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Abstract—Parkinson’s disease (PD) is characterized by
dopaminergic cell loss and the formation of Lewy bodies,
of which the main component is aggregated and fibrillized
α-synuclein (aSyn). Recent studies suggested that ultratrace
amounts of aSyn aggregates are also present in biofluid
specimens, and they can serve as a biomarker for PD.
Because aSyn has been shown to possess a prion-like prop-
erty, we attempted to enhance the sensitivity and specificity
of a cantilever microsensor to detect aSyn aggregates by
exploiting the properties of self-templating assembly and
lipid interaction on the surface of liposome-immobilized can-
tilever sensor. We found that the liposome-immobilized can-
tilever sensor was able to successfully detect aSyn fibrils
at a very low concentration (100 pg/mL), and the addition
of aSyn monomers, which were converted into fibrils in the
presence of aSyn aggregates and further acted as a template
for fibrillization, lowered the detection limit to 10 pg/mL. The
sensitivity of this cantilever sensor was comparable to or
slightly superior to that of enzyme-linked immunosorbent assay (ELISA). Moreover, the lag time for the detection of
aSyn fibrils has been significantly reduced to 100–120 min, compared to the tens of hours needed in conventional
ELISA, real-time quaking-induced conversion (RT-QuIC), and protein misfolding cyclic amplification (PMCA) assays.
Finally, preliminary measurements of aSyn aggregates showed the possibilities of discriminating serum from PD and
non-PD patients. The liposome-immobilized cantilever sensor could serve as a promising tool for the early or preclinical
diagnosis of PD.

Index Terms— α-synuclein (aSyn), cantilever sensor, liposome, Parkinson’s disease (PD), prion–lipid interaction, self-
templating assembly.
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I. INTRODUCTION

PARKINSON’S disease (PD) is the second most popular
neurodegenerative disorder next to Alzheimer’s disease.

Unfortunately, neither disease-modifying therapies nor accu-
rate early diagnostic biomarkers exist for PD [1], [2], [3], [4].
The pathological hallmarks of PD include dopaminergic cell
loss and the formation of α-synuclein (aSyn) aggregates. The
latter is also observed in other neurological disorders, such
as dementia with Lewy bodies (DLBs) and multiple system
atrophy (MSA), and these are termed α-synucleinopathies.
Recently, aSyn was demonstrated to possess the prion-like
property of self-templating assembly [5], [6]. The self-
assembly of aSyn initiates at the nucleation phase, wherein
small seeds of aggregates (oligomers) are formed, followed
by the exponential growth phase, wherein aSyn oligomers
grow into larger aggregates (fibrils), and finally reaches the
plateau phase [4], [7], [8]. If small aggregate seeds are already
present in the reaction solution, the nucleation phase, which is
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Fig. 1. Asyn species (monomers, oligomer, and fibrils) and the three
phases in the aSyn fibrillization process (nucleation, exponential growth,
and plateau phase).

a rate-limiting step, can be skipped, thereby greatly reducing
the lag time to the growth phase (Fig. 1).

To date, there is no validated biomarker for PD. A noninva-
sive biochemical marker with high sensitivity and specificity is
essential for monitoring the disease progression and early iden-
tification of individuals in the early stage before irreversible
neuronal loss in the substantia nigra and associated motor
symptoms. The detection of soluble aSyn aggregates in bio-
logical fluids could contribute to the diagnosis of PD [2], [3].
Indeed, several important observations linking aSyn aggregate
formation and the PD pathogenesis have been presented in
detail elsewhere [1], [2], [4].

Several methods, such as enzyme-linked immunosor-
bent assay (ELISA), real-time quaking-induced conversion
(RT-QuIC) assay [9], and protein misfolding cyclic amplifica-
tion (PMCA) assay [10], [11], [12], can be used to detect aSyn
aggregates in biofluid samples. The sensitivity and specificity
of the detection by ELISA depends on those of the antibody
to the target molecule. However, there are no antibodies with
high specificity for aggregated aSyn. Furthermore, some unde-
sirable drawbacks remain unresolved, such as technical dif-
ficulties and time-consuming measurements. In the RT-QuIC
and PMCA assays based on the same principle, the aggregated
aSyn seeds are shaken in aSyn monomer solution to amplify
them by a self-template mechanism, followed by the detection
with the amyloid-binding fluorescent dye, such as thioflavin
T (ThT) [13], [14]. It is highly sensitive but requires a long
time, tens of hours. In addition, spontaneous formation and
consequent amplification of the aSyn aggregates without aSyn
seeds in the samples is often observed and is a major problem.
Other methods to sense the aggregation/fibrillization of aSyn
aggregates have also been devised, developed, and explained
elsewhere [15], [16].

In this study, based on the self-templating property of prion-
like proteins, we focused on the detection of aSyn aggregates
using a cantilever sensor that is label-free, simple, inexpensive,

and realizes a relatively short detection time [17], [18].
Detection of aSyn by mechanical sensors such as cantilevers
has been little studied except for QCM. The interactions of
molecules generate surface stress on the cantilever, which
is converted into the mechanical deflection and detected.
Typical interactions between biochemical counterparts, such as
protein–protein interaction and DNA–DNA hybridization, are
recognized and detected on the cantilever [19], [20], [21]. For
example, we achieved sensitive detection of amyloid β aggre-
gates using liposome-immobilized cantilever sensors [15].
Notably, cantilever sensors can be integrated with microfluidic
and nanofluidic systems in an array configuration to simulta-
neously detect different types of targets. These multianalyses
will be a target for development for biosensor technology in
the near future.

Lipid–protein interactions in the membrane have been so
far vigorously investigated [22]. The interaction between
the lipid and prion proteins including aSyn has also been
precisely reported [23], [24], [25], [26], and the potential
mechanisms were briefly described as follows [24]. When the
prion protein binds to lipids such as unilamellar liposomes,
alanine/arginine/glutamine (ARQ) at codons 136, 154, and
171 of the prion protein is switched from its normal structure
to a β-sheet-rich structure (prion conversion). Thus, a similar
mechanism is expected to further promote aSyn aggregation
and fibrillation on liposomes.

By combining the above two key features with the static-
mode cantilever sensor, we sought to detect extremely low
concentration of aSyn aggregates specifically amplified by
the addition of aSyn monomers. Finally, we preliminarily
evaluated the serum from PD and non-PD patients. From our
related conference paper [27], one of the results was discussed
more and newly compared with those using our RT-QuIC as
different measurement techniques, showing intrinsic merits of
the cantilever sensor, and importantly, it was newly applied for
the evaluation of clinical biospecimen of PD patient as above.

II. MATERIALS AND METHODS

A. Preparation of aSyn Monomers/Fibrils and
Patients-Derived Biofluid Samples

Mouse aSyn was expressed in Escherichia coli BL21
(DE3) (BioDynamics Laboratory) and purified as previ-
ously described [28]. To generate aSyn fibrils, purified aSyn
monomers (7 mg/mL) were incubated in the fibrillation buffer
containing 30-mM Tris–HCl and 150-mM KCl at pH 7.5 in
a quaking incubator at 1000 r/min, 37 ◦C for 120 h. Next,
aSyn fibrils were pelleted by ultracentrifugation at 186 000 g
for 20 min, stored at −80 ◦C, and resuspended in phosphate-
buffered saline (PBS) when necessary.

Serum from PD and non-PD patients and cerebrospinal fluid
(CSF) from healthy controls were prepared at Kyoto Univer-
sity Hospital with the approval of the Ethics Committee of
Graduate School and Faculty of Medicine, Kyoto University,
Kyoto, Japan. Venous blood was processed within 1 h of
collection and allowed to clot for 15 min prior to centrifugation
at 1500 g to obtain serum. CSF was centrifuged at 1500 g for
15 min, and the supernatant fraction was collected as CSF
sample and stored at −80 ◦C until use.
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B. Phospholipid Liposome
We selected 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine

(DPPC) as the main phospholipid in the liposome to be
used as a sensing biosupermolecule because DPPC is a
major component of phospholipids in human (brain) cells.
Its hydrophilic group PC is neutral, not charged, which is
necessary because charged one has electrostatic interaction
with charged proteins, other than aSyn, in a biofluid solution
for measurement. Also added phosphatidylethanolamine (PE)
and embedded by 1% volume in the DPPC to bond covalently
with the self-assembled monolayer (SAM) formed on the
cantilever [29], [30], [31]. The liposomes were prepared at
a concentration of 30 mM using DPPC supplemented with
PE via a freeze–thaw process. Those constituent molecules
of liposome were purchased from NOF Corporation (Tokyo,
Japan). The chemicals for SAM were purchased from Sigma
Aldrich (St. Louis, MO, USA). Their preparation procedures
and substances are reported previously [30], [31]. This time,
the liposome was prepared as small as about 40 nm in
diameter, aiming to increase its mechanical stability, while the
previous size was about 100 nm.

C. Cantilever Microsensor
A microcantilever with a NiCr thin-film strain gauge

was fabricated using a Si microelectromechanical system;
the surface micromachining process has been described in
detail [33], [34], [35]. The cantilever bends by its surface
stress change that arises from molecular interactions among
targeted and sensing biomolecules, including the initial change
in mass on the cantilever surface, as previously explained [15].
As a sensing supermolecule, a liposome is immobilized on
the cantilever surface released from the substrate. When the
target protein aSyn approaches and interacts with the liposome
immobilized on the cantilever, liposomal deformation induces
surface stress [36] in addition to the mass change that occurs
due to the target molecules. Mass is one of the important
origins of surface stress; however, other origins become more
important, typically for the case that the number of the target
molecule is much smaller than that of the sensing liposome.
To date, liposomes have been understood to deform and cause
stress during interactions. Therefore, the variation in the static
deflection of the cantilever, in such case, originates from
that of liposomes as sensing biomolecules, other than from
that in mass. Such surface stress enables deflection of the
cantilever and changes in gauge resistance. The rate of change
in resistance is proportional to that of surface stress as per
the relationship derived from both Stoney’s equation and the
gauge factor one. Therefore, the interaction between aSyn
and liposome can be evaluated according to the change in
resistance. From the viewpoints of limit-of-detection (LOD)
for an optical static-mode cantilever sensor, the measurable
target mass obtained from surface stress is expected to be as
low as 200 pg/mL [37]. For electrical static-mode operation,
on the other hand, the noises from both the piezoresistive film
and the electronic circuit used usually become serious origins
to limit the LOD.

To reduce the thermal drift (noise) in the static-mode oper-
ation of the sensor, stabilizing temperature is indispensable.

This is because: 1) the drift fluctuates the gauge resistance,
even if the change ratio of the resistance against temperature
is smaller than 10–100 ppm/◦C for NiCr used and 2) more
importantly, the phase stability of phospholipid depends on
the temperature, which soft molecules naturally fluctuate,
especially for DPPC used here, between gel and ripple phases
in room temperature in the measurement. Here, we stabilized
the temperature at 23.0 ◦C by a developed Peltier substrate
programmed to actively control it within the range of ±0.1 ◦C,
where its thermal capacitance was significantly larger than that
of the sensor, as reported elsewhere [38]. As a consequence,
the stabilized temperature of the sensor successfully reduced
the fluctuation of the output signal.

To avoid evaporation of the solution during chronological
detection, a droplet-sealing structure using polydimethylsilox-
ane (PDMS) was fabricated to achieve complete sealing,
as reported elsewhere [15]. The sealed reservoir could avoid
the solution from evaporating for more than a day. To observe
the change in resistance over time, after introducing the aSyn
added in PBS into the PDMS reservoir, the gauge resistance
was measured using a high-precision digital multimeter con-
trolled by the LabVIEW 2012 software [38], [39].

D. Liquid-Environment AFM
It is so important to check whether the aggregation and/or

fibrillization of aSyn really occurs on the cantilever sur-
face. Therefore, we tried to observe the phenomena by a
liquid-environment atomic force microscopy (AFM). Bruker
NanoWizard III NW3-XS-O was used as the AFM apparatus
with contact mode, which probe had the spring constant of
0.09 N/m and the intrinsic oscillation frequency of 110 kHz.
The surface measured by the AFM was exactly the same as
that of the measured cantilever sensor, where target aSyn fibril
was added on the liposome immobilized on the cantilever
in the solvent of PBS and high-concentrated aSyn monomer
(500 µg/mL). Note that, different from the gauge resistance
measurement of the cantilever sensor, the concentration of
added aSyn fibril was as high as 100 and 1000 µg/mL.

III. RESULTS AND DISCUSSION

A. Liquid-Environment AFM Observation of aSyn
Aggregates on Liposome

Before measurements by the cantilever sensor, AFM surface
views (top and bird’s-eye) were obtained for aSyn fibrils
(100 µg/mL) on liposomes, which were immobilized on a
cantilever (Fig. 2). Aggregates observed on the surface of lipo-
somes were considered as aSyn fibrils, and these aggregates
increased monotonously with time after supplying aSyn fibril
solution to the liposomes, but these aggregates were observed
only at high concentrations of aSyn fibrils (100, 1000 µg/mL)
within 60 min. Although it was difficult to determine whether
they were bound or simply deposited on liposomes, we could
at least confirm that the aggregates were definitely immobi-
lized on the liposomes immobilized on the cantilever surface.

B. Time Course Measured by Liposome-Immobilized
Cantilever Sensor

We attempted to detect trace amounts of aSyn fibrils utiliz-
ing the prion-like property of aSyn. First, a high concentration
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Fig. 2. AFM surface views obtained in a liquid cell for fibrillized aSyn
(100 µg/mL) on liposomes immobilized on a cantilever 60 min after its
addition. Top views in left and bird’s-eye views in right.

Fig. 3. Protocol for the sensitive detection of aSyn fibrils utilizing their
property of self-templating assembly on the cantilever sensor.

of aSyn monomer solution (100 µg/mL) in PBS was intro-
duced into the reservoir. Then, aSyn fibrils (down to 10 pg/mL)
were applied and mixed several times with a syringe. Finally,
the signal from aSyn fibrils amplified by the addition of aSyn
monomers was measured. We employed the aSyn monomers at
100 µg/mL, which is the minimum concentration commonly
used in RT-QuIC assays. The protocol for the cantilever sensor
is illustrated and summarized in Fig. 3. Before the main
measurements, we first attempted to determine the LOD of
aSyn fibrils in PBS by the liposome-immobilized cantilever
sensor without aSyn monomers. Fig. 4 (top) shows the time
course of the change in the piezoresistive gauge resistance of
the sensor with different concentrations of recombinant aSyn
fibrils (0, 100, and 1000 pg/mL; 10, 100, and 1000 ng/mL) in
PBS. In PBS solvent without aSyn fibrils, chronological signal
changes were negligible. The rate of change in resistance was
demonstrated to increase, and the lag time to the onset of this
increase was also shortened in a concentration-dependent man-
ner [Fig. 4 (top)]. In contrast, we could not detect any signal
change in the CSF from a healthy individual, who presumably
had only aSyn monomers (not shown). In this setting using the
static-mode cantilever sensor, the LOD was determined to be
approximately 100 pg/mL, whereas the LOD for the electrical
static mode was reported to be 1–10 ng/mL [40], suggesting
that the interaction of aSyn fibrils with liposome improved
detection sensitivity. When 10–1000 ng/mL of aSyn fibrils
were added in Fig. 4 (top), the output level increased mono-
tonically and reached a plateau phase as in Fig. 1, although
below 10 ng/mL, the increase seemed to be in progress.

Fig. 4. Chronological change rate of piezogauge resistance of the
cantilever sensor for recombinant aSyn fibrils. (Top) Without monomers
(0, 100, and 1000 pg/mL; 10, 100, and 1000 ng/mL, respectively)
in PBS. (Bottom) With monomers (0, 10, 100, and 1000 pg/mL and
10 ng/mL, respectively) in 100-µg/mL monomeric aSyn solution.

After preliminary measurements, the time course of gauge
resistance change at different concentrations of aSyn fibrils
with 100-µg/mL aSyn monomers was measured in Figs. 4
(bottom) and 5. Fig. 5 displays an enlarged view of Fig. 4
(bottom), with a focus on the data of 10-pg/mL aSyn fibrils.
The change was negligible for aSyn monomers (100 µg/mL)
without aSyn fibrils, suggesting that there was almost no sur-
face stress between aSyn monomers and DPPC phospholipids.
The addition of aSyn monomer, as shown in Fig. 5, allowed
us to detect 10 pg/mL of aSyn fibrils. With the addition of
aSyn monomers, the output level seemed to reach plateau
phase for 10 ng/mL of aSyn fibrils, as in the case without
aSyn monomers. However, below that level, a plateau phase
was not reached. The self-templating nature of aSyn has been
utilized to enhance the sensitivity and specificity to detect
aSyn aggregates in human biofluid samples [9], [41], [42].
For example, aSyn aggregates could be specifically amplified
by the addition of aSyn monomers into biological samples
from α-synucleinopathies (PD, DLB, and MSA) but not from
the other neurodegenerative disorders involving other prionoid
proteins, such as amyloid β and tau [43]. Furthermore, the can-
tilever sensor was much more sensitive than the fluorophore,
allowing for more rapid detection of aSyn fibrils. Given that
the liquid target mass measurable by the cantilever sensor was
reported to be 10 pg/mL in dynamic mode [36], the LOD
of 10 pg/mL by the static mode would be excellent and the
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Fig. 5. Enlarged view of Fig. 4 (Bottom: With monomers) along the
vertical axis, with a focus on the data for 10-pg/mL aSyn fibrils.

Fig. 6. Lag time (top) and rate constant (bottom) of the output of the
cantilever sensors for aSyn fibrils with and without aSyn monomers,
calculated and replotted from Fig. 4. The lag time with monomers is
also compared between by the cantilever sensor and RT-QuIC.

sensitivity is expected to be increased by the addition of aSyn
monomers.

C. Comparison of Lag Time and Rate Constant Between
With and Without aSyn Monomers

Amyloid fibril has generally been shown to grow with
time in an exponential manner and reach the plateau phase,
as seen in Fig. 1. In accordance with this, the lag time and
rate constant were extracted from Fig. 4 and replotted in
Fig. 6, respectively. As shown in Fig. 6 (top), the lag time
increased monotonically with the decrease in added aSyn fibril
concentrations with and without aSyn monomers. Moreover,
the lag time needed to detect the same aSyn fibril concentration
was reduced by about two orders of magnitude with the

Fig. 7. Chronological change rate of averaged piezogauge resistance
of the cantilever sensor after three consecutive measurements of serum
from one PD patient and two consecutive measurements of serum from
one non-PD patient.

addition of monomers. This indicates the effect of the self-
templating phenomenon, in which fibril seeds are amplified
by aSyn monomers. Next, the rate constant was extracted by
the first-order approximation from the initial increase in the
output level of the cantilever sensor in Fig. 4 with and without
aSyn monomers. Fig. 6 (bottom) showed that the rate constant
decreased almost in an exponential manner with the decrease
in the concentration at relatively low concentrations, whereas it
was almost the same at high concentrations. Note that, at the
same concentration, the rate constant was almost the same
with and without aSyn monomers. This also indicates that the
intrinsic rate of aSyn fibrillization might be approximately the
same, regardless of the addition of aSyn monomers. Compared
the results of 10 ng/mL and 1000 pg/mL in Fig. 4 (bottom)
with those in Fig. 6, the change in resistance change rate in
Fig. 4 seems to be larger. It has been reported that when
there is only a very low concentration of template (aSyn
aggregates) near the detection limit, not only the lag time but
also the time to reach plateau is prolonged and the amount
of final aSyn aggregates produced tends to decrease [44].
Within the measurement time in this study, a plateau was
actually not reached with a 1000 pg/mL of template, and the
amount of aSyn aggregates produced was also considered to
be decreased. Therefore, it may be observed that the rate of
change in resistance is very smaller for the 1000 pg/mL of
template than for the 10 ng/mL.

Furthermore, the lag times in our RT-QuIC assay for 10 and
100 pg/mL of aSyn fibrils were plotted in Fig. 6, for com-
parison with those in the cantilever sensor. The lag time of
6–7 h for 10 pg/mL of aSyn fibrils was comparable to one of
the best results in RT-QuIC assay in the literature [44], but
about three times longer than those in the cantilever sensor,
despite the addition of high salt or SDS in RT-QuIC assay
for increased sensitivity. This would also suggest the strong
interaction between fibrils and liposome membranes.

D. Preliminary Evaluation for Serum From PD and
Non-PD Patients by the Cantilever Sensor

We preliminarily evaluated the aSyn aggregates in serum
from PD and non-PD patients by the cantilever sensor.
In Fig. 7, the average of three measurements in a PD patient
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and two measurements in a non-PD patient were chronologi-
cally plotted, and their difference seems to be relatively clear.
Although the increased number of samples is necessary to
be analyzed, it would be suggested that the aggregation and
fibrillization of prion-like proteins such as aSyn can dominate
in causing the surface stress change on the cantilever sensor
over the matrix effect of the serum.

For the specificity of the aSyn fibril amplification in the
aSyn monomer solution, this is guaranteed by the fact that
the homologous seeding is much more efficient than the het-
erologous seeding (amplification of prionopid proteins seeded
by different prionoid aggregates, also called cross-seeding).
In fact, aSyn monomers RT-QuIC assays have been shown
not assemble into fibrils in the presence of amyloid β, tau,
and other prion protein seeds [9], [12], [45], [46], [47], [48].

For the sensitivity of the aSyn fibril detection,
one of the most sensitive RT-QuIC assays detects
1 pg/100 µL (=10 pg/mL) of aSyn fibrils in less than
10 h [44]. The cantilever in this article detects 10 pg/mL
of aSyn fibrils in about 2 h [Figs. 4 (bottom) and 5],
which is not inferior in terms of sensitivity. Furthermore,
in RT-QuIC and PMCA assays, spontaneous self-assembly of
aSyn monomers without aSyn seeds is often observed after
prolonged incubation [49], [50], [51]. The cantilever sensor
can detect aSyn fibrils with higher sensitivity than ThT dyes
in RT-QuIC assays, potentially reducing the probability of
false positives due to the spontaneous self-assembly of aSyn
monomers.

In the future, specificity can be further improved by intro-
ducing antibodies, sugar chains, proteins, and cholesterol into
the liposome membrane, and/or by using other phospholipid
components. We are also considering an array approach that
uses different types of monomers, such as amyloid β and
tau, for simultaneous and multiple analyses to help diagnose
multiple proteinopathies.

IV. CONCLUSION

We have successfully combined the self-templating and
lipid interaction properties of aSyn species with a liposome-
immobilized cantilever microsensor. This enabled the rapid
and specific detection of aSyn fibrils, with an LOD of
10 pg/mL and a lag time of approximately 120 min, which
is shorter than PMCA/RT-QuIC assays. Furthermore, the
sensitivity was comparable or slightly superior to that of
conventional ELISA for aSyn aggregates. Finally, preliminary
measurements have shown the possibilities of discriminating
serums in PD and non-PD patients. Our findings indicate that
the liposome-immobilized cantilever sensor is a promising
technology for the diagnosis of early or prodromal PD and
can also contribute to the development of disease-modifying
therapies for PD.
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