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Abstract—It has been about 20 years since the disruptive
appearance of the first time-of-flight (ToF) cameras. Since
then, ToF imaging has progressively evolved. Nowadays, ToF
sensors have broken the barrier of the 1-megapixel resolu-
tion, and a significant number of high-resolution ToF cameras
have appeared in the market. To provide a better under-
standing of their performance and applications, we exper-
imentally evaluate three state-of-the-art high-resolution ToF
cameras such as Azure Kinect, Helios2, and S100D, together
with the solid-state LiDAR L515. We perform various exper-
iments to examine some key parameters, such as warm-
up times, accuracy, precision, lateral and axial resolutions,
edge noise, unsteady scenes, and modulated waveform and
optical power. Our evaluation draws various conclusions: S100D shows fluctuations within 1 mm after being powered
up while the others require warm-up times. Azure Kinect, Helios2, and L515 can achieve precision within 2 mm in a
measuring range of 0.5–3 m. Helios2 and S100D are more severely affected by dynamic scenes. Finally, the point clouds
(PCs) generated for a white panel at a distance of 1.5 m show that flying pixels are present in all cameras, being this
problem less acute for the L515.

Index Terms— 3-D imaging, depth imaging, high-resolution, metrological validation, time-of-flight (ToF).

I. INTRODUCTION

THE rapid development of the technology over the past few
decades have allowed tackling challenges which seemed

unsolvable just some years ago. Nowadays, computer vision
systems are capable of, without human intervention, perceiving
and reconstructing the surrounding reality and reliably making
decisions based on the predicted behavior of the targets
this reality consists of. The continuous advancements on
computer vision, together with the increase in computational
capabilities and the development of more efficient reconstruc-
tion techniques, have facilitated a better representation of
the surrounding environment, allowing access to previously
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unreachable locations and a safer development of tasks which
can now be performed remotely. There are some fields, such as
autonomous driving or mobile robotics, in which this impact
has become more evident. In them, the need for reliable,
high-resolution, high-frame-rate 3cD imaging is of paramount
importance. This article is focused on the study of 3-D imaging
technologies and, in particular, on the empirical evaluation of
various state-of-the art time-of-flight (ToF) cameras. A ToF
camera features an active illumination system and retrieves
the distance by measuring the round trip of a light signal
between the sensor and the target. Due to the relatively low
cost and power consumption, they will play a relevant role in
the market in coming years. Also, they do not present problems
such as the correspondence of points from multiple views of
stereovision [1] or the sensitivity of structured light to external
illumination [2].

The revolutionary research of Prof. Rudolf Schwarte in
the 1990s at the Center for Sensor Systems (ZESS) of the
University of Siegen (Germany) yielded the birth of the first
ToF camera in 2001 [3] based on the photonic mixer device
(PMD) technology. Since then, significant efforts have been
invested to enhance the resolution, increase the range, reduce
the computational needs, and allow for the use in demanding
environments, i.e., under strong light conditions or unsteady
scenarios. As a result, a large number of ToF cameras have
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been introduced in the market. In this article, we compare the
performance of three recently launched high-resolution phase
shift ToF cameras, such as Microsoft Azure Kinect (2019),
S100D (2019), and Helios2 (2020), together with a LiDAR,
L515 (2019). We perform an experimental evaluation under
controlled environmental conditions in a dedicated facility [4]
and present results which will allow for a better understanding
of their performance, strengths, and limitations.

The rest of this article is structured as follows. Section II
presents an overview of relevant works in the field.
In Section III, the historical evolution of 3-D imaging tech-
nologies and, in particular, ToF imaging systems is depicted,
together with a detailed description of the cameras evaluated,
the key operational parameters, and the main sources of errors.
In Section IV, we describe the experimental setup and present
the results obtained. Finally, in Section V, we summarize
the main outcomes of our work and identify areas for future
research.

II. RELATED WORK

Since the birth of ToF imaging systems, many significant
efforts have been made to examine the operational parameters
of ToF cameras and the nature of the main measurement
errors and inaccuracies to compensate them and guarantee
acceptable depth results. Kahlman et al. [5] investigated a
sensor calibration procedure for the range imaging camera
Swissranger1 adopting a parameter-based approach, modeling
the evolution of the measured distance during the warm-up,
compensating the depth errors per pixel by making use of
a fixed pattern noise (FPN) matrix, and mitigating wiggling
errors using a lookup table (LUT). In the same year, Lind-
ner and Kolb [6] proposed an accurate distance-calibration
procedure, based on B-spline curve-fitting, which significantly
reduced the amount of data stored per pixel. May et al. [7]
proposed a technique for the removal of edge noise by a
filtering approach. Foix et al. [8] extensively reviewed the
state-of-the-art of ToF imaging, presenting the main sources of
errors and calibration techniques. Hussman et al. [9] generated
better modulated optical signals through hardware, although
the range of application was substantially limited by the optical
power. Feigin et al. [10] proposed the modeling of circular
errors as a multipath interference (MPI) problem which could
be solved by making use of multiple modulation frequencies
and avoided via prior calibration. An interesting work was
performed by Georgiev et al. [11], who discussed the modeling
and removal of FPN in low-light conditions, i.e., scenes char-
acterized by poor illumination conditions, or low-reflectivity
targets. The study and compensation of FPN in ToF systems
was also the object of recent research in [12]. He et al. [13]
analyzed the impact of external factors on the depth errors
of ToF cameras by performing an experimental evaluation
using a MESA SR-4000 and proposed an error correction
method based on particle filter-support vector machine (PF-
SVM) which reduced the depth error to the millimeter range
over the whole measurement range.

In addition, various works have evaluated the perfor-
mance of low- and medium-resolution ToF cameras on the

1Trademarked.

Fig. 1. 3-D imaging technologies.

TABLE I
COMPARISON OF 3-D IMAGING TECHNOLOGIES

experimental front. Piatti and Rinaudo [14] empirically com-
pared the performance of the MESA SR-4000 and PMDTec
CamCube 3.0. They found that both the cameras required
warm-up times of, at least, 40 min, and that the measurement
precision reached a standard deviation σ ∼ O(mm) and
significantly depended on the integration time. Laukannen [15]
tested the MESA SR-4000, Panasonic D-IMager EKL-3106,
and Microsoft Kinect V2 and showed that D-IMager EKL-
3106 required much shorter times ≈ 15 min to reach
steady-state conditions. The PMDTec Camboard Picoflexx and
Microsoft Kinect v2 were compared in the context of motion
capture for human body kinematics measurement [16], where
a better performance of the latter was observed, although both
could satisfactorily operate in such context. Fürsattel et al.
[17] performed an extensive comparative error analysis of
eight cameras launched between 2005 and 2013. Langmann
et al. [18] evaluated the lateral and depth resolution of the
PMDTec 3k-S, Microsoft Kinect V1, and PMDTec CamCube
41k for near-field indoor scenes. Over the past few years, the
Microsoft Azure Kinect and her precursor models Kinect V1
and V2 have attracted attention within our community [19],
[20], [21] and have been applied to many fields such as human
detection and tracking [22], [23] or posture recognition [24],
among others. Recently, Wei et al. [25] performed a thorough
comparison of the three generations of the Kinect family
and recommended some operational parameters for different
scenarios. Lourenço and Araujo [26] compared various 3-D
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TABLE II
SPECIFICATIONS OF TOF CAMERAS

cameras from Intel2 RealSense1 based on different work-
ing principles, such as the SR305 (structured light), D415
(stereovision), and L515 (direct-ToF), and showed that the
latter presented a better performance in terms of accuracy
(lowest number of failed points). This was confirmed by Servi
et al. [27], who performed a metrological characterization
and comparison of three depth cameras, namely, D415, D455,
and L515, in the close range, i.e., from 0.1 to 1.5 m. They
showed that the L515 presented smaller systematic depth
errors, although the D415 attained a better reconstruction
quality in the short-range test (0.1–0.5 m) and the D455 in
the standard-range test (0.5–1.5 m). A comparison of ToF
and other imaging technologies such as structured light and
active stereoscopy was presented in [28]. They extensively
described various state-of-the-art imaging devices and per-
formed a metrological validation of the Microsoft Kinect V2.
They verified the modulated signal, evaluated the stability
and response to temperature fluctuations, and analyzed the
range measurement at a single-pixel and sensor level. Also,
Frangez et al. [29] experimentally evaluated the deviations of
the depth measurements for two phase-shift-based cameras of
the same model (Lucid Helios). They obtained results very
close to ours (see Figs. 7 and 8 in Section IV), such as required
warm-up times of ≈40 min to reach a depth error ≤ 2.5 mm
and standard deviation σ ≤ 3 mm for up to a range r ≈ 2 m.

III. THEORETICAL BACKGROUND

A. ToF and Other 3-D Imaging Technologies
The ToF imaging systems estimate the relative distance

between the camera and the surrounding objects, i.e., targets
the scene under study consists of, by calculating the return-trip
time of a light signal from the camera to them. As shown
in Fig. 1, there are two fundamental approaches for ToF
imaging, depending on whether the time delay is directly
measured, as in LiDARs based on single-photon avalanche

2Registered trademark.

diodes (SPADs) [30], or whether it is calculated by performing
a correlation of the reflected signal and a set of reference
control signals generated in the camera. In indirect-ToF, the
nature of the used signals leads to a further distinction
between amplitude-modulated continuous-wave (AMCW) and
pulse-based (PB) ToF systems. In AMCW-ToF, the emitted
and reference control signals are sinusoidal, or, in practice,
smoothed trapezoidal signals due to the implementation of
digital logic. In PB-ToF cameras [31], [32], [33], only a
short light pulse is emitted, interacts with the scene, and
is captured by one or more pixels of the sensor array in
a very short time window or gate. The pixel is equipped
with two optical shutters, which generate two control signals
with the same period as the emitted pulse signal. Then, the
distance is calculated from the correlation of both, the reflected
and control, signals. Moreover, there are other popular 3-D
imaging technologies, such as stereovision and structured
light, to provide depth information which make use of different
working principles. In stereovision systems [34], a 3-D repre-
sentation of the surrounding space is generated by considering
different perspectives from several cameras or from a moving
camera. In structured light systems [2], one of the cameras
is replaced by a projector. The projector emits an illumination
pattern distorted by the nonplanar scene, and the depth is
estimated from the distortion with respect to the original,
which is acquired by a conventional image sensor. Table I
presents a comparison of ToF with respect to stereovision and
structured light. It can be seen that ToF cameras represent
a cost-effective, low-power, and size-manageable solution for
long ranges, which, moreover, can work indoors and outdoors
with medium to high resolution [∼O(cm)].

B. Historical Evolution of ToF Cameras
In this section, we present some of the most remarkable

milestones in the historical development of ToF cameras since
the appearance of the first PMD ToF prototype in 1999 [35].
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Fig. 2. Historical evolution of ToF cameras. (a) PMD first ToF prototype.
(b) Canesta DP 200. (c) MESA SR3000. (d) MESA SR4000. (e) PMD
Camcube3.0. (f) Panasonic D-IMager EKL3106. (g) PMD Camboard
Nano. (h) Softkinect DS311. (i) Softkinect DS325. (j) Microsoft Kinect
V2. (k) PMD Camboard Picoflexx. (l) PMD Selene Module. (m) Microsoft
Azure Kinect. (n) S100D. (o) L515 (solid-state LiDAR). (p) Helios2.

Fig. 2 presents some of the most popular ToF cameras [14],
[36], [37], [38], [39] developed over the past two decades.

PMD Technologies, a spin-off of the Center for Sensor
Systems (ZESS) at the University of Siegen (Germany), was
founded in 2002 after their core technology, the Photo-Mixer
Device. Their founders Schwarte [39] and the Audi Electronics
Venture GmbH pioneered the ToF imaging technology. Their
first release was the PMDTec 3k-S. In 2010, the company
launched a CW-ToF camera with a significant improvement
on the performance, the Camcube 3.0. This camera featured a
200 × 200 pixel array and achieved a range of 7.5 m. In 2012,
PMD released the PMD Camboard Nano and, in 2015, the
PMD Camboard Picoflexx. The manageable size and low

weight of the camera allowed for the integration on mobile
devices. Since 2013, PMD and Infineon have jointly developed
and launched in the market six generations of the state-of-the-
art ToF imagers [40]. In 2018, PMD launched an small-size
module, the Selene Module, which has been used in some
researches for material identification [41] and evaluation and
compensation of the effect of dirt [42].

Canesta [43] launched the first ToF camera DP200 in 2004,
which featured a maximum field of view (FOV) of 70◦

× 70◦

and a frame rate of 30 frames/s. Over the following years,
the camera was implemented in several fields [44], [45]. The
company was acquired by Microsoft in 2010. In the same
year, Microsoft released the Microsoft Kinect for the XBOX
360, used in video games for 3-D perception, i.e., gesture
recognition and body skeleton detection. The low cost and high
performance brought the attention of scientists and robotics
enthusiasts [46], who expanded the range of applications to
object recognition and simultaneous localization and mapping
(SLAM) [47], [48]. Microsoft released Kinect V1 in 2012 and
V2 in 2014, respectively, for commercial use. Kinect V1 was
based on the structured light technology of PrimeSense, while
Kinect V2 was a phase-shifted ToF camera. The Kinect V2
marked an important milestone on ToF technology because
of its high depth resolution sensor array of 512 × 424 pixel.
The latest release of Microsoft is the Azure Kinect [49] based
on AMCW-ToF. The camera features a sensor of 1024 ×

1024 pixel and a bandwidth up to 320 MHz. The camera was
presented at the Mobile World Congress (MWC) in Barcelona
in 2019 and released to the general public in 2020.

The research group lead by Peter Seitz at the Centre Suisse
d’Electronique et Microtechnique (CSEM) was also one of
the precursors on the development of ToF cameras [50]. The
group provided the technical development for the foundation
of MESA Imaging AG, a spin-off company of the CSEM
founded in 2006. Mesa Imaging released two AMCW ToF
cameras, SR-3000 [51] and SR-4000 [52], in 2006 and 2008,
respectively [53]. SR-4000 presented two main improvements
with respect to the previous model, such as the internal refer-
ence path, which realizes internal synchronization between the
illumination and the sensor, and a more stable passive cooling
system [53]. The SR-4000 featured an image sensor of 176 ×

144 pixel and two different modes with measurement ranges
of 5 − 10 m, respectively. In 2014, Mesa Imaging was bought
by Heptagon, later acquired by AMS AG in 2017.

Softkinect launched two ToF cameras in 2012, DS311 and
DS325 [37]. Comparatively, the DS311 presented a larger
measurement range up to 5 m, and the DS325 had a higher
resolution with a sensor array of 320 × 240 pixel and FOV
of 74◦

× 58◦. In 2015, Sony announced the acquisition of
Softkinect. In 2016, they developed a small ToF camera [54],
the DS541, suitable for integration in mobile devices. Their
latest ToF sensor, which achieves video graphics array (VGA)
resolution, is the IMX556PLR, which is featured by the Lucid
Helios2 [55].

C. Description of Evaluated ToF Cameras
In this section, we present a detailed description of some of

the most recent ToF cameras released between 2019 and 2020,
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TABLE III
SPECIFICATIONS OF MICROSOFT AZURE KINECT AND

COMPARISON WITH PREVIOUS RELEASES

TABLE IV
SPECIFICATIONS OF ILLUMINATION SYSTEM FOR THE

MICROSOFT AZURE KINECT

such as the Microsoft Azure Kinect, Helios2, and S100D,
together with the L515, which is a solid-state LiDAR. Table II
shows a comparison of their main characteristics.

1) Microsoft Azure Kinect: In 2019, Microsoft launched the
Microsoft Azure Kinect [56], an AMCW-ToF camera pri-
marily focused on artificial intelligence usage. The Microsoft
Azure Kinect also features a color camera, an inertial measure-
ment unit (IMU), and a microphone array. The color camera
consists of a high-resolution array of up to 4096 × 3072 pixel.
Furthermore, it allows for the generation of color point clouds
(PCs), which facilitate the visualization and classification of
the observed 3-D scene. The camera supports four different
depth sensing modes, depending on the desired FOV and
resolution, as presented in Table III. In the binned mode, more
stable values of depth and intensity for each pixel, as well as
an extended measurement range, are obtained by averaging the
values from adjacent pixels. This comes at the cost of reducing
the density, i.e., the total number of pixels, of the array.
Except for the NFOV-binned mode, the lateral resolution of all
the modes outperforms previous releases, such as Microsoft
Kinect V1 and V2 [57]. For instance, the resolution may
reach up to 1 megapixel for the WFOV-unbinned mode and
the measurement range achieves 5.46 m for the NFOV-binned
mode. Table IV presents the specifications of the illumination
system of the depth camera for the four different modes. The
camera adopts a multifrequency approach to increase the depth
resolution. The emitted modulated light signal consists of a
number of infrared (IR) pulses followed by idle periods which
depend on the operative mode.

2) Helios2: In 2018, Sony launched the IMX556PLR
DepthSense1 sensor for AMCW-ToF imaging [55]. The sensor
consists of an array of 640 × 480 pixel and combined the Soft-
Kinetic’s ToF technology with Sony’s backside-illuminated

TABLE V
SPECIFICATIONS OF HELIOS2

(BSI) technology, yielding an improvement of the light gather-
ing efficiency and a reduction of noise. In 2019, LUCID Vision
Labs incorporated it into its Helios ToF camera. Also, other
companies such as Basler (Blaze) [58], and Seeed Technology
(DepthEye Turbo) [59] built their cameras upon it. In 2020,
LUCID Vision Labs announced the next generation of their
ToF cameras, the Helios2. This camera supports six different
operating models and significantly improves the precision
achieved by its precursor, achieving resolutions within the
millimeter range. Table V shows the different operating modes
of the camera. The Helios2 achieves high accuracy for the
distance modes of 5 and 8.3 m by considering a dual-frequency
approach of 120+90 MHz with error ≤ ±4 mm+0.001·r , and
90 + 72 MHz with error ≤ ±4 mm + 0.002 · r , respectively,
with r being the relative distance between the camera and
the observed point. Also, the camera features four vertical-
cavity surface-emitting laser (VCSEL) diodes of wavelength
λ = 850 nm.

3) S100D: In 2019, Cube Eye Meerecompany released a
compact design ToF evaluation board, S100D [60], which
features the first Samsung AMCW-ToF sensor, the ISOCELL
Vizion 33D. The camera features a sensor array of 640 ×

480 pixel for a measurement range from 0.2 m to 4 m and
an accuracy of <±1% · r . It is characterized by its low-power
consumption of ≤1.5 W. The illumination system consists of
one VCSEL diode of λ = 940 nm.

4) L515: In late 2019, Intel RealSense launched a depth
camera based on solid-state LiDAR technology, the L515 [38],
[61], announced as the world’s most power-efficient high-
resolution LiDAR camera with power consumption < 3.5 W
and weight < 100 g. With a laser emitter of λ = 860 nm,
the camera is suitable for depth streaming preferably for
indoor applications, such as warehouse robotics, volumetric
measurement, and room scanning, up to 9 m. It enables a
pixel array of 1024 × 768 pixel at 30 frames/s due to the
low exposure time of texp < 100 ns per depth point and
short photon-to-depth latency of 4 ms. Similar to the Microsoft
Azure Kinect, it incorporates an IMU and a color camera with
a resolution of 2 megapixel. With respect to the depth accuracy,
the average depth error and standard deviation at reflectivity
ρ = 95% at 1 m are <5 and 2.5 mm, while at 9 m they are
<14 and <15.5 mm, respectively. The specifications of the
camera for different modes are described in Table VI.

D. Sources of Error for a ToF Camera
We establish two categories depending on the intrinsic or

extrinsic nature of the errors affecting ToF cameras [8], [62].
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TABLE VI
SPECIFICATIONS OF L515

1) Systematic errors are derived from the intrinsic prop-
erties of the camera and the ToF sensor. Wiggling,
pixel-related, amplitude-related, and temperature-related
errors belong to this class. Wiggling errors, or circular
errors, occur in CW-ToF systems when higher har-
monics are present in both, the emitted and reference
signals. This leads to a nonlinear, but still monotonic,
relationship between depth and phase shift. Wiggling
errors were traditionally corrected using calibration data,
although alternative correction techniques based on MPI
can also be considered [10]. Pixel-related errors are
due to the nonuniform charge–voltage conversion, which
in complementary metal–oxide–semiconductor (CMOS)
technology takes place in parallel in every pixel. This
is caused by the variations in transistor and dark cur-
rents. This issue, relevant in the early-stage development
of CMOS, is currently solved using correlated double
sampling (CDS) [63] to remove the undesired voltage
offset. In CDS, the output of the sensor is evaluated
in two different conditions, one of them known a priori.
Both the measurements, one in known conditions and the
other in unknown conditions, are required to compose
a measurement that relates exclusively (ideally) to the
physical property of interest, i.e., depth. Amplitude-
related errors may occur because the illumination field
decays radially or because of the vignetting effects from
the lens. As a result, there may exist nonnegligible
light variations between the center and boundaries of
the sensor array, which may yield an overestimation of
the depth at the external boundaries of the sensor array.
Finally, there may exist temperature-related errors. First,
the temperature variations in the VCSEL may induce
a bias in the phase shift and, also, a quadratic decay
of amplitude [64]. Second, the temperature variations
within the pixel array will influence the noise of the
measurements.

2) Nonsystematic errors are caused by ambient conditions,
such as signal-to-noise ratio (SNR), MPI, light scat-
tering, and motion artifacts. SNR refers to low signal
amplitude compared with the noise floor. It occurs in
poorly illuminated areas and highly depends on the
depth and amplitude uniformity of the scene. It can be
corrected using a low-amplitude filtering and removing
corrupted measurements [8], [36]. MPI occurs when,
for complex geometries, the modulated light is reflected
multiple times across their surface. This results in some
pixels receiving the echoes of the optical signals from

TABLE VII
SETTINGS OF THE DEPTH MODULE FOR HELIOS2

different paths with the subsequent under- or overes-
timation of the depth retrieved by such pixels. Light
scattering [65] is caused by multiple reflections of
incident light between the lens and the sensor and may
lead to an underestimation of the depth of distant objects
if the light is leaking directly from the source or to
an overestimation due to interreflections inside the light
system. Motion artifacts [66], [67] are caused by the
relative motion between the sensor and the object, which
may yield biased depth estimations. Hoegg et al. [68]
presented a number of preprocessing techniques for
the correction of motion blurring. Also, Lee [66] and
Kim et al. [69] presented a correction method for
motion blurring by evaluating the relationships between
different phase offsets observed at multiple time slots in
the ToF sensor.

E. Filtering and Postprocessing Techniques
In this section, we present various tools each camera fea-

tures to reliably generate a 3-D PC, as well as improving the
performance in the presence of noise.

1) The Azure Kinect converts the 2-D depth map taken by a
camera into a 3-D PC in the same coordinate system of
the camera by performing two consecutive operations
(given by the corresponding built-in functions). First,
it precomputes a xy-LUT that stores x- and y-scale
factors for every image pixel. Then, it determines the
pixel’s 3-D x- and y-coordinates by multiplying the
pixel’s z-coordinate with the pixel’s x-scale and y-scale
factors, respectively.

2) The Helios2 [70] features a flying pixel filter which
marks a pixel as invalid when the distance from its sur-
rounding pixels is larger than the user-defined threshold.
Helios2 is also capable of accumulating several frames
for the depth calculation, which translates into a better
noise performance on the resulting data but also on a
slower frame rate. The camera provides a confidence
value for each pixel, a 16-bit integer obtained by analyz-
ing the variance of the intensity over consecutive frames,
which represents a measurement of how reliable the
depth data are. In addition, it allows for the configuration
of a confidence threshold, i.e., the pixels with values
above the confidence threshold are deemed valid. The
higher the confidence value for that pixel, the more
reliable the depth measurement. Table VII presents the
default, minimum, and maximum values for the depth
controls of Helios2.

3) Librealsense [71] is an open-source cross-platform to
operate RealSense devices, such as L515. As shown
in Table VIII, it includes various features in the depth
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TABLE VIII
SETTINGS OF THE DEPTH MODULE FOR L515

TABLE IX
SETTINGS OF THE DEPTH MODULE FOR S100D

visualization module, such as the control of the laser
power and the receiver gain, a pre- and a postprocessing
sharpening, a confidence threshold, and a noise filtering
which controls edge and background noise. In addi-
tion, it includes a number of postprocessing filters to
improve the depth data and minimize noise, such as a
decimation filter, an spatial edge-preserving filter [72]
to enhance the smoothness of the reconstructed data,
a temporal filter which seeks time-domain smoothness,
and, finally, a holes’ filling filter to generate missing data
in the resulting image. The postprocessing tools [71] are
included in a separated module and are not considered
in this evaluation.

4) The S100D features a flying pixel filter based on a
user-defined threshold (the larger the threshold, the
wider the range removed), It also permits the user to
define a scattering threshold below which the output
depth value is set to zero, as well as a motion-blur
threshold to avoid aliasing for moving objects which
consists of a multifrequency motion blur and a temporal
motion blur weight. Finally, it includes a noise reduction
filter (a median filter) to remove the spatial noise in the
depth frame. The default, minimum, and maximum val-
ues considered by the S100D are presented in Table IX.

F. Key Parameters for a ToF Camera
We focus on some key parameters in the performance of

any imaging system and, in particular, of ToF cameras.
1) Warm-up times are required by the imaging sys-

tem to reach steady-state conditions and to avoid
temperature-related errors due to the thermal fluctua-
tions derived from the heat losses of the electronic
components when the camera is initially powered-on.
To evaluate this phenomenon, we make use of a 1 ×

1 m aluminum panel and coated with barium sulfate
(BaSO4), which is almost an ideal Lambertian reflector.
The panel is placed at a distance of 1 m with reference
to the camera and parallel to the sensor plane. We track
the time evolution of the measurements provided by the
ToF cameras during 2 h after being powered-on.

2) The accuracy stands for the absolute difference between
the mean measured and the real values, i.e., ground
truth (GT). The precision characterizes the spread of
the measurements with respect to the mean measured
value and is represented by the standard deviation, σ ,
of the measurements. This standard deviation depends
on the light attenuation and linearly increases with the
distance r , i.e., σ ∝ r

√
λ/ρ cos α, with α being the

incident angle, ρ the reflectivity of the target, and λ

the wavelength of the light signal [73].
3) The lateral resolution is usually bounded by the number

of pixels of the sensor, as well as for the quality of
the lens which can be characterized by its point spread
function (PSF) [74]. If the governing criterion is the
number of pixels, the geometry of the pixel and the
FOV play a fundamental role. In this work, we make
use of the Boehler stars [75] for the evaluation of the
lateral resolution of the ToF cameras. As shown in Fig. 3
(center), the Boehler star used in our evaluation has a
diameter m = 20 cm and consists of 24 alternative
sectors. The lateral resolution can be determined as
follows:

1rlat =
πd M

n
=

π P1 M
n P2

(1)

where n is the number of sectors of the star, d is the
quotient of the incorrectly measured circle in the middle
of the star to the diameter M of the star [18], and P1 and
P2 represent the number of pixels that each diameter
takes in the depth images. If the depth is known, the
angular resolution can also be estimated as (2), with z
being the depth of the target

1rθ = arctan
1rlat

z
. (2)

4) The range resolution is defined as the minimum dis-
tinguishable distance which can be determined within
the unambiguous range. Based on the voltage resolution,
given by the ratio of the total voltage swing and the noise
voltage generated by the storage capacitor, the range
resolution 1rr [43] can be expressed as follows:

1rr =
c

2 fm

√
Plaser + Pamb

Plaser
·

A
koptqeρ1t

(3)

where c is the speed of light, fm is the modulation
frequency, and Plaser and Pamb are the power of the illu-
mination system and of the ambient light, respectively.
In addition, A stands for the total area illuminated, qe
is the quantum efficiency, ρ is the reflectivity of the
target, 1t is integration time, and kopt is a constant
parameter which defines the optical system. In our
experiments, we determine the range resolution as the
height difference observed between a test object and the
background. As shown in Fig. 3 (left), we make use of
three 5 × 5 cm cuboids of heights h = 3.5, 7, and
14 mm, respectively.

5) The edge noise or flying pixels is a particular form of
MPI. It occurs when the light beam hits the edge of
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Fig. 3. Test objects used for the experimental evaluation of the ToF
cameras.

Fig. 4. LTU and experimental setup for warm-up time assessment of
the Microsoft Azure Kinect.

Fig. 5. Experimental setup for the evaluation of dynamic scenes
consisting of a rotating Boehler star coupled to a servo motor through a
1:4 reduction system.

Fig. 6. Experimental setup for the assessment of the illumination
system using a fast photodetector aligned with the camera.

an object, at which the depth abruptly changes. This
may lead to an incorrect estimation of the depth in the
incident pixel [76], [77]. To evaluate this phenomenon,
we make use of the 1 × 1 m white panel. We placed
the panel at a distance of 1.5 m and assess the PCs
generated.

6) The pixels of ToF cameras, as well as of other imag-
ing systems, require a certain amount of time, called
exposure or integration time (texp), to gather sufficient
light from the observed scene. A general consideration
is that during this time, the position and orientation
of the camera and the targets observed in the scene
remain invariant. However, as texp ∼ O(10 ms), the
relative movement between the camera and the scene
may lead to the observation of light paths for each pixel
from different targets during texp and, therefore, to an

erroneous estimation of the depth at the object bound-
aries, i.e., the appearance of motion artifacts and flying
pixels [32]. We evaluate this phenomenon by making use
of a turning Boehler star placed at 1 m from the camera
and parallel to the sensor plane. We determine the
number of pixels whose depth is correctly determined
(background and foreground) for various angular rates
from 0 to 75 rpm (see Fig. 5 and Section IV-F for more
details).

7) The characterization of the illumination signal and
the resulting optical power are fundamental aspects
to achieve a good depth resolution and determine the
maximum achievable range of a ToF camera [78] and
the range resolution (3).

In addition, we simultaneously evaluate the range and lateral
resolutions by making use of a sinusoidal foam structure
with amplitude and wavelength equal to 2.5 and 4.5 cm,
respectively, as shown in Fig. 3 (right).

IV. EXPERIMENTAL EVALUATION

In this section, we present various experiments performed
to evaluate the performance of the ToF cameras.3 As shown in
Fig. 4, we make use of a linear translation unit (LTU) with a
position accuracy < 1 mm and a bracket which allows for the
free rotation of the camera. We remove any possible interfer-
ence from high-reflectivity objects by covering them with dark
cloth and guarantee uniform conditions for all the experiments,
as well as minimize the external noise by blocking any external
light source. With respect to the evaluation of the effect of the
different parameters on the depth estimate, we follow a similar
methodology for all the experiments by presenting the average
value over 30 acquisitions taken at each depth, from 0.5 to 3 m
at intervals of 0.1 m. In addition, we make use of a rotating
20 cm-diameter Boehler star with 48 equi-angular sectors
and coated with barium sulfate for the evaluation of dynamic
scenes. The Boehler star is coupled to a servo-motor through
a 1:4 reduction system, as presented in Fig. 5. Finally, we per-
form an experimental verification of the illumination system
of every camera. We place a high-sensitivity photodetector
FPD310-FS-VIS [79] in front of the emitter and parallel to
the emitter plane at a relative distance rPD−Camera = 0.025 m.
Then, we evaluate the received signal, at the photodetector,
as shown in Fig. 6, and present some features such as the
width of the train of pulses 1t , the idle periods between them,
1t ′, and the modulation frequencies of the emitted signals.
Also, we extract the root mean square (rms) voltage over
the pulsewidth, as this is linearly proportional to the emitted
optical power. The photodetector is characterized by an active
area of 0.13 mm2, sensitivity to λ ∈ [400, 1000 nm], and a
bandwidth up to 1.5 GHz.

A. Warm-Up Times
In this test, we evaluate the behavior during the transient

period which follows the power-on of the cameras. We select
the NFOV-unbinned mode for the Azure Kinect and the 5−m

3A compensation matrix is included in the evaluation of the S100D to
mitigate amplitude-related errors observed during calibration [4] as per [5].
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Fig. 7. Warm-up times of the ToF cameras.

distance mode and integration time of 100 µs for the Helios2.
All the cameras are powered off for, at least, 2 h before the
experiment commences and set to operate in continuous mode.
In continuous mode, all the cameras achieve 30 frames/s.
We make use of the 1 × 1 m white panel described in
Section III-F at a theoretical distance of 1 m with reference
to the camera and parallel to the sensor plane. We store one
frame every 10 s during 2 h, yielding 720 frames, and extract
the average value of the central area of the sensor array,
which comprises 10 pixel at each side of the central pixel,
both in the vertical and horizontal directions, as shown in
Fig. 7. In addition, we present the histograms of the collected
measurements and perform a fit into a Gaussian distribution,
since heavy single-side tails are indicative of heavy warm-
up effects. We observe that the Azure Kinect reaches steady
conditions after 35 min and shows a good fit into the Gaussian
curve. The Helios2 requires longer time (≥50 min) to reach
steady conditions. This is confirmed by the single-side tail
observed in the corresponding histogram. Third, the S100D
exhibits a negligible transient period due to its low-power
consumption and good dissipation properties [60], which is
confirmed by the shape of the distribution observed in its
histogram. Finally, the L515 presents the higher initial drift of
∼10 mm and requires (≥40 min) to reach steady conditions.

B. Accuracy and Precision
In this experiment, the accuracy and precision of the cam-

eras are evaluated. We calculate the mean and standard devia-
tion over 30 depth frames for each pixel within a 21 × 21 pixel

Fig. 8. Accuracy and precision of the ToF cameras.

square region at the center of the sensor array. The average
mean absolute error and standard deviations within this region
are presented in Fig. 8. We select the WFOV-binned and 5 m
modes as representative ones for Microsoft Azure Kinect and
Helios2, respectively, as they provide higher accuracy [4]. It is
found that the Azure Kinect performs well with error ≤ 3 mm
for the range considered. Also, we observe that the 5 m
mode of Helios2 significantly outperforms the 3 m mode
because of the dual-frequency approach adopted, yielding an
error ≤ 7 mm. The worst accuracy is obtained by the S100D,
with an error ≤ 10 mm. Also, we obtain error ≤ 4 mm for
the L515, being specially relevant the excellent performance
for shorter distances. We also observe a linear increase in the
standard deviation σ with the distance, with σ < 3 mm for
all the cameras within the measurement range.

C. Range Resolution
The range resolution is evaluated by measuring the relative

depth of three cuboids with respect to the whiteboard plane on
which they are placed, the height of which is taken as zero.
As shown in Fig. 3, the heights of the cuboids are h = 7 mm
(top-left), h = 3.5 mm (bottom-left), and h = 14 mm (bottom-
right). As shown in Figs. 9 and 10, we observe that the
cuboids of h = 7 and 14 mm are clearly distinguishable for
the Helios2 and Azure Kinect and, also, for the S100D after
considering the FPN matrix [5]. The cuboid of h = 3.5 mm
can only be detected by the L515 at r ≤ 1.5 m, and the
lower lateral resolution of this camera at longer distances
seriously affects the depth estimation at the edge of the
cuboids. In fact, except for Helios2, the relatively low lateral
resolution which characterizes the cameras for longer distances
yields blurred areas at the transitions between the cuboids,
which significantly affects the depth estimation.
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Fig. 9. Measured heights for cuboids at various distances.

Fig. 10. Depth maps for cuboids of h = 7 mm (top-left), h = 3.5 mm
(bottom-left), and h = 14 mm (bottom-right) at various distances
r ∈ [0.5 m,3 m].

TABLE X
THEORETICAL ANGULAR RESOLUTION FOR THE TOF CAMERAS

D. Lateral Resolution
First, the theoretical angular resolution, given by the FOV

and the number of pixels of the sensor array, is presented in
Table X. Then, we make use of the Boehler star described in

Fig. 11. Lateral and angular resolutions of the ToF cameras.

Section III-F. The Boehler star is characterized by an upper
limit for lateral resolution of 1rlat = 20 mm. As shown in
Figs. 11 and 12, the lateral resolution for all the cameras
is 1rlat ≤ 6 mm for r ≤ 1.4 m. The outstanding behavior
of Helios2 is remarkable, when the multifrequency approach
is used, with 1rHelios2

lat ≤ 6 mm for r ≤ 3.0 m. Azure
Kinect, S100D, and L515 present a similar performance for
r ≤ 1.5 m, from which the performance of L515 progressively
deteriorates with respect to the others.

E. Edge Noise
The possible appearance of the flying pixels at the edges

of the 1 × 1 m white panel described in Section III-F is
evaluated by representing the PCs generated by every camera
at r = 1.5 m. The PCs shown in Fig. 13 correspond to five
acquisitions, after filtering out the background, registration
by means of iterative closest point (ICP) [80], and posterior
alignment. We observe that edge noise is specially relevant
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Fig. 12. Depth maps obtained for the Boehler star at various distances.

for S100D and Helios2, affecting most of the perimeter of the
target with fluctuations 1z ∼ O(cm). In addition, we observe
practically no flying pixels on the L515. This is probably
because of the microelectromechanical system (MEMS)-based
scanning LiDAR operation.

F. Dynamic Scenes
In this experiment, we evaluate the performance of the

camera operating under unsteady conditions. We place a
turning Boehler star (see Fig. 5 for more details) at 1 m
(foreground) from the camera sensor and perpendicular to its
optical axis. We attach the Boehler star to a parallel plane
(background), at a distance of 5 cm with respect to the
foreground plane, which is mechanically bound to a rotating
gear at various angular rates4 from 0 to 75 rpm. Consistently
with the rest of the article, we choose the NFOV-unbinned
mode for Azure Kinect, 5-m mode for Helios2, and maxrange
and VGA resolution for L515. Fig. 14 presents the depth map
obtained for one particular acquisition at different angular rates
to provide a qualitative description of the lateral and angular
resolutions for each of the cameras. We observe that the Azure
Kinect does not present significant changes for angular rates
≤ 50 rpm, and that the rest shows a progressive deterioration
of the angular resolution with the angular velocity. The impact
can be specially observed in the S100D at angular velocities
≥ 50 rpm. To assess the sensitivity to the incident angle,
we manually select a ring with external and internal radii equal
to rout ≈ 8 cm and rin ≈ 6 cm, respectively. This will avoid
any impact on the results from the mechanical connection
between the Boehler star and the gear. Then we split the ring

4The maximum achievable angular rate is limited by current limitations on
the control driver to 75 rpm (300 rpm in the servo-motor).

Fig. 13. PCs generated for the 1 × 1 m white panel placed at r = 1.5 m.

Fig. 14. Depth maps obtained in one single acquisition for the Boehler
star at r = 1 m for various angular rates.

into four circular segments, as shown in Fig. 15. We present
the histograms of the depths retrieved over 30 frames within
the area delimited by this ring in Figs. 16–19 by each of the



13722 IEEE SENSORS JOURNAL, VOL. 23, NO. 12, 15 JUNE 2023

Fig. 15. Segments of the turning Boehler star used for the evaluation
of the resolution of the cameras.

Fig. 16. Histograms of the recovered depths at various angular rates
for the Azure Kinect.

Fig. 17. Histograms of the recovered depths at various angular rates
for the Helios2.

cameras for various angular rates ≤ 75 rpm. After analyzing
the histograms, the following conclusions are drawn.

1) The Azure Kinect shows ≥30% of recovered points
lying in intermediate distances (flying pixels) between
both the planes for all the angular rates and segments.
The performance does not suffer significant variations
with the angular rate ≤ 50 rpm. Also, we observe an
underestimation of the distance at which the background

Fig. 18. Histograms of the recovered depths at various angular rates
for the S100D.

Fig. 19. Histograms of the recovered depths at various angular rates
for the L515.

plane is found of ≈2 cm, as well as of the distance
between both the planes. In addition, we find a better
performance in the horizontal segments (segment1 and
segment2) with more pronounced peaks in the his-
tograms and fewer flying pixels, especially at low rates.

2) The Helios2 correctly identifies both, background and
foreground, planes and presents the best performance for
static scenes with only <10% flying pixels. However, the
performance significantly deteriorates when the target
commences to rotate, even at low angular rates. The
performance in the horizontal and vertical segments
is similar, likely because of the configuration of the
illumination system of the camera which consists of four
emitters, one at each corner, as shown in Fig. 2.

3) The S100D is the camera with the highest sensitivity to
the rotation of the Boehler star. This can be observed in
Fig. 14, where there exists a significant reduction of the
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lateral resolution when increasing the angular velocity
(an increase in the blurry area, especially visible at
angular rates ≥ 50 rpm). Moreover, Fig. 18 shows the
practical disappearance of the peaks corresponding to
the locations of the background and foreground planes in
the histograms and a complete change in the histogram
distribution.

4) The L515 identifies both, foreground and background,
planes with two pronounced peaks in the histograms for
the four segments. It correctly determines the depth at
which the foreground is found, although it underesti-
mates the distance at which the background plane is
placed by ≈2 cm. We observe that the distribution of
background and foreground points is not significantly
affected when increasing the angular rate. Although,
as we can observe in Fig. 14, the lateral resolution
progressively deteriorates when increasing the rotational
speed of the Boehler star (see the progressive increase
in the blurry area in the central region of the star).

G. Multiple Parameter Evaluation Using
Sinusoidal Structure

We make use of the sinusoidal foam structure described
in Section III-F to simultaneously evaluate the axial and
lateral resolutions, as well as the precision of the cameras.
As described in Section III-F, the sinusoidal foam structure
has an amplitude and wavelength equal to 2.5 and 4.5 cm,
respectively, and is tilted by 0.1 (mm/pixel) (equivalent
to ≈1.5◦) in both the XZ and YZ planes (see Fig. 26 of
Appendix). As shown in Fig. 20, the Azure Kinect can identify
the morphology of the target for a larger range, although the
accuracy significantly decreases for r > 2 m. Helios2 presents
a better accuracy for r = 0.5 m and 1 m, and acceptable
results for r ≤ 2 m. Finally, S100D and L515 can identify the
morphology of the target for r ≤ 1 m.

H. Characterization of the Illumination System
The received voltage at the photodetector for each of the

cameras in terms of rms is presented in Table XI. In addition,
we estimate the duration of each train pulse (1t) and the idle
time between consecutive trains (1t ′). The results for each of
the cameras are presented in Figs. 21–25. As a result of our
evaluation, the following conclusions may be drawn.

1) The Microsoft Azure Kinect presents one different emit-
ter and set of idle periods and exposure times for nar-
row and wide FOV modes, respectively (see Table IV).
We select the WFOV- and NFOV-unbinned modes
as representatives of each of them. Each cycle of the
emitted signal consists of nine IR train of pulses with a
duration of 1t = 0.125 ms and idle periods between
them of 1t ′ = 2.39 ms and 1t ′ = 1.45 ms for
the WFOV- and NFOV-unbinned modes, respectively.
We observe at the photodetector two square-shaped
signals of frequencies fHigh ≈ 200 MHz and fLow ≈

55 MHz. We do not observe significant differences
between the measured voltages for different frequencies
in any of the modes. As expected, we obtain higher

Fig. 20. Depth maps for the sinusoidal foam structure at various
distances r ∈ [0.5 m,3 m].

TABLE XI
RMS VOLTAGE RECEIVED AT THE PHOTODETECTOR

FOR THE TOF CAMERAS

voltages for the NFOV-unbinned mode. Figs. 21 and 22
show the received voltages at the photodetector for the
NFOV and WFOV modes, respectively.

2) The illumination system of the Helios2 consists of
four emitters (see Fig. 1) and presents six different
operational modes. It adopts a dual-frequency approach
in two of them, i.e., 5 and 8.3 m distance modes.
In this experiment, we evaluate the modulated light
signal provided by the four emitters working on the
5 − m distance mode with fHigh = 120 MHz and
fLow = 90 MHz, as it provides the highest accuracy
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Fig. 21. Received voltage at the photodetector from the optical signal
of the Azure Kinect on the NFOV-unbinned mode.

Fig. 22. Received voltage at the photodetector from the optical signal
of the Azure Kinect on the WFOV-unbinned mode.

within our evaluation range. Each train of pulses has
a duration of 1t ≈ 970 µs, and there is an idle time
between them of 1t ′ ≈ 1.560 ms. Fig. 23 shows the
received voltage at the photodetector for the emitter at
the left top corner for the 5 − m distance mode.

3) The illumination system of the S100D consists of one
VCSEL emitter. It is placed at the left side of the
camera lens. Fig. 24 shows the received voltage at the
photodetector. Since the idle period between acquisitions
is quite large, we perform two different acquisitions.
The first one considers a coarser scale to evaluate the
pulsewidth and idle time, while the second one with
a finer scale is used to estimate the rms voltage and

Fig. 23. Received voltage at the photodetector from the optical signal
of the Helios2 on the 5-m distance mode (top-left VCSEL).

Fig. 24. Received voltage at the photodetector from the optical signal
of the S100D.

Fig. 25. Received voltage at the photodetector from the optical signal
of the L515 on the max range mode.

the shape of the modulated signal. We observe a train
of light pulses of f = 80 MHz with a pulsewidth of
1t ≈ 27 µs and idle period between them of 1t ′ ≈

7.65 ms.
4) The behavior of the illumination system of the L515,

which is a LiDAR, is significantly different. In this case,
we evaluate the maxrange operating mode, given by the
maximum laser power and the receiver gain. We observe
a train of light pulses with a width 1t = 640 µs and
an idle time between them of 1t ′ = 32 ms. We observe
that the envelop of the light pulse is not constant over
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Fig. 26. Measured depth and fit plane by Azure Kinect at 500-mm
distance for multiple parameters’ visualization.

the pulsewidth and presents an absolute maximum of
|Vmax| = 1.61 Vm and each of the pulses has a duration
of 1t0 ≈ 0.4 µs, as shown in Fig. 21. As this camera is
a LiDAR, the nonconstant envelop is due to the fact that
only some pulses are directed by the MEMS mirror to
our photodetector, which explains the large empty areas
in Fig. 25.

V. CONCLUSION

In this work, we have evaluated the performance of four
state-of-the-art depth cameras via various parameters such as
the warm-up times, the accuracy and precision, the lateral
resolution, and the range (axial) resolution for a measurement
range 0.5 ≤ r ≤ 3.0 m, as well as the optical power and optical
signal. As a result of this evaluation, we have obtained some
remarkable results. First, we have observed that the S100D
requires much shorter warm-up times than the rest of the
cameras (1t ≥ 35 min). Second, all the cameras show error ≤

10 mm with σ ≤ 3 mm at r ≤ 3 m. Also, we have observed an
outstanding behavior of the Helios2 with respect to the other
cameras in terms of lateral (angular) resolution, achieving
theoretical maximum lateral resolution for r = 3 m. We have
found that the L515 performs better for shorter distances
in terms of range resolution, being the only one capable of
detecting the thinnest cuboid of h = 3.5 mm at r ≤ 1 m, while
its performance progressively deteriorates with respect to the
others for longer ranges. We have found that the resolution
of Helios2 and, specially, of S100D is severely affected in
unsteady environments. In addition, we have observed that
the edge noise at r = 1.5 m is present in all the cameras,
although this phenomenon is less acute for the L515. The
thorough characterization of the relative performance of this
selected group of high-resolution cameras we have provided in
this work constitutes a valuable asset for the understanding of
their strengths, limitations, and applicability to fields such as
autonomous driving and mobile robotics. Prospective research
may include the evaluation of the performance for different
incident angles, and in the presence of MPI.

APPENDIX
ORIENTATION OF TEST SPECIMEN USED FOR MULTIPLE

PARAMETERS’ VISUALIZATION

Fig. 26 shows the sinusoidal foam used for the visualization
of multiple parameters, such as the axial and lateral resolu-
tions, as well as a plane fit to the measured data.
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