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Texture Detection With Feature Extraction
on Embedded FPGA

Raúl Lora-Rivera , Óscar Oballe-Peinado , and Fernando Vidal-Verdú

Abstract—A feature extraction algorithm for texture detec-
tion oriented to its implementation on embedded electronics
based on a field-programmable gate array (FPGA) is pro-
posed in this article. Local preprocessing with smart tactile
sensors can help to improve dexterity in artificial hands.
Simplicity is the goal in order to achieve a hardware-friendly
strategy that can be replicated and integrated with other
circuitry. This is interesting, considering that tactile sensors
are arrays and FPGAs are capable of parallel execution.
The proposal was tested with a custom smart tactile sensor
mounted on a Cartesian robot to explore different textures.
A comparison with a common feature extraction approach
based on the fast Fourier transform (FFT) computation was
also made. In addition, the whole procedure is implemented
on a system on chip (SoC) with the feature extraction on the
embedded FPGA and a k -means classifier on an advanced
RISC machine (ARM) core. The proposed algorithm obtains
the spatial frequency components of the tactile signal but
not their power. Therefore, some information is lost with
respect to that provided by the FFT. Nevertheless, an 89.17%
accuracy of the proposed algorithm is obtained versus 91.4% with the FFT when 12 different textures are considered,
including complex and fabric textures. There is a noticeable saving in power and hardware resources. In addition, since
the size of the feature vector is much smaller, data traffic and memory usage are much lower, and the classifier can be
simpler.

Index Terms— Active touch, tactile sensor, texture detection.

I. INTRODUCTION

TACTILE sensors constitute a relevant tool to provide
information about the properties of an object [1]. They

are especially useful in the case of artificial hands for robotics
and prosthetics [1], [2], [3].

The texture is one of the main properties to characterize an
object [1]. A first strategy to discriminate textures is based on
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the processing of the tactile image taken by a high-resolution
tactile sensor [4], [5]. This approach can take advantage
of resources for feature extraction in image processing [6],
and also of their efficient implementation on embedded sys-
tems [7], and specifically on field-programmable gate arrays
(FPGAs) [8]. Nevertheless, there is still a significant need for
computational means, power consumption, and data traffic.
Moreover, since there is not any dynamic interaction between
the sensor and the explored surface, no information about
friction is captured.

Most reported works on texture discrimination are based on
active touch, where the sensor and the explored surface move
with respect to each other. Active touch allows the detection
of features beyond the limitations of the spatial resolution of a
tactile sensor. The discrimination of textures can be faced by
detecting the microvibrations produced by normal and shear
contact forces when different surfaces are explored [9], [10],
[11], [12]. This is how the human touch sense works to
obtain information about the characteristics of the surface of
an object [2].

In artificial systems, the tactile data gathered through active
touch are preprocessed to obtain a set of descriptors or
feature vectors. These descriptors are typically the input
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for classification algorithms. Some authors provide the raw
tactile dataset from the sensors as input of the classifier [13].
This makes learning more complex and increases the need for
computational resources and the risk of overfitting. Therefore,
a reduced set of features is commonly obtained from the raw
data, such as classical statistical features [14]. Other authors
estimate or measure the friction coefficient and use it together
with other features that provide information about the signal
power, complexity, and frequency content [15], [16]. A set of
descriptors robust to changes in the exploratory parameters is
proposed in [17]. These parameters provide information about
the total power, mean frequency, and bandwidth of the signal,
and also about the linear and nonlinear correlations of the
signals from different sensors.

Nevertheless, the majority of works that use active touch
are based on the computation of the fast Fourier transform
(FFT). The Fourier coefficients are then used as input of the
classification stage [1], [10], [18], [19], [20], [21]. In this
approach, the speed of the relative displacement between
the sensor and the surface must be known and constant.
The dimension of the feature vector can be reduced using
principal component analysis (PCA) to facilitate the learning
and classification, especially if the information from many
taxels (force sensing units) is used [22].

Despite being successful in texture discrimination, the above
procedures to obtain a feature vector are complex to implement
in embedded systems such as smart sensors in artificial hands.
This means high consumption of power and computational
resources, as well as data traffic. A different approach sacri-
fices some performance to obtain benefits in low-cost embed-
ded realizations. This is the case of the algorithm proposed
in [23], where the frequency spectrum is divided into bands
and the vector of the power in each band is used as a feature.
The computations are performed in the time domain and the
time and space complexity of the feature extraction algorithm
are both linear with the number of bands, which is much lower
than the number of coefficients of the FFT.

Another algorithm to measure the surface roughness is
reported in [24]. It consists of a simple adaptive bandpass
filter whose spatial center frequency is changed through a
gradient-descent method until the root mean square of the
sensor output reaches a maximum. A single maximum is
detected, therefore only a single characteristic frequency of the
roughness is provided, and it is the first one that is found by
the gradient-descent algorithm, so it can be a local maximum.
This article presents an algorithm to identify textures based
on that in [24]. The number of sensing elements is reduced
to one, being six in [24], which simplifies and makes the
result more robust to variability between different taxels.
Moreover, a sweep procedure is proposed instead of the
gradient descent one, which is simpler to implement in the
local electronics of embedded systems. This sweep procedure
scans the frequency spectrum to find the main characteristic
frequencies that identify a given texture. This simple approach
is suitable for embedded smart tactile sensors. Moreover, since
tactile sensors are arrays, FPGA-based electronics that allow
parallel processing is especially appropriate to build these
devices [25], [26].

Fig. 1. Illustration of the texture detection with the proposed
realization [27].

Some preliminary results of this proposal were presented
in the conference paper by Lora-Rivera et al. [27]. In that
work, the feature extraction algorithm was implemented on
MATLAB,1 and the results with four basic textures show that
the main spatial frequency of the textures could be easily
obtained from the first minimum of a certain function. On the
other hand, the whole texture identification procedure is imple-
mented in the work of this article, with the feature extraction
on an embedded FPGA, and a classifier on an advanced RISC
machine (ARM)1 core. This architecture resembles one where
the local electronics can obtain the main tactile features and
send them to more powerful processors, reducing latency, and
bus traffic in robots. Twelve complex textures are used to
test the idea, and the feature extraction is also done with a
usual procedure based on the FFT for comparison purposes.
The location of all minima is provided, so information about
more frequency components is given in a small-size feature
vector. The tactile data were obtained with a modified version
of the tactile sensor in [25]. The simplicity of the algorithm
also allows replicating the circuitry to process the signal from
several taxels in the tactile array, such as [17] and [22].

The rest of this article is organized as follows. The pro-
posed feature extraction algorithm is presented in Section II.
Section III describes the materials and methods. Section IV is
devoted to the implementation of the approach on an SoC.
Finally, the results and related discussions are shown in
Section V, while Section VI summarizes the main conclusions
of the work and point to future extensions.

II. FEATURE EXTRACTION ALGORITHM

Fig. 1 illustrates the exploration of a texture S(x) through
active touch at v linear speed with a tactile sensor. Consider
the expression

V =
1
M

M∑
n=1

(T j (vtn)− T j (vtn + P))2 (1)

where M is the number of samples, tn is the time of the
sample n, and P is a variable parameter. Note that V in (1) is
proportional to the square of the Euclidean distance between
vectors Tj = [T j (vt1), . . . , T j (vtM )] and Tj+P = [T j (vt1 +
P), . . . , T j (vtM + P)]. If the texture S(x) is modeled as a
sine wave

S(x) = A sin
(

2π

λ
x
)

(2)

1Registered trademark.
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Fig. 2. Timing diagram for the computation of V in (1) for 1 ≤
m ≤ M [27].

where λ is its wavelength. In this case, Tj and Tj+P are
composed of two sets of samples of that sine wave that
represent two instances of the wave with a difference in phase
of (2π/λ)P: A sin((2π/λ)vtn) and A sin((2π/λ)(vtn + P)).
Since there is a minimum in V if they are in phase, there is a
minimum of P = λ ·k, where k is an integer. For convenience,
we can write P = vD, where D is a time delay and the minima
of V is given by

v · D = λ · k. (3)

Note that the finding of the delays D of these minima allows
obtaining a set of spatial wavelengths as features from (3) to
characterize a given texture.

To find these minima of (1), a simple procedure consists
in computing it for D changing in a certain interval, and
localizing the minima with a peak detection algorithm. The
highest range and scan resolution in this procedure is achieved
when D = mTs , with 1 ≤ m ≤ M , and being Ts the sampling
period. Since tn = nTs and 1 ≤ n ≤ M in (1), the sweep
is completed when m = M , therefore the sweep time is
(see Fig. 2)

Tsweep = 2MTs . (4)

Note that the number of samples that have to be acquired to
compute (1) for 1 ≤ m ≤ M is 2M . Note also that this basic
approach has a tradeoff between the sweep time in (4) and the
minimum spatial frequency or corresponding maximum spatial
wavelength λmax to detect given by

λmax = MvTs . (5)

Regarding the maximum spatial frequency or minimum
wavelength, from the Nyquist–Shannon theorem we have

λmin = 2vTs . (6)

III. MATERIALS AND METHODS

A. Sensor Technology
The tactile data for this work was acquired with the smart

tactile sensor in Fig. 3 [25], [27]. It consists of a sheet of
sensitive material in contact with an array of electrodes made
on a semi-rigid printed circuit board (PCB). This way, an array
of force-variable resistance elements was implemented to build
a piezoresistive tactile sensor. In this work, the sensitive
material is Linqstat1 MVCF-40012BT50KS/2A, with a sheet
resistance of 50 000 �/□ and 0.1 mm thickness. To reduce

crosstalk between taxels in the tactile array, the area of the
material associated with every taxel is isolated from the rest
with laser [28]. Moreover, a 3-D printed flexible cover was
added atop of the sensitive material. This cover was made of
Filaflex1, a thermoplastic material with high elasticity [29].
It is shaped to have one cylinder per taxel in the tactile array.
This cylinder concentrates the force to improve the sensitivity
and also reduces the crosstalk between taxels when compared
with a continuous flexible layer. In addition, regarding the
aim of the work of this article, the cylinders interact with the
explored surface, which allows detecting variations not only of
the normal force but also of the shear force. This is also made
in [30], where an array of micro-pyramids is implemented on
the cover. The size of the tactile sensor is 40.7 × 15.0 mm and
the spatial resolution, and the distance between centers of two
adjacent taxels is 3.70 mm. It is worth highlighting that these
dimensions are large compared with the wavelengths that can
be detected with the proposed strategy and active touch.

Regarding the electronics, it is based on an FPGA
(Spartan-61) because parallel strategies can be implemented,
which is especially interesting for array sensors. Moreover,
a direct connection sensor-FPGA proposed by the authors also
allows parallel data acquisition. The sampling frequency of the
whole tactile array is Fs = 485 Hz, so the sampling period is
Ts = 2.06 ms.

B. Experimental Setup
Fig. 4 shows the experimental setup built to obtain the

data and results of this article. The artificial finger with the
smart tactile sensor was mounted on a Cartesian robot to
acquire data from the texture explorations. The smart finger is
connected through a serial peripheral interface (SPI) bus to a
AVNET1 ZedBoard2 development board. This board is based
on the Zynq2-7000 SoC XC7Z020-CLG484-1 device [31],
which contains an FPGA together with an ARM1 dual-core
Cortex2 A9 processor. The development board is connected to
a personal computer through Ethernet.

C. Texture Samples
In order to cover a wide range of spatial frequencies, the

complex textures in Fig. 5 were used. The number of samples
to acquire is first established to M = 1024, and the sampling
frequency is Fs = 485 Hz. Taking into account that the
exploration speed is v = 30 mm/s, the range of exploration in
terms of wavelength is from 0.12 to 63.34 mm [see (4)–(6)].
Spatial frequencies outside this range cannot be identified. The
12 textures in Fig. 5 contain their main frequency components
inside this range. Details about these textures are provided
in Table I. A first set of textures were made of Filaflex1

(the same flexible material of the tactile sensor cover, see
Section III-A) with a 3-D printer (textures #TEX-1, #TEX-4,
#TEX-5, and #TEX-6). A second set was made of
PLA1, which is quite rigid [32], also with a 3-D printer
(#TEX-2 and #TEX-3). A third set was made with laser
engraving on methacrylate (#TEX-7, #TEX-8, and #TEX-9).
They were obtained using pulsewidth modulation (PWM),

2Trademarked.
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Fig. 3. Parts of the artificial finger. The sensor is composed by a semi-rigid printed board and a structured cover to focus force on the taxels.
Measures are given in mm.

Fig. 4. Experimental setup with the different parts used to explore
the textures. The ZedBoard2 with its different input–output ports and
its Zynq-based core is shown.

with a sinusoidal modulator signal of wavelength λm and
amplitude Am and a triangular carrier signal of wavelength λc
and amplitude Ac [33]. The parameters ma and m f in Table I
are defined as ma = (Am/Ac) and m f = (λc/λm). Finally,
another set of textures were samples of different fabrics
(#TEX-10, #TEX-11, and #TEX-12).

Fig. 5. Top photographs of the 12 textures used in this work.

D. Data Gathering Procedure
Fig. 6 shows the sequence to obtain data from the textures.

In particular, Fig. 6(a) shows the initial position of the finger
with the tactile sensor, and Fig. 6(b) shows a snapshot of
the slide movement across the surface until it reaches the
end position in Fig. 6(c). This sequence was repeated at
v = 30 mm/s 200 times per texture. During this process, the
sensor took data in real time, and these data were registered
in text files. Every exploration depicted in Fig. 6 provided
a 2048-samples vector that is called f rame herein, and
each sample is a 16-bit length word. Since 12 textures
are considered, the total number of frames is 12 textures ·
200 frames/texture = 2400, which are 9.4 MB of data. Fig. 7
shows a set of example frames of each texture as obtained
after antialiasing filtering.

E. Feature Extraction for Training and Test
As said in Section I, the raw data obtained after the proce-

dure described in Section III-D was processed to reduce the
amount of data to be transmitted and stored, and simplify the
classifier. Specifically, the vector of minima of (1) can be used
as feature vector to identify a given texture. Fig. 8 depicts the
result of (1) for the sweep algorithm and the set of textures
used in this work. If a polished surface is explored, no minima
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TABLE I
MAIN PROPERTIES OF THE 12 TEXTURES EMPLOYED ON THIS WORK

Fig. 6. Exploration sequence. (a) Initial position. (b) Slide movement
(v = 30 mm/s). (c) End position.

are detected, as shown in Fig. 9 for the smooth surface of
a methacrylate plate. It is worth remarking that, since only
the location of the extrema is needed (see Section II), the
dimension of the feature vector can be drastically reduced
to M if the location of minima is signaled with 1’s in the
corresponding feature vector component. This is illustrated in
Fig. 10 for the first texture in Fig. 8. Moreover, as shown in
Section V, good classification results are achieved when only
a subset of components of this feature vector is sent to the
classifier.

On the other hand, since the vector of coefficients of the
FFT is commonly used as a feature vector, it has been used in
this article to compare the performance with that obtained with
the proposed strategy. Fig. 11 shows the FFT output obtained
for the set of textures used in this work.

The training of the classifier was realized offline in the work
presented in this article, though results from the implemented
hardware with the trained classifier are presented. With the
purpose of performing training from data with similar restric-
tions as those found in hardware, raw data were processed with
the high-level synthesis C/register-transfer level (HLS C/RTL)
simulation tool of the Vivado IDE1 HLS to obtain the feature
vectors from the sweep algorithm. This simulation provides the
closest RTL approach to the real system. On the other hand,
the FFT was executed in MATLAB1 with the precompiled
MEX functions. The FFT MEX model produces identical and
bit-accurate results to those that would be obtained by the
hardware FFT intellectual property (IP) core.

The above procedure resulted in files containing the
1024-component feature vectors for every raw data corre-
sponding to an exploration as described in Section III-D. Next,
these data had to be split randomly into training (60% of the
data) and test (40% of the data) sets. To improve the result
of the training, feature vectors whose Euclidean distance to
a reference vector deviates more than one sigma from the
mean value were removed from the training set (not from the
test set).

F. Training Algorithm
An unsupervised general-purpose k-means classifier was

chosen to obtain the results of this article. In contrast to other
machine-learning techniques such as support vector machines
(SVMs) or K -nearest neighbors (KNNs), which would have
to store a large amount of data in real-time tasks, the main
advantage of the k-means is its simplicity and speed when
converging to the different classes. The original choice of
centroids (a centroid is a vector that identifies a given class)
can be totally random or using the k-means ++ method [34].
In this work, the training was performed as follows. First,
the centroids were randomly initialized. Then, these centroids
were updated in the learning phase, where the training set was
presented. This process was repeated with shuffled data from
the training set until the centroids did not change. Finally, the
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Fig. 7. Tactile sensor digital output taken at v = 30 mm/s for the set of textures in Fig. 5.

Fig. 8. Output of (1) for 1 ≤ m ≤ M (D = mTs) for the set of textures in Fig. 5.

accuracy of the so-trained classifier was assessed with data
from the test set. The whole procedure was repeated 100 times,
and centroids that achieved the best accuracy were selected for
the final trained classifier [35].

IV. IMPLEMENTATION OF ALGORITHMS ON SOC
The Vivado Design Suite2 environment was used to imple-

ment the feature extraction algorithm on the FPGA of the SoC.
This software allows the integration of hardware-description
modules (typically written in VHDL/Verilog) as well as
presynthetized cores from IP libraries or the HLS tool
from Vivado Design Suite.2 The system datapath and the
scheme for the sweep algorithm implementation are illustrated

in Fig. 12. In the first stage, an SPI controller takes
the data provided by the tactile sensor. Next, a 16-bit
word is sent to the built-in FIR-compiler IPCore mod-
ule from the Xilinx1 IP library (“Antialiasing Filter” block
in Fig. 12). This module is a 16Fix-frac15-bit coefficient filter
that removes the components above the frequency given by
the maximum spatial frequency to detect at a given speed.
The output from this filter consists of 32-bit words which are
then saved into a block RAM module. This module commu-
nicates with the custom interface “AXISTREAM Interface” in
Fig. 12. The AMBA1 AXI-Streaming protocol is used for the
communication between the rest of FPGA hardware modules
in the system [36]. The “HLS-Vivado Sweep Algorithm”
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Fig. 9. (a) Tactile sensor digital output taken at v = 30 mm/s for the
smooth surface of a methacrylate plate. (b) Output of (1) for 1 ≤ m ≤ M
(D = mTs) for this smooth surface.

Fig. 10. Output of (1) for 1 ≤ m ≤ M (D = mTs) for the first texture
in the set of textures in Fig. 5. In addition, the minima location vector is
shown at the top of the figure.

block in Fig. 12 is the sweep algorithm module which com-
putes the feature vectors. The feature vectors obtained from
the sweep algorithm are sent to a DDR memory through
a first-input–first-output (FIFO) buffer plus a direct memory
access (DMA) module. This way, the ARM core can access
the data stored in the memory without taking care of the
data traffic. The FIFO module seeks frequency decoupling
between the processing logic (PL) and processing system (PS)
parts. The system development kit (SDK1) from Xilinx1 was
used to implement the classifier on the ARM core. For the
results of this work, the classifier was trained offline, and the
obtained centroids were stored in the memory of the SoC.
High throughput communications with the personal computer
are achieved with an embedded real-time operating system
(RTOS) and a lightweight TCP/IP (lwIP) stack implemented
on the ARM core.

In particular, the inset at the bottom of Fig. 12 shows the
block diagram of the implementation of (1) for 1 ≤ m ≤ M .
It has been designed using the HLS tool from Vivado Design
Suite.2 At this stage, the data coming from the previous step
are buffered into a 2 · M array in the first stage. A pipeline
approach with three adders and two multipliers to compute

every new term to add in (1) is followed. Every time there
is a new input value, the 2 · M array is left shifted, so the
computation of (1) is made for the last 2 · M samples.

The pseudocode in Algorithm 1 shows the System C imple-
mentation in HLS of the complete sweep algorithm. In order
to achieve the pipeline implementation at RTL, the #HLS
PIPELINE Vivado optimization directive is used. Minima
of (1) for 1 ≤ m ≤ M are also obtained on the basis of a
simple comparison procedure to detect peaks.

The FFT was also implemented as a common extraction
feature method to compare with the proposed sweep algorithm.
The block diagram is shown in Fig. 13, where the FFT is
implemented with the built-in FFT IPCore from the Xilinx1 IP
Library.

V. RESULTS

This section shows results from the active touch exploration
of the textures in Fig. 5. Data gathering, feature extrac-
tion, and classifier training are performed as explained in
Sections III-D–III-F, respectively.

A. Classification Accuracy
The main goal of this article is the reduction of resources

needed to identify a given texture with the aim of local
implementation on embedded hardware. Once the feature
vectors from the FFT (vector of coefficients) and the sweep
algorithm (vector of minima) are obtained, the question of
further simplifications arises. Specifically, it is observed in
Fig. 11 that most power of the signals obtained from exploring
the textures is at low frequencies. Therefore, the classification
could work if only the first coefficients of the FFT were sent to
the classifier. Regarding the sweep algorithm, the information
related to a given spatial frequency is not condensed in a
coefficient as in the case of FFT, but it is redundant and
spread along the whole feature vector. Therefore, a sort of
equivalent process of that made for the FFT that still preserves
the relevant information does not take V for the first values
of D in Fig. 8 but performs a decimation or subsampling in
the whole range of D.

Fig. 14 shows the results in classification accuracy when
the reduction of the feature vector dimension described above
was carried out. The accuracy was that obtained with the
procedure explained in Section III-F. Moreover, two curves
are shown for each FFT and sweep-based methods. One of
them was obtained by taking into account hardware restrictions
that are not considered for the other curve. These restrictions
consisted in using the MATLAB1 precompiled MEX functions
in the case of the computation of the FFT coefficients, see
Section III-E. Concerning the sweep algorithm, the results
in Fig. 14 for the curve labeled with “Sweep FPGA test”
were obtained with the whole feature extraction and classifier
implemented on the SoC (though the training was performed
offline and the centroids corresponding to each class or texture
were stored on the SoC memory). The accuracy obtained with
the FFT coefficients as features for the classifier saturates
after the first 64 coefficients. The results in Fig. 14 confirm
that most information to identify the textures is contained in
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Fig. 11. FFT output obtained for the set of textures in Fig. 5. There is a zoom on the first values of the spectrum.

Fig. 12. General diagram of the Zynq-7000 XC7Z020 architecture
implementation. At the bottom, there is a zoom on the sweep algorithm
part. It only uses three adders and two multipliers.

Fig. 13. General diagram of the Zynq-7000 XC7Z020 architecture
implementation for the FFT algorithm.

low-frequency components of the signal. It is worth high-
lighting that the frequency response of the signal depends on
the textures but also on the tactile sensor, specifically on the
shape and composition of the cover that is in contact with

Fig. 14. Accuracy percentages for sweep and FFT algorithms, depend-
ing on the number of components of the feature vector sent to the
classifier, that is, the decimation or cut applied to sweep and FFT,
respectively. Both the sweep and FFT are computed with M = 1024.

the textures. Fig. 14 shows that good classification accuracy
is also achieved with the sweep algorithm. In addition, the size
of the feature vector is also displayed in Fig. 14 depending on
the number of components of the feature vector. The size of
the feature vector is smaller in the case of the sweep algorithm
because only the location of the minima in the feature vector
is sent to the classifier (see Section IV).

Confusion matrices in Figs. 15 and 16 show the classifica-
tion results for feature vectors with 512 components provided
by the sweep algorithm and the FFT, respectively. Specifically,
the classification accuracy is 89.17% in the case of feature
extraction with the sweep algorithm and 91.4% in the case of
feature extraction with the FFT.

B. Resource Consumption
The resource consumption and latency of the pro-

posed algorithm depend on the parameter M . For a given
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Algorithm 1 Feature Vector Obtaining Procedure for
Sweep Algorithm
Input: D
Variables:

1) ibu f (internal buffer to store data samples)
2) add (addition factor to compute V , (1))
3) sus (subtraction factor to compute V , (1))
4) V (output array with the computed V values, (1))
5) decV (vector with decimated values from V array)
6) M (output size from V )
7) n (current sample index)
8) d (decimation factor)

Initiate m as 0
repeat

1) Obtain new sample pm from data input:
pm ← D

2) Store pm and left shift one position internal
buffer ibu f of size 2M :
i = 0;
repeat

#Apply→HLS PIPELINE directive
ibu f [i] ← ibu f [i + 1]
Access to the next index i

until i < 2M
ibu f [2M − 1] ← pm

3) Obtaining descriptor procedure:
n = 0;
repeat

3a) Obtain V :
#Apply→HLS PIPELINE directive
add ← (ibu f [M] − ibu f [M + (n + 1)])×

×(ibu f [M] − ibu f [M + (n + 1)])

sus ← (ibu f [0] − ibu f [n + 1])×
×(ibu f [0] − ibu f [n + 1])

V [n] ← V [n] + add − sus

3b) Decimate V by factor d:
decimateV (decV [n], V [n], d)

3c) Obtain minima locations:
computeMinLoc(out Descriptor [n], decV [n])
Access to the next index n

until n < M
m ++

until m < M
Result: A 1-bit array composed by the

out Descriptor array of M values.

exploration speed and acquisition sample frequency, this
parameter determines the maximum spatial wavelength that
can be detected [see (5)]. Results from our experiments are
given for M = 1024, covering a range of spatial wavelengths
from 0.12 to 63.34 mm, see Section III-C. To assess the
resource consumption of the proposed approach in comparison

Fig. 15. Confusion matrix with the results from sweep algorithm on
the textures from Fig. 5. Input data is with outliers. The test has been
performed directly on the Zynq-7020 chip. Accuracy is 89.17%. Speed
is 30 mm/s, M = 1024, and the decimation factor 2, that is, 512 values
are sent to the classifier.

Fig. 16. Confusion matrix with the results from FFT algorithm on
the textures from Fig. 5. Input data is with outliers. Accuracy is 91.4%.
Speed is 30 mm/s, M = 1024, and the spectrum is cut by a factor of 2,
that is, half-spectrum is sent to the classifier (512 coefficients).

with that based on the FFT and its dependency on M , the
hardware in Figs. 12 and 13 was synthetized and implemented,
for different values of M , with Vivado.1

The implementation report provides information about the
number of hardware resources and time the algorithm needs
to perform its computation. Fig. 17 shows this comparison
for different hardware resources, power, and time. As inferred
from Fig. 17, the sweep algorithm consumes less hardware
resources than the FFT. This can be observed in Fig. 17(a)–(f)
for the case of logical and memory elements. Note that the
consumption of block RAM memory and distributed memory
(LUTRAM) of the sweep algorithm in Fig. 17(i) is smaller
than for the FFT. The block RAM (BRAM) memory is similar
in both cases [see Fig. 17(f)], but the FFT needs much more
distributed memory than the sweep algorithm [see Fig. 17(c)].

Regarding the use of digital signal processing (DSP) embed-
ded blocks in Fig. 17(e), note that the hardware for the sweep
algorithm requires only two DSPs (see Fig. 12) while the
consumption of DSP blocks increases notably with the length
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Fig. 17. Hardware resources and time consumption for Fig. 12 (sweep) and Fig. 13 (FFT). The output vector length corresponds to M for Fig. 12
and the number of FFT coefficients in Fig. 13. From left to right and top to bottom (a) flip-flops, (b) look-up-tables (LUTs), (c) DMEM (LUTRAM-
based distributed memory), (d) carry logic, (e) DSP embedded blocks, (f) BRAM embedded blocks, (g) power consumption in (W), (h) time to
provide feature vectors to ARM in (µs), and (i) sum of BRAM and DMEM in (Kb).

of the output vector and reaches 15 blocks for a length of
2048 components. The power consumption is also lower in
the case of the hardware for the sweep algorithm than for the
FFT [see Fig. 17(g)].

On the other hand, the latency of the hardware for the sweep
algorithm is larger than that for the FFT [see Fig. 17(h)].
It grows as O(n) for the sweep algorithm and as O(n log n)

for the FFT. Nevertheless, it is in the order of tens of
microseconds, which is a very short time for the application of
texture identification, taking into account that the acquisition
of 2 · M samples of the surface takes 4.22 s (see Section II).

As said in Section I, the work in [23] also proposed an
algorithm oriented to embedded systems. The signals from
a 3-D accelerometer and a sound microphone were used as
inputs for the feature extraction algorithm. This algorithm
provides the power of the signal in a set of bands of the
frequency spectrum as features to identify the texture. This
algorithm does not require buffering the whole input vector,
so it consumes low memory. On the other hand, it is more
complex than ours. Therefore, the consumption of resources
for computation, i.e., multipliers or DSPs, is higher. The
same authors present an alternative in [37] that improves the
throughput by parallelization at the cost of higher compu-
tational resources. In summary, this proposal requires more
computational resources but less memory resources than
ours.

Nevertheless, the comparison with other proposals is not
easy, since it depends on many aspects. First, the performance

depends on the sensor technology, because the registered data
are produced by the interaction between the sensor and the
textures, the contact pressure, and the sort of exploratory
actions [22]. Moreover, the size and nature of the set of
textures to test the performance also influence the results.
However, the final application can be considered in the design
of the sensor and the choice of the feature extraction algorithm.
Some proposals overcome the human performance in discrim-
inating different textures [16], but it could not be necessary to
implement artificial hands unless they are focused on some
specialized tasks. Kursun and Patooghy [22] say that very
few frequency features suffice to represent the textures, while
the work in [23] and this article shows the same since the
classification accuracy is high even when the extracted features
are a few. Therefore, the feature extraction algorithm could be
simplified. Note that our algorithm provides information about
the location of the frequency components in the spectrum
but not about its power. The simplification of the algorithm
can limit its performance, but, as stated in [37], the use of
more sensors can compensate for the loss of accuracy with
respect to the feature extraction based on FFT. This can be the
case with the tactile sensor of this article. Only one channel
has been used to show the feasibility of the approach but
they could be more (16 channels are used in [22]). In this
case, the simplicity of the feature extraction hardware makes
it more scalable. The acquisition of the tactile array can
then be performed in parallel with the computation of other
features such as the moments of the tactile image [25] and the
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features for the texture detection. Finally, better classification
performance can be achieved by changing the velocities and
motion directions [16], [22], which can be done by a robotic
system.

VI. CONCLUSION

This article proposes a simple algorithm for feature extrac-
tion of textures oriented to smart tactile systems with embed-
ded FPGA. The raw input data are taken by active touch
so the registered signals provide the information from the
interaction between the sensor and the textures. The outer
cover of the sensor is designed to collect the micro-vibrations
produced in this process. The tactile sensor is piezoresistive,
and the electronics is based on local FPGA [25]. The proposed
algorithm is a simple adaptive filter that scans the frequency
spectrum and provides information about the location of the
frequency components as features. The resulting feature vector
size is small, which reduces the data traffic and simplifies
the classifier. Results from the algorithm implemented on the
FPGA and a classifier implemented on an ARM processor
show the feasibility of the approach. A comparison with
a common alternative where the FFT coefficients are the
input features for the classifier is presented. The classification
accuracy obtained with both methods is quite close, but the
hardware resources required to compute the FFT are much
higher. The results of this article are obtained when the
readings of only one channel are processed. The simplicity of
the presented approach is aimed to allow the replication of the
hardware and the parallel processing of many channels. This
can also improve the classification accuracy and the capacity
of the smart sensor. The exploration speed is supposed to
be known and constant, like in many other reported works.
This is a relative limitation in robotic systems, where this
velocity can be controlled and even changed to improve
performance. Nevertheless, future work will focus on the
evaluation of the limits of the proposal in terms of accuracy
and computing resources, when the ranges of spatial frequency
and the exploration velocity are changed. The scalability of the
approach to process more channels of taxels in contact with
the explored surface will also be assessed.
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