mode is more stable than the wireless one. How-
ever, their installation and deployment are complicated. The
third category is human-body communication (HBC) sensors
that use the human body as the transmission medium [186].
The latter can have lower power consumption and sensor node
size than the first two, but it has been introduced in recent
years and needs more time to settle [186]. In the design of
sensor nodes, issues related to reducing power consumption
can also be considered. In the sensor node design process,
energy control and reduction of sensor nodes can be consid-
ered to meet the demands of low power consumption [186].
Energy control has been one of the hot topics in the field of
BSN sensors for the implementation of long-term monitoring
functions. The low-power architecture design, the low-power
processor design, the low-power transceiver design, and the
energy acquisition design are preliminary research topics in
energy control at present [186]. The goal of reducing sensor
nodes is inertial sensors for activity recognition. It not only
improves the wearability of the mentioned systems but also
lowers the cost, saves energy, and so on. Principal methods
to solve the problem are node placement optimization and the
improvement of activity recognition algorithms [186]. In the
paper [186], it is also stated that data fusion techniques can
reduce data redundancy and, thus, reduce the load and energy
consumption of BSN with the advantage of extending the
network lifetime. In the BSN communication section, the
factors that can be addressed to improve energy efficiency and
reduce power consumption include proper network topology,
energy-efficient MAC and routing protocols, and so on [186],
[187]. At the beginning of the discussions, we announced that
service quality is one of the most challenging topics in BSN.
In BSNs, this concept is known as Quality of Service (QoS).
QoS generally can be considered as a description of overall
network performance. QoS can be characterized by packet loss

possibility, available bandwidth, end-to-end delay, jitter, and
so on. Examining other factors related to QoS, such as jitter,
available bandwidth, and packet loss, is not on the agenda of
this article, and addressing them is not related to the main
topic of our paper and will take us away from the main goal,
so they will not be addressed. The specialized investigation of
these factors is in the field of telecommunication engineering.
Therefore, we are going to briefly discuss the end-to-end delay.
In general, the end-to-end delay in the BSN is divided into four
types: propagation delay, transmission delay, queuing delay,
and processing delay. The time that it takes for the data to
be transmitted from the source to the destination is called
propagation delay. The time that it takes for the data to be
completely transmitted is called transmission delay. The time
that data must wait in the buffer until the busy destination
can check it is called queuing delay. The time that it takes a
processor to process data is called the processing delay. These
four delays make up the end-to-end delay. It is better to know
the causes of each of these delays. General factors that cause
propagation delay include the characteristics of the medium
and environmental characteristics, such as humidity, pressure,
temperature, signal disturbances, and so on. However, we will
try to provide some more specialized examples. Propagation
delay in electronic circuits or logic gates is one of the most
obvious examples of this delay in BSN [186]. Addressing the
problem of propagation delay in electrical circuits involved in
BSN, such as logic circuits and SRAM in microcontrollers,
is one of the main concerns of electrical circuit designers
[186]. In paper [188], the end-to-end delay was considered
to include four types of delays: transmission delay, queuing
delay, processing delay, and channel capture delay. In this
article, channel capture delay is the same as propagation delay.
This phenomenon occurs when a device from a shared medium
takes possession of the media for a significant period. In the
mentioned paper, the authors have presented a relay-based
routing protocol for in vivo BSNs. The proposed protocol is
provided with linear programming-based mathematical models
for network lifetime maximization and end-to-end delay min-
imization [188]. Therefore, we must know the various sources
of propagation delay in BSN and find a suitable solution for
each of them. Now, we also announce the general factors
causing other delays. Factors such as transmission speed and
bandwidth are effective in causing transmission delay. Factors
such as bandwidth, data volume, and the type of queuing
method are also effective in causing queuing delays. The
features of the processing device, the volume of data, and
the complexity of the processing algorithms are also factors
that cause the processing delay. Now that we are familiar with
the technical challenges in movement classification, we must
mention that recognizing complex activities (such as cooking
and doing the dishes) is also a technical challenge that
is beyond the scope of this article. Finding a solution for
this challenge will also be a very suitable topic for future
papers.

VI. CONCLUSION

In this article, we announced that wearable IoTs will be
widely used in the future. Human motion recognition by
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wearable sensors is investigated in this article. Since classi-
fication is an integral part of human body motion recognition,
it can be claimed that movement classification is closely
related to human motion recognition. Movement classification
includes three subsections: GA, GR, and HAR. The goal
is to first introduce the reader to the important steps of
human body movement classification by wearable sensors
and then determine the algorithms and methods used for
each step using tables. To better understand the results of
the tables, approximate numbers and percentages have been
used. In some cases, bar charts have been used to visualize
numerical results. By reading this article, the readers will be
fully acquainted with the concepts in movement classification,
know the steps of conducting research along with commonly
used algorithms, wearable sensors, IoT concepts, and future
directions, and can carry out the project in the human motion
recognition area.

APPENDIX

See Table XVII.
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