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Abstract—Today’s wearable Internet of Things (loT)
devices, which have numerous practical applications, suf-
fer from the limited lifetime of batteries due to the high
power consumption of conventional inertial activity sensors.
Recently, kinetic energy harvesters have been employed as
a source of energy as well as context information to replace
conventional activity sensors. However, the harvested power
from human movements using miniaturized kinetic trans-
ducers may not be sufficient to enable a perpetual and
self-powered activity recognition system. In this article,
we propose a novel mechanism of fused signal-based human
activity recognition (FusedAR), which employs miniaturized
wearable solar and kinetic energy harvesters simultaneously
as an energy source as well as an activity sensor. As human
activities engender distinct movement patterns and interact
and interfere with the ambient light differently, the kinetic and
solar energy harvesting (SEH) signals incorporate unique
information about the underlying activities while generating
sufficient power. After detailed experiments, we find that the
FusedAR, which employs both solar and kinetic energy signal
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s, achieves superior activity recognition performance by up

to 10%, particularly in outdoor and night-time contexts, and can recognize not only activities but also contexts, compared
with the individual energy harvesting signals. Furthermore, our analysis demonstrates that FusedAR, in addition

to significant energy generation, consumes up to 22% le

ss power than the highly optimized conventional three-

axis accelerometer-based mechanisms, achieving energy-positive human activity recognition (HAR) leading toward
perpetual, uninterrupted, and autonomous operation of wearable loT devices.

Index Terms— Context detection, energy harvesting, energy-positive sensors, fused signals, human activity recogni-

tion (HAR), Internet of Things (loT), kinetic, solar, wearables.

[. INTRODUCTION

HE proliferation of mobile devices, ubiquitous internet,
and cloud computing has triggered a new era of Internet

T
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of Things (IoT), which allows interaction between everyday
objects to make smart decisions. Wearable IoT devices are
becoming increasingly popular as technology advances, with
an estimated market value of U.S. $265.4 billion by 2026 [1].
There are various commercially available wearable products,
such as Fitbit [2], Garmin [3], and Apple watch [4], which
have a wide range of applications in our daily lives, including
activity monitoring, healthcare, fitness tracking, and trans-
portation route planning [5]. However, due to the low energy
storage capacity of current wearable devices’ batteries, their
lifetime is limited, restricting their adoption and widespread
deployment [5]. Energy harvesters, which transform ambient
energy in the environment, such as solar, kinetic, thermal,
and radio frequency waves into electrical energy to power
these wearable IoT devices [6], are a possible alternative.
Energy harvesters can also be used as activity/context sensors

For more information, see https://creativecommons.org/licenses/by/4.0/
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TABLE |
COMPARISON WITH THE STATE OF THE ART
Article - Year Sensor Signal Energy Powered Context Application
KEH SEH fusion harvesting load (indoors/outdoors)

[8], [9] - 2017 v X X X X Indoors Human activity recognition
[10], [11] - 2019 X v X X X Indoors Hand gesture recognition
[12] - 2019 v v X X X Indoors Place recognition

[13] - 2020 v X X v X Indoors Human activity recognition
[14] - 2020 v X X v v Outdoors Transport mode detection
[15] - 2021 X v X v v Indoors Human activity recognition
Proposed - 2023 v v v v v Both Human activity recognition

to replace traditional power-hungry inertial sensors, such as
accelerometers and magnetometers [7], because the pattern
of the energy harvesting signal correlates with the underlying
physical motion and activity.

A. Background

Following this intuition, Khalifa et al. [8] show that the
energy harvesting signal from a wearable kinetic energy har-
vesting (KEH) transducer varies in line with the underlying
human movements and, thus, encodes distinct context infor-
mation about the corresponding activity, demonstrating the
potential of KEH-based activity recognition (KEHAR) as a
proxy for conventional accelerometer-based activity recogni-
tion (AccAR) [16]. Moving one step further, Ma et al. [17]
suggest that KEH can be employed for both sensing and
energy harvesting simultaneously, while Sandhu et al. [14]
demonstrate that KEH can support energy-positive signal
acquisition, in which the harvested energy surpasses the energy
required for acquiring the activity signal in human activity
recognition (HAR) applications. This enables applications in
which sensor data are logged locally on the embedded device
and then manually uploaded for offline analysis after deploy-
ment. However, for users to receive real-time feedback on their
activities, the harvested energy must be able to power not only
on-device signal acquisition but also activity classification and
transmission. Unfortunately, the harvested power from a tiny,
single, untuned, and wearable-sized KEH transducer may not
be sufficient to power all components of an end-to-end HAR
system [14], [18].

B. Objective

Our main objective in this article is to implement end-to-
end energy-positive HAR, where the harvested energy exceeds
the energy required to acquire the activity signal, classify the
activity, and wirelessly transmit the inferred activity class.
A promising approach is to employ solar (photovoltaic) cells
to harvest energy from the abundantly available ambient light.
Previous works [19], [20] show that solar energy harvesting
(SEH) offers higher power density, energy conversion effi-
ciency, and robustness than piezoelectric-based KEH trans-
ducer, making SEH a favorable source to power IoT sensor
nodes. In addition, as illustrated in Table I, solar cells have

also been used previously for recognizing different types
of hand gestures [10], [11] and room-level localization [12]
in indoor settings, showing their potential as a proxy for
activity sensors. Nevertheless, SEH has either been used as an
energy source or as an activity sensor separately. Furthermore,
to the best of our knowledge, the use of wearable solar
cells to recognize human physical activities in HAR applica-
tions remains largely uninvestigated. Although our previous
work [15] explores solar cell as a context/activity sensor,
it does not study the performance of solar cell in diverse light-
ing conditions, such as at night and in various environments
(indoor and outdoor).

KEH and SEH have their own advantages and limitations
in generating energy and detecting the human activity. For
example, KEH may not harvest sufficient energy during static
activities (e.g., sitting and standing) to power the wearable
device. In addition, due to weak energy harvesting signal,
it is strenuous to differentiate between static activities using
KEH signal. On the other hand, SEH is unable to generate
sufficient energy at night and during low-light conditions,
to perpetually power the wearable device. Therefore, this
article proposes the fusion of both SEH and KEH signal to
overcome their limitations and complement individual energy
harvesting transducers. In addition, fusing the signals from
solar and kinetic energy harvesters may offer higher HAR
performance as well as higher harvested power. Table I clearly
shows that previous works do not explore kinetic and solar
signal fusion while using the harvested energy to power a
dynamic load. In addition, previous works shown in Table I
do not explore the implementation of end-to-end HAR clas-
sification pipeline using only the harvested energy from the
transducers.

C. Contribution

In this article, we propose fused signal-based HAR
(FusedAR), which employs both solar and kinetic energy
harvesters simultaneously as sensors for activity recogni-
tion as well as sources of energy, as depicted in Fig. I.
The output harvesting signals from both transducers embed
unique traces of the underlying context, because human activ-
ities interact and interfere with the ambient light differently
and generate distinct vibration patterns. We empirically and
extensively evaluate FusedAR using extended (real world)
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Fig. 1. Employing solar and KEH transducers for activity recognition
as well as to power the wearable sensor node simultaneously, leading
toward end-to-end energy-positive HAR.

datasets (indoors/outdoors and day/night) collected from
40 participants performing five common human activities in
indoor and outdoor environments. We have presented the
initial evaluation of solar-based human activity recognition
(SolAR) in [15], whereas in this article, we rigorously evaluate
SolAR in diverse lighting conditions (day/night) and discover
that it can recognize activities not only during day times but
also during night times when the ambient light is significantly
limited. We implement the HAR classification algorithm on
an ultralow-power micro-controller unit (MCU) to find that
FusedAR harvests sufficient power to run the end-to-end
HAR algorithm (including feature extraction, classification,
and activity transmission) and, thus, ensures energy-positive
HAR. Finally, we evaluate our proposed mechanism, using a
metric of HAR power ratio (suitable for energy harvesting-
based sensors), which is the ratio of harvested power and
required power for implementing the HAR algorithm (see
Section V-C). In the following, the major contributions of this
article are summarized.

1) We propose FusedAR using both solar and KEH signals
to enhance the HAR accuracy, showing that it improves
HAR performance by up to 10% compared with the use
of individual (solar or kinetic) energy harvesting signal.

2) We empirically evaluate FusedAR and SolAR
using real-world enhanced datasets (collected from
indoors/outdoors and day/night environments) and
compare their performance with state-of-the-art
methods, including KEHAR and conventional AccAR,
demonstrating the potential of SolAR and FusedAR for
accurate and reliable HAR.

3) Our experiments reveal that FusedAR and SolAR reduce
power consumption by up to 22% compared with con-
ventional AccAR and offer at least one order of mag-
nitude higher harvested power compared with recently
proposed KEHAR, delivering end-to-end energy-positive
real-time HAR.

The remainder of this article is organized as follows.
Section II provides the literature review and motivation, and
Section III describes our proposed FusedAR architecture along
with the implementation process. We evaluate FusedAR in

Section IV and discuss the novel mechanism of end-to-end
energy-positive HAR in Section V. Finally, we conclude this
article and discuss the future directions in Section VII.

Il. LITERATURE REVIEW AND MOTIVATION

This section describes previous wearable-based HAR mech-
anisms as well as the motivation behind this work.

A. Accelerometer-Based HAR

Previous research studies have shown that wearable IoT
devices, based on inertial sensors, such as accelerometers
and magnetometers [5], can be attached to different parts
of the human body to achieve reliable HAR. These wear-
able devices have numerous practical applications, including
health/fitness monitoring, activity detection, and tracking and
localization [21]. Smarr et al. [22] and Ates et al. [23]
propose that wearable devices, which monitor human physio-
logical parameters, can be employed for the early recognition
of asymptomatic and presymptomatic cases of COVID-19.
In another work [24], a wrist wearable device is designed
to detect the obstacles for providing independent mobility
to visually impaired people. Sztyler et al. [25] employ a
wearable device for HAR and suggest that it offers best
results when placed on the waist. The major bottleneck of
these wearable devices is their limited lifetime, which hin-
ders their widespread adoption [8] and pervasive deployment.
Although battery technology is evolving over time, their
limited lifetime is still one of the biggest impediments to
advancing wearable technology [5]. This opens the door to
explore energy harvesting sources as viable alternatives for
charging the batteries, which can ultimately result in the unin-
terrupted and autonomous operation of wearable IoT sensing
devices.

B. KEH-Based HAR

Recently, KEH transducers have been used as an
energy-efficient activity sensor. Khalifa et al. [8] suggest that
the harvesting signal from a KEH transducer can be used
for HAR to reduce the energy consumption compared with
the conventional inertial sensors and to allow for perpetual
operation of the wearable IoT device. Lan et al. [26] store the
kinetic harvested energy in a capacitor and use the capacitor
voltage signal for activity recognition. KEH transducers have
also been used for monitoring food intake [27], recognizing
transport modes [28], and generating security key for wear-
ables [29]. In order to increase the energy generated from
KEH, Ma et al. [17] employ two separate transducers in
a shoe and use the harvesting signal for gait recognition.
On the other hand, Sandhu et al. [14] employ a single KEH
transducer simultaneously to harvest energy and to recognize
the daily activities, and coin the term of energy-positive
signal acquisition. However, the harvested energy from human
movements/vibrations is not enough to ensure the autonomous
operation of wearable devices [14], which led to exploring
alternate HAR mechanisms harvesting sufficient energy to
ensure the perpetual and autonomous operation of wearable
IoT devices.
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TABLE Il = 5 A =
SEH AND KEH PROPERTIES [19], [20] O O o O ‘

Property Photovoltaic Piezoelectric @ @

Power density [uW/cm?] 10uW to 15mW  upto 330 uW

Energy conversion efficiency up to 40% up to 30%

Robustness High Low (@ (b)

Fig. 2.  Difference of light sources, shadowing and variation in light

C. SEH-Based HAR

SEH offers significant benefits in terms of power density,
energy conversion efficiency, and robustness compared with
KEH, as shown in Table II. Therefore, SEH can be considered
as an attractive source to power IoT sensor nodes [30]. Solar
cells have been also used as a proxy for recognizing hand
gestures and room-level localization. Ma et al. [10], [11] use
a solar cell to identify and recognize various hand gestures
under a lamp light in an indoor environment. As the movement
of the hand obstructs the light falling on the solar surface, the
resulting harvesting signal contains information about the ges-
tures performed. On the other hand, Umetsu et al. [12] employ
multisource energy harvesters, including solar and kinetic, for
place recognition in an indoor environment. However, these
works [10], [11], [12] employ SEH merely as a context sensor
without extracting energy simultaneously and, thus, do not
fully reap the benefits of the energy harvesters. Furthermore,
to the best of our knowledge, the use of solar cells to recognize
human physical activities in HAR applications remains largely
uninvestigated. In an initial study called SolAR [15], we show
the potential use of solar cell as a simultaneous source of
energy and context information for recognizing human phys-
ical activities. In this article (see Section IV), we provide an
extensive evaluation of SolAR in diverse lighting conditions
and using a large cohort of participants.

D. Motivation

Previous studies [8], [14] have shown that KEH can be
employed as a simultaneous source of energy and context
information. However, the limited harvested energy from
a miniaturized KEH transducer is not sufficient to perpet-
ually run the wearable IoT device [14]. Table II shows
that SEH offers higher power density and, thus, can offer
higher harvested energy compared to a KEH transducer.
Sandhu et al. [15] proposed the use of SEH as a simultaneous
source of energy and context information and showed that SEH
offers better results in terms of harvested energy and activity
recognition compared with KEH-based sensing. However,
SEHs are unable to harvest sufficient power during night (and
low-light conditions) [15] and, thus, cannot capture activities
performed in low-light conditions and in dark environments.
Table I shows that previous works use either KEH or SEH for
activity/context recognition without using the harvested energy
to power a dynamic load. Although Umetsu et al. [12] employ
both KEH and SEH transducers, they neither use fusion nor
harvest the energy to power a real-world dynamic load.

Our article is motivated by the fact that both kinetic and
solar energy harvesters can be employed simultaneously for

intensity in (a) indoors and (b) outdoors.

activity recognition and energy harvesting. Due to the varying
movements and unique interactions with the ambient light,
as depicted in Fig. 2, both KEH and SEH signals can be
fused to obtain high harvested energy and enhanced sensing
performance. Table I shows the novelty of our work com-
pared with previous works in terms of sensing using KEH
and SEH signal fusion and simultaneous energy harvesting
to power a dynamic load. Note that both KEH and SEH
transducers embed the context information differently, i.e.,
from the changing vibration signals and the varying light
intensity, respectively. As activity signals from both transduc-
ers complement each other, the resultant high-fidelity fused
signal can offer fine-grained information about the under-
lying activities. In addition, energy can be harvested even
during static activities (from SEH) and low-light conditions
(from KEH), resulting in near-perpetual operation of wearable
IoT devices.

Ill. FUSEDAR: HAR USING SOLAR
AND KINETIC ENERGY SIGNALS
We describe the architecture of our proposed fusion-based
activity recognition (FusedAR) system in Section III-A and
the implementation specific details in Sections III-B-III-D.

A. Architecture of FusedAR

We employ a wearable kinetic energy harvester and a solar
cell simultaneously as activity sensors for activity recognition
and energy sources to run the system load for the self-powered
operation of wearable IoT sensing devices. Fig. 3 shows the
architecture of our proposed fusion-based activity recogni-
tion (FusedAR) model. We employ an ultralow power dc—dc
boost converter with maximum power point tracking for both
transducers, to optimize the harvested power [31] as well as
to decouple the harvesting signal from the energy storage
and load behavior [14]. The dc—dc buck converter provides
a constant supply voltage when the voltage of the capacitor
(or battery) exceeds a configurable threshold. The combined
stored harvested energy (in a capacitor/battery) is used to
power the system load using a converter to match the capacitor
voltage with the system specifications. Using the proposed
architecture, the context information is only embedded in the
harvesting current signal, because the converter regulates the
transducer voltage according to the maximum power point
tracking algorithm. We employ an MCU to acquire and collect
the harvesting current signals from both transducers and to
recognize the underlying activity using a machine learning
model, as portrayed in Fig. 3.
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We extract various time- and frequency-domain features
from the collected KEH and SEH signals [8], [14]. Later, the
most informative features from both energy harvesting signals
are selected using well-known feature selection techniques.
These selected features are then fused together to combine
the context information from both distinct sources to obtain
enhanced activity recognition performance. Then, the resultant
most dominant features from the fused signal are used to
train the classifier. Finally, the inferred activity is transmitted
to a nearby receiver where it is used by health, activity,
or fitness monitoring applications. In the proposed work, the
complete HAR pipeline is implemented on the IoT sensor
node, which minimizes the power consumption [32], [33]
while simultaneously improving application latency and
privacy [34], [35].

B. Measurement Setup

We use Shepherd [36], a portable test bed for the batteryless
IoT, which allows recording energy harvesting traces with
high resolution, to sample the SEH current signals from a
tiny solar cell. This work employs an off-the-shelf IXYS
SLMDI121H10L solar module for collecting energy harvesting
signal during various human activities. The solar cell measures
4.2 x 3.5 cm and weighs 4.5 g, which is appropriate for
wearable devices and smart watches [5]. In addition to the
solar cell, we simultaneously collect the harvesting current
signal from a 7.1- x 2.54-cm MIDE technology S230-J1FR-
1808XB two-layered piezoelectric bending KEH transducer
with a tip mass of 24.62 g £+ 0.5% as described in [15] in
detail. We use a tip mass to tune the resonance frequency of the
KEH (piezoelectric) transducer to the low-frequency vibrations
typically observed in human-centric applications [8], resulting
in a total mass of 30.46 g. In order to compare our results
with the state of the art, we also collect data from a three-axis
accelerometer (InvenSense MPU9250). As depicted in Fig. 4,
mimicking a wearable device, we place the solar cell, the KEH
transducer, and the accelerometer modules on the wrist to
record movement during various human activities. Whereas,
the recording devices are placed on the waist of the partici-
pants, as shown in Fig. 4.

—
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Fig. 4. Data collection setup using SEH and KEH transducers during
different daily human activities.

TABLE Ill
DETAIL OF DATA COLLECTION EXPERIMENTS
IN INDOORS AND OUTDOORS

Environment  No. of  Light Surface type Day/
users source night

Indoors 9 LED lights Carpeted room  Day
4 LED lights Carpeted room  Night
5 Fluorescent  Tiled hallway Day

lights

Outdoors 8 Sunlight Public street Day
9 Sunlight Private street Day
5 Street lights ~ Public street Night

C. Data Collection

We perform real-world experiments to record SEH, KEH,
and three-axis accelerometer data! from five common daily
human activities, including sitting, standing, walking, running,
and going up/downstairs. Table III elaborates that activity data
are collected in two different environments, i.e., indoors, and
outdoors. The first set of experiments is conducted indoors in
various lighting conditions (i.e., LED, and fluorescent lights)
with 18 healthy adults (age: 35+ 10.3 years and mass: 79.7 &
13.6 kg), and the second set of experiments is performed out-
doors (under sunlight and streetlights) with 22 healthy adults

IEthical approval has been granted from CSIRO [106/19] for carrying out
this experiment.



12416

IEEE SENSORS JOURNAL, VOL. 23, NO. 11, 1 JUNE 2023

Running Running Running Running Running
2.5 1001 100 50 5.0
1 250t g, ey | 257
0.0} 0 ol : ‘ , : ‘
Stairs Stairs Stairs Stairs Stairs
25] 100 100 50 5.0
A o £ | A
—_ - I~ 2.5
0.0 adyrtravvipppddytirymr | TSR TIT S T PR, T FTOTT— 2 e AT s | 2
= Walking 5 Walking 5 Walking 5 Walking 5 Walking
S2s5] £ 1004 £ 1001 2 50 W 250
& VY AN My | & a S 5 D'25—I\//"""m-,‘_\’v\/VJ\N\/\“
§ OO B oL : =N 8 ‘ ‘ 127l ‘ : ‘
[} [ [7} %) 0
£ Standing 4 Standing g Standing 4 Standing 9 Standing
& 100 & ] © S
25 s £ 100 & 50 £5.01
] 25 2.54
0.0 : : 0 : : ol : ‘ ‘
Sitting Sitting Sitting Sitting Sitting
2.5 1001 100 50 5.0]
] 25 2.5
0.0 04 04
0 10 20 30 0 10 20 30 0 20 30 0 10 20 30 0 10 20 30
Time [s] Time [s] Time [s] Time [s] Time [s]
(@ (b) © (@) ©)]
Fig. 5.  Wrist-wearable energy harvester/sensor generates distinct pattern of signals during various human activities using (a) three-axis

accelerometer, (b) KEH indoors, (c) KEH outdoors, (d) SEH indoors, and (e) SEH outdoors.

(age: 34.2 £+ 6.8 years and mass: 78.3 9.6 kg). These vol-
unteers include students and employees of CSIRO working in
Brisbane, Australia. In this study, volunteers having different
age, mass, and gender are employed to collect representa-
tive data of general population performing various activities.
In order to collect a representative energy harvesting dataset,
which reflects diverse light intensity conditions, we conduct
a series of experiments at different locations on different
times/days (i.e., morning, noon, evening, and night) with
different weather conditions (i.e., sunny, cloudy, and partially
cloudy). The participants are advised to perform the activities
according to their daily routine and as naturally as possible.
Overall, around 600 min of data is recorded from 40 volunteers
performing five common human activities. After obtaining
the necessary approvals from ethics committee, CSIRO, and
the University of Queensland, the anonymized data will be
publicly available for the community to promote research in
energy harvesting-based HAR.

The sample data traces collected from a wrist-wearable
solar cell, a KEH transducer, and a conventional three-axis
accelerometer sensor during various human activities are pre-
sented in Fig. 5. It shows distinct SEH patterns with unique
variations during various human activities in indoor and out-
door environments. It is interesting to notice that the SEH
power does not show significant variation during sitting and
standing activities due to the lower mobility compared with
other dynamic activities. Furthermore, the amount of harvested
power is significantly different during sitting and standing
activities indoors. It is due to the different orientation and
shadowing of the wearable solar cell relative to the indoor
light source (resulting in different light intensities) compared
with outdoors where light intensity is mostly uniform in
daylight conditions. In addition to SEH, we plot the KEH
signals from various human activities in Fig. 5. It depicts that
the KEH and SEH patterns are distinct not only for various
activities but also for different environments (i.e., indoors and
outdoors). As a result, the output KEH and SEH signals can be
employed to not only distinguish the underlying activities but

also the environments in which the activities are performed.
To compare our collected signals with the state of the art,
we also present three-axis accelerometer traces in Fig. 5,
which clearly show unique patterns during various activities.

D. Human Activity Recognition

In the following, we describe the implementation of
FusedAR in detail.

1) Preprocessing: The collected data from KEH, SEH, and
accelerometer have stop periods between various activities
performed by the participants. As these stop periods do
not contain useful information about the activity [8], they
are removed from the collected data. After removing stop
periods, the acquired data are segmented into equal sized
2-s segments [37], which is a typical time duration required
to cover one stride length during walking [38]. We also
overlap the consecutive data windows before feature extraction
to retain the context information at both edges of windows
and to increase the number of data points [8]. When we
examine the influence of different degrees of window overlap
on HAR accuracy, we find that HAR accuracy improves as
the degree of window overlap increases. However, increasing
the window overlap also increases the latency, complexity,
and energy consumption, which is especially important when
working with a limited energy budget on resource-constrained
embedded devices. Consequently, in accordance with previous
works [8], [14], and as a trade-off between energy usage (and
latency) and HAR accuracy, we use a window overlap of 50%
in this study.

2) Feature Extraction:  First, various time-domain,
frequency-domain, and peak-based features [8], [14] are
extracted from the energy harvesting data (both SEH and
KEH signals), as shown in Table IV. Then, to get the
smallest set of features that provides the best HAR accuracy,
we employ various well-known feature selection algorithms,
such as mutual information [39], principal component
analysis [40], univariate [41], and correlation-based feature
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TABLE IV
SEH SIGNAL FEATURES IN INDOORS AND OUTDOORS

Signal Features

Root-mean-square value, Absolute area, Peak-to-
peak value, Coefficient-of-variation, Frequency do-
main entropy, Max. distance between peaks, Me-
dian, Range, st Quartile, 2nd Quartile, Spectral
peak, Min. value, Max. value, Absolute mean, Mean
distance between peaks, Dominant frequency ratio,
Kurtosis.

SEH-indoors

Mean, Absolute area, Peak-to-peak value, Median,
Range, Coefficient-of-variation, Frequency domain
entropy, Max. distance between peaks, 1st Quartile,
2nd Quartile, 3rd Quartile, Standard deviation, Spec-
tral peak, Min. value, Max. value, Min. peaks, Max.
peak, Mean distance between peaks, Median absolute
deviation, Frequency domain energy, Autocorrela-
tion.

SEH-outdoors

TABLE V
SELECTED FEATURES FROM THE FUSED SIGNAL
IN INDOORS AND OUTDOORS

Signal Features
SEH: Max. distance between peaks, Number of
peaks, Coefficient-of-variation, Range, Absolute
Fused-indoors area.
KEH: Peak-to-peak value, Number of peaks, Abso-
lute area.

SEH: Minimum peak value, Max. distance between
peaks, Coefficient-of-variation, Minimum value.
KEH: Absolute area, Peak-to-peak value, Minimum
peak value, 3rd quartile, RMS value, Peak value,
Number of peaks, Coefficient-of-variation.

Fused-outdoors

selection [42]. After detailed analysis, we discover that the
mutual information-based feature selection scheme offers best
performance for this dataset, with the smallest number of
features as presented in Table IV. It shows that SEH offers
17 and 21 features, and KEH offers 25 and 13 features,
in indoor and outdoor settings, respectively. On the other
hand, as shown in Table V, FusedAR provides activity
information using a significantly reduced feature set, which
contains only 8 to 12 features depending on the environment.
The advantage of having a reduced feature set is in low
energy consumption in processing the collected data on the
embedded device and, thus, enhanced active lifetime of IoT
sensor nodes.

3) Signal Fusion: In FusedAR, we explore the potential
of integrating the high-fidelity context information content
present in both KEH and SEH signals to enhance the overall
activity recognition performance. In this work, we perform
feature-level fusion where we identify the most informative
features from the combined KEH and SEH signals using
mutual information [39] and present the selected features in
Table V. It shows that the fused-indoor signal offers more
features from the SEH signal compared with KEH signal
due to the increased capability of SEH signal to correctly
identify the underlying activities, as depicted in Fig. 6(a).
It is also worth noting that inferring the activity from the
fused-outdoor signal requires more features from the KEH
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Fig. 6. Average accuracy of AccAR, KEHAR, SolAR, and FusedAR

in (a) indoors and (b) outdoors using various classification algorithms
(sampling frequency = 100 Hz and window size = 2 s).

signal (compared with SEH) to accommodate for the shad-
owing and interference from the surroundings, which may
affect the quality of SEH signal in outdoor environments.
Comparing Tables IV and V, we observe that the FusedAR
provides detailed activity information using a smaller fea-
ture set (i.e., 8-12) compared with using only SolAR
(i.e., 17-21 features) and, thus, requires reduced energy (and
low latency) in executing the task of feature extraction on the
sensor node, as elaborated in Section V-B.

4) Activity Classification and Transmission: Before training
a classification algorithm using the collected data, Borderline-
synthetic minority oversampling technique (SMOTE) [43] is
used to augment the data (from minority class) and han-
dle imbalanced data from various human activities. Later,
we implement seven widely used supervised machine learn-
ing classifiers, including random forest (RF), decision tree
(DT), K-nearest neighbor (KNN), support vector machine
(SVM), nearest centroid (NC), Naive Bayes (NB), and gradient
boosting (GB), on the collected energy harvesting datasets.
The intuition behind using these machine learning models
is that they are widely exploited in the literature for low
power and online activity recognition applications [44], [45],
[46]. Furthermore, as our contribution is to present a better
activity recognition signal (using FusedAR) instead of a better
classifier, these models are chosen to have a fair comparison
between conventional HAR mechanisms and the proposed
FusedAR. First, these classification algorithms are trained
offline and then imported to the embedded IoT device (this
work uses nRF52840) for real-time activity recognition. The
result of the output activity is then wirelessly transmitted using
Bluetooth low energy (BLE) protocol. Thus, our work not only
captures the context/activity signals [14] but also implements
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the classification algorithm and end-to-end HAR pipeline
on the sensor node using the acquired energy signals, eliminat-
ing the requirement for an external energy source. We perform
extensive evaluation of FusedAR and SolAR with extended
datasets and present the detailed results and insights in the
following section.

IV. PERFORMANCE EVALUATION

FusedAR relies on the ambient light and the motion/
vibration to generate energy and uses the fused energy har-
vesting signal for activity recognition. Because the ambient
light in indoor and outdoor environments changes significantly,
we initially evaluate the performance of FusedAR and SolAR
using the data separately from indoor and outdoor experiments,
with an extensive comparison with conventional AccAR [46]
and KEHAR [8], [14] mechanisms. We next accumulate the
data and examine the performance of FusedAR and SolAR
in environment-agnostic and environment-preserving scenarios
in Section IV-F. All of the results in this research were
achieved offline using tenfold cross validation (CV) to allow
for comparison with the state of the art (except Section IV-D,
which describes the results using leave-one-user-out CV), and
are reported with 95% confidence level. The folds are chosen
at random from the supplied data to ensure the classifier’s
robust performance. Prior to implementing the classification
algorithms, we augment the collected data from diverse human
activities and normalize the features. If not mentioned other-
wise, all of the results in this article are acquired using 100-Hz
activity signals.

A. Classification Accuracy

Fig. 6 contains the results in terms of HAR accuracy
offered by FusedAR and SolAR compared with conventional
AccAR [46] and recently proposed KEHAR [8], [14] using
various classification algorithms in indoor [see Fig. 6(a)] and
outdoor [see Fig. 6(b)] environments. The RF classifier, out
of all the classification algorithms, has the highest accuracy
for all HAR mechanisms. As a result, the RF classification
technique is used to obtain all of the results in the rest
of this article. Furthermore, due to the extensive context
information encoded in its three-axis accelerometer signal,
AccAR [46] provides the best accuracy (more than 99% for
all five activities) among the considered mechanisms. For the
two individual energy harvesting-based sensing mechanisms,
SolAR offers higher accuracy than KEHAR in both indoor
and outdoor environments, and SolAR indoors offer higher
accuracy than SolAR outdoors. The advantage of SolAR
indoors over SolAR outdoors is due to the uniform light
exposedness, lower shadowing effect, and the availability of
more light sources, which complement each other in indoor
environment. On average, SolAR offers up to 4% higher
accuracy than KEHAR and at least 10.2% lower accuracy than
AccAR for a window size of 2 s. Fig. 6 also presents the
average HAR accuracy of FusedAR compared with individual
energy harvesting mechanisms (KEHAR and SolAR) and
conventional AccAR. It demonstrates that the FusedAR offers
significantly higher HAR accuracy compared with SolAR and
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Fig. 7. Confusion matrices using (a) KEHAR, (b) SolAR, and

(c) FusedAR in indoors and outdoors (sampling frequency = 100 Hz,
window size = 2 s, and RF classifier).

KEHAR in both indoor and outdoor environments and further
reduces the accuracy gap to conventional AccAR. This is
due to the accumulated rich context information present in
the fused signal compared to individual energy harvesting
signals, which leads toward enhanced activity recognition
performance.

To get more insights on the performance of FusedAR and
SolAR compared with KEHAR, we present the confusion
matrices for FusedAR, SolAR, and KEHAR in Fig. 7. The
confusion matrix of conventional AccAR is not presented,
since it offers HAR accuracy of more than 99% in detecting
all five activities, as depicted in Fig. 6.

Fig. 7 depicts that outdoor scenarios for both SolAR and
KEHAR offer lower HAR accuracy than indoors, in particular
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Fig. 8. Average accuracy of AccAR, KEHAR, SolAR, and FusedAR with
increasing window sizes in indoors and outdoors (sampling frequency =
100 Hz and RF classifier).

during the stairs activity, which can be due to more shadowing
and uneven outdoor surface, respectively. We notice that
SolAR offers significantly higher HAR accuracy than KEHAR
for sitting and stairs activities. This is due to the distinct
orientation of SEH transducer relative to the light source that
helps SolAR to accurately distinguish sitting from standing
and stairs from walking. Whereas, KEHAR struggles to distin-
guish these activities, which are very similar in their physical
motion. In contrast, during walking and running activities,
SolAR offers lower accuracy compared with KEHAR. It is
due to potentially similar orientation of the solar cell in these
activities compared with the significantly distinct movement
pattern, which helps KEHAR to take advantage over SolAR
in distinguishing those two mobile activities.

FusedAR employs signal fusion using both SEH and KEH
signals to take advantage of both energy harvesting signals and
enhance the performance closer to the conventional AccAR.
The confusion matrices in Fig. 7(c) depict that the fused
signal offers improved results for all activities compared with
KEHAR and SolAR in both indoor and outdoor environments.
This is because the fused signal extracts context information
from both energy harvesting signals, which encompasses rich
activity information in different dimensions, i.e., changing
ambient light and vibrations due to mobility. Thus, both
activity signals may complement each other in the fused signal
and offer up to 10.2% higher HAR performance compared
with individual energy harvesting mechanisms (KEHAR and
SolAR) and lower the accuracy gap (only 4.6%) compared
with AccAR. In the remaining of Section IV, we further
evaluate the performance of SolAR and FusedAR compared
with conventional AccAR and KEHAR for varying window
sizes, signal sampling frequency, robustness to user variance,
robustness to diverse lighting conditions, and environment-
agnostic scenarios.

B. Varying Window Sizes

Fig. 8 compares the HAR accuracy of FusedAR, SolAR,
KEHAR, and AccAR when varying the window size
from 2 to 12 s. As AccAR offers similar performance in
both indoor and outdoor environments (see Fig. 6), we plot
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Fig. 9. Average accuracy and required sampling power with varying

sampling frequencies of AccAR, KEHAR, SolAR, and FusedAR in
indoors and outdoors (window size = 8 s and RF classifier).

results only for the indoor scenario in the rest of this article.
Fig. 8 shows that AccAR offers a stable accuracy regardless
of the window size due to the detailed activity information
embedded in its three-axis signal even for smaller window
sizes. On the other hand, the accuracy of KEHAR and SolAR
(both indoors and outdoors) improves when increasing the
window size from 2 to 12 s, which means the window size is
an important factor to consider for both KEHAR and SolAR.
Fig. 8 also confirms the improved accuracy of FusedAR over
individual energy harvesting mechanisms (both indoors and
outdoors), which bridges the accuracy gap to AccAR. It is
also evident from the figure that FusedAR (both indoors and
outdoors) offers a relatively stable accuracy regardless of the
window size, which is a similar behavior to AccAR.

It is important to note that increasing the window size results
in increased computational complexity, latency, and memory
requirements. As a result, the window size should be chosen
with the required HAR accuracy, system responsiveness, and
processing complexity in mind due to the miniaturized and
resource restricted wearable as our target device. Based on
the previous explanation, we can see in Fig. 8 that 8 s is the
smallest window size that provides the best HAR accuracy for
all types of activity signals. As a result, the remaining of the
results in this document is provided with an 8-s window.

C. Varying Sampling Frequency of the Signal

Fig. 9 compares the HAR accuracy of FusedAR, SolAR,
KEHAR, and AccAR when varying the sampling frequency
of the activity signals from 10 to 100 Hz. It also presents
the power consumption for sampling the activity signals in
FusedAR, SolAR, and AccAR using our measurement setup
presented in Section V-B. Fig. 9 depicts that AccAR provides
a stable HAR accuracy regardless of the sampling frequency
due to the rich activity information present in its three-axis
activity signal. On the other hand, KEHAR (both indoors
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TABLE VI
AVERAGE ACCURACY FROM THE USER ROBUSTNESS EXPERIMENT
(SAMPLING FREQUENCY = 100 Hz, WINDOW
SiZE = 8 s, AND RF CLASSIFIER)

HAR Leave-one-user-

Environment mechanism 10-fold CV out CV
KEHAR 91.33 68.89

Indoors SolAR 93.57 83.48
FusedAR 95.82 91.30

KEHAR 89.28 69.40

Outdoors SolAR 88.10 62.53
FusedAR 90.31 72.89

Overall AccAR 99.85 90.35

and outdoor) shows an increase in HAR accuracy when
varying the sampling rate similar to SolAR outdoors with
an increment of about 4% when increasing the sampling
rate from 10 to 100 Hz. In contrast, SolAR indoors offer a
stable accuracy with very small variation when increasing the
sampling rate. It is also evident from Fig. 9 that FusedAR
(both indoors and outdoors) offers higher HAR accuracy than
individual energy harvesting-based mechanisms (i.e., SolAR
and KEHAR) over various sampling frequencies and offers a
stable performance when varying the sampling frequency.

The higher sampling rate improves HAR accuracy, because
the activity signal has a higher resolution and can capture more
fine-grained characteristics of the activity pattern. However,
as seen in Fig. 9, energy consumption goes up as sampling
frequency rises, owing to the collection of more samples in
a given time interval. Fig. 9 shows that FusedAR and SolAR
requires up to 27% and 36% lower power than AccAR, respec-
tively, in sampling the activity signal, saving the sensor-related
power consumption [8]. In addition, keeping in mind the type
of application and the available energy budget, the sampling
rate in SolAR and FusedAR can be set as low as 10 Hz to
save energy while maintaining activity detection accuracy of
over 93% and 96%, respectively.

D. Robustness to User Variance

The robustness of the FusedAR, SolAR, and KEHAR mech-
anisms against new/unknown users is examined in this section.
To this purpose, we employ the RF algorithm, perform a leave-
one-user-out CV, and report the averaged findings in Table VI.
It shows that FusedAR indoor is the least sensitive to user
variation and offers only 4.5% lower average HAR accuracy
for unseen users. Furthermore, SolAR indoors and AccAR are
slightly more sensitive to the variation in the user and offer
9%-10% lower average accuracy for the unseen users. On the
contrary, SolAR outdoors, FusedAR outdoors, and KEHAR
indoors/outdoors are significantly affected by the user variance
and offer significantly lower average accuracy (17%-25.6%)
for new users. This is due to the significant variation in the
kinetic harvested energy patterns from different users as well
as the more shadowing and interference from the outdoor
environment, which affects SolAR outdoors. We expect that a

XXX KEHAR ooz SolAR A FusedAR

Average accuracy [%]

Fig. 10. Average accuracy of KEHAR, SolAR, and FusedAR in diverse
lighting conditions (see Table Ill) in indoors and outdoors (sampling
frequency = 100 Hz, window size = 8 s, and RF classifier).

larger training sample from diverse users will further improve
the accuracy of the different HAR mechanisms.

E. Robustness to Diverse Lighting Conditions

As indicated in Table III, we collected energy harvest-
ing data under diverse conditions during day and night in
indoor and outdoor environments. In order to explore the
performance of FusedAR and SolAR in different lighting
conditions, we trained and evaluated these HAR algorithms
using individual as well as combined datasets from day
and night, as listed in Table III. Fig. 10 shows that SolAR
performs 2%-4% better than KEHAR indoors during both
day and night due to high-fidelity SEH signal, which captures
detailed activity information. In outdoor environment, due to
shadowing, SolAR offers similar HAR accuracy as that of
KEHAR during daylight, as depicted in Fig. 10. KEHAR
offers about 6.7% higher HAR accuracy than SolAR during
night time due to insufficient ambient light to embed the
activity signature in the harvested solar power to accurately
recognize the underlying activities. Finally, Fig. 10 depicts
that FusedAR offers higher HAR accuracy than SolAR and
KEHAR in various environments (indoors and outdoors) due
to the integrated embedded information present in the fused
signal as discussed in Section IV-A.

F. Robustness to Environment-Agnostic and
Environment-Preserving Scenarios

All of the previous results are obtained using the data
collected from indoor and outdoor environments separately.
This section explores the performance of FusedAR and SolAR
compared with KEHAR when combined data from indoor
and outdoor environments are employed. For this analysis,
we consider the following two scenarios.

1) Environment Agnostic: In this scenario, the data from
indoor and outdoor experiments are combined with-
out information about the environment (e.g., walking
indoors and walking outdoors are combined as one
walking activity).

2) Environment Preserving: In this scenario, the data from
indoor and outdoor experiments are combined while
preserving the condition of the environment (e.g., walk-
ing indoors, walking outdoors, running indoors, running
outdoors, and so on).

Fig. 11 shows that, in environment-agnostic scenario,
KEHAR, SolAR, and FusedAR offer comparable performance
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TABLE VI
AVERAGE HARVESTED POWER DURING VARIOUS HUMAN ACTIVITIES USING KEHAR, SOLAR, AND FUSEDAR IN INDOORS AND OUTDOORS

Harvested Power [uW]

Human activity Outdoors Indoors
KEHAR  SolAR FusedAR KEHAR SolAR  FusedAR

Running 9.71 2839 2848.71 6.83 31.88 38.71
Walking 3.14 2263 2266.14 2.50 31.53 34.03
Using stairs 3.63 1802 1805.63 2.77 11.38 14.15
Standing 0.43 867 867.43 0.49 24.54 25.03
Sitting 0.47 1360 1360.47 0.31 49.92 50.23
Average power 3.48 1826 1829.48 2.60 29.85 32.45
Power density [uW/cm?] 0.20 130.44 130.64 0.15 2.13 2.28
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Fig. 11. Average accuracy of KEHAR, SolAR, and FusedAR in

environment-agnostic and environment-preserving scenarios (sampling
frequency = 100 Hz, window size = 8 s, and RF classifier).

with a small difference of 1.5%-3%. This can be due to the
higher incongruity in the solar harvesting signal in indoor
and outdoor environments, which may affect the performance
of both SolAR and FusedAR, bringing it closer to that of
KEHAR. Fig. 11 also shows that, in environment-preserving
scenario, SolAR offers 87.8% HAR accuracy in contrast to
its counterpart KEHAR, which faces difficulty in recognizing
contexts and offers a lower accuracy of 79.8%. This reveals an
advantage of SolAR compared with its counterpart KEHAR,
which lacks rich information about the contexts in which
activities are performed. Fig. 11 also shows that, due to the
fusion of both SEH and KEH signals, FusedAR offers higher
accuracy (94.8%) than SolAR and KEHAR in environment-
preserving scenario. Thus, SolAR and FusedAR can recognize
not only human activities but also environment (also called
context, such as indoors and outdoors) in which the activities
are performed, in contrast to KEHAR, which relies only on
vibration/stress of physical human movements.

V. ANALYSIS OF HARVESTED AND CONSUMED POWER

This section analyses the harvested power from SEH and
KEH during various human activities as well as the con-
sumed power in implementing the end-to-end HAR algorithm.
We find that SolAR and FusedAR offer energy-positive HAR
as the harvested power exceeds the required power for running
the end-to-end HAR algorithm by more than one order of
magnitude indoors and two orders of magnitude outdoors.

A. Harvested Power

Using the tool from [36], we sample both voltage and cur-
rent signals from the energy harvesting transducers, and then

compute the average harvested power over a time interval t
as follows:
.l T
Harvested_power = - Z voltage(r) x current(z).
=1

(D

Table VII presents the average harvested power from
KEHAR, SolAR, and FusedAR for the considered human
activities in both indoor and outdoor environments. The power
density, or harvested power per area, is described in the last
row of Table VII. SolAR harvests more than one order of
magnitude higher power indoors and more than two orders
of magnitude higher power outdoors than KEHAR, due to the
higher power density of visible light and superior energy con-
version efficiency of solar cells [20]. The results in Table VII
also illustrate that the harvested power outdoors are higher than
indoors for both SolAR and KEHAR. For solar harvesting,
this is because the natural outdoor sunlight has a higher
power density compared with the artificial lights indoors. For
kinetic harvesting, this can be the result of the following two
effects: 1) walking on a paved outside surface produces more
vibrations than walking on a carpeted floor indoors [47] and
2) individuals move quicker outdoors, resulting in stronger
vibrations and, as a result, higher KEH power. Furthermore,
FusedAR offers higher harvested power than SolAR and
KEHAR due to the accumulated harvested energy from both
transducers.

It is also interesting to note that the harvested power
from SolAR is not tightly dependent on the human physical
movements compared with KEHAR. Since KEHAR relies on
the kinetic energy from the physical movements, it harvests
a very small amount of power (0.31-0.49 ©W) during static
activities, such as standing and sitting. While Shepherd [36]
can sample signals with the resolution of 3 pA and 50 uV,
the actual amount of harvested power can vary slightly, in par-
ticular, during sedentary activities due to significantly lower
harvesting voltage and/or current. On the other hand, SolAR
can harvest a certain non-zero amount of power during these
static activities due to the availability of ambient light. Our
experiments show that SolAR generates very small amount
of energy at night due to the insignificant light intensity. For
example, the average harvested power using SolAR at night
is 0.21 uW for running, 0.18 uW for walking, 0.03 uW for



12422

IEEE SENSORS JOURNAL, VOL. 23, NO. 11, 1 JUNE 2023

BMA400 |

accelerometer=

nRF52840-Dongle

Fig. 12. Experimental setup for measuring the power consumption in
sampling the signal and implementing the end-to-end HAR algorithm
using AccAR, KEHAR, SolAR, and FusedAR.

using stairs, 0.07 uW for standing, and 0.06 W for sitting.
However, it is worth noting that even with this low level
of harvested power during night, SolAR preserves its ability
to distinguish the activities using distinct harvested power
patterns. Finally, as shown in Table VII, FusedAR provides
higher power compared with KEHAR and SolAR due to
the accumulation of harvested energy from both transducers.
This makes FusedAR most favorable HAR mechanism due
to improved performance in both dimensions, i.e., activity
recognition and harvested power.

B. Power Consumption

Fig. 12 depicts the hardware setup to measure the power
consumption in implementing the complete end-to-end achar
algorithm. We use an ultralow power Nordic Semiconductor
nRF52840 wireless MCU and a Fluke 8845A multimeter to
measure the average current draw. We place a 1-Q shunt
resistor and a TI AD8421 precision amplifier in series with
the 3-V supply voltage to measure the dynamic current draw
with a Rigol MSO5072 as depicted in Fig. 12. We also use
the ultralow power digital accelerometer Bosch BMA400 as
a baseline for comparison with state of the art. The firmware
is configured to set a dedicated general purpose input—output
(GPIO) pin high while performing a task.

The power consumption and execution time of a task can
be measured by toggling a GPIO pin and recording the current
consumption while the task is being executed. Table VIII
compares the average per-task power consumption of running
SolAR and FusedAR with KEHAR and AccAR. Based on
the results from Section IV, we chose a sampling frequency
of 10 Hz and a window size of 8 s, where we extracted the
indoor feature set, and use the RF classification algorithm.
The result of the inferred activity is then communicated as
a BLE packet (periodically after every 8 s), consisting of
6-byte header, 3-byte checksum, and 1-byte payload. Our
measurements from Table VIII show that AccAR requires
higher power to implement the end-to-end HAR algorithm
compared with SolAR and FusedAR mainly due to higher
sampling power. Sampling SolAR and FusedAR signals con-
sume 43.45% and 12.41% lower than the power required
for sampling the three-axis accelerometer (i.e., 4.35 uW)
in AccAR. We also notice slight differences in the average

TABLE VIII
AVERAGE POWER CONSUMPTION WHEN IMPLEMENTING THE
END-TO-END HAR ALGORITHM ON THE SENSOR NODE USING
AcCAR, KEHAR, SoLAR, AND FUSEDAR IN AN INDOOR
ENVIRONMENT (WINDOW SIZE = 8 s)

Average required power [UW]

Task AccAR  KEHAR  SolAR  FusedAR
Sampling (@10 Hz) 435 2.46 2.46 3.81
Feature extraction 1.90 2.56 1.64 1.58
Classification 0.05 0.08 0.06 0.07
Data transmission 0.12 0.12 0.12 0.12
Sleep mode 3.15 3.15 3.15 3.15
Total 9.57 8.37 7.43 8.73

required power for feature extraction and classification tasks
per each mechanism. This is due to the different numbers
and types of features to be used as input to the classification
algorithm as for each mechanism. Interestingly, the aver-
age power consumption of the classifier (0.049-0.089 uW)
is one order of magnitude lower than the power required
for feature extraction (1.567-2.557 wW) across the board,
including AccAR, KEHAR, SolAR, and FusedAR. Overall,
the power required to transmit the activity result is 0.125 uW,
including 0.067 uW to power up the high frequency clock and
0.058 W for transmitting the data packet. For the remaining
99.93% of time, the MCU stays in deep sleep mode consuming
only 3.15 uW. Thus, as shown in Table VIII, the total average
power consumption of our implementation of SolAR and
FusedAR is 22.36% and 8.78% lower than the 9.57-uW
required power for AccAR, which employs an ultralow power
digital three-axis accelerometer as the most efficient state-of-
the-art baseline.

It is also worth mentioning that our prototypical imple-
mentation is based on discrete off-the-shelf components, and
we compare it with the lowest power accelerometers, which
have been optimized for decades. For example, the power
required for sampling the highly integrated Bosch BMA400
digital accelerometer is two orders of magnitude lower than
the power required for sampling an analog accelerometer that
is not integrated with the analog-to-digital converter (ADC)
(e.g., Analog Devices ADXL356, ~450 pW). By tightly
integrating the amplifier with an optimized, low-power ADC,
we expect a further reduction of the power consumption
in both SolAR and FusedAR in the same order that has
been achieved by manufacturers of accelerometers. More-
over, the component cost for our circuit that measures solar
current [14], including the amplifier (0.49 USD) and three
resistors (<0.01 USD) per device in quantities of 1000,
is approximately 0.50 USD. This is lower than a fourth of the
price of an ultralow power digital accelerometer (BMA400,
2.16 USD) and lower than a third of the price of the cheapest
accelerometer in the same quantity (Kionix Inc. KXTC9-2050-
FR, 1.54 USD) that we could find.

C. Energy-Positive HAR

In this part, we compare the harvested power to the power
required to run the end-to-end HAR algorithm on the wearable
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Fig. 13. Average harvested and consumed power in implementing end-
to-end HAR algorithm using AccAR, KEHAR, SolAR, and FusedAR in
indoors and outdoors.

device to see if SolAR and FusedAR achieve energy-positive
HAR. Therefore, similar to the signal acquisition power ratio
in [14], we define the HAR power ratio (P;,,) as follows:

. Harvested_power
har ™ " HAR_power

The system is energy negative when the harvested power
from a wearable-sized transducer is less than the power
required to run the HAR algorithm (P, < 1). The system
is energy positive if the harvested power exceeds the power
required to run the HAR algorithm (P, > 1). The harvested
power from AccAR, KEHAR, SolAR, and FusedAR is com-
pared with the power required to run the HAR algorithm,
averaged across all activities in Fig. 13. It shows that the
average SolAR harvested power is greater than the power
needed to operate the HAR algorithm on the sensor node both
indoors and outdoors. SolAR is, thus, energy positive, allowing
the sensor node to operate autonomously and perpetually
without the use of external energy source. Fig. 13 shows that
FusedAR also provides higher harvested power (due to high
power from SolAR) compared with the required power for
running HAR algorithm and, thus, offers energy-positive HAR.
Despite the fact that the KEH transducer we utilized in our
study is larger and heavier than the solar cell (18.03 cm?,
30.46 g versus 14.7 cm?, 4.5 g), the average KEH power is
insufficient to execute the HAR algorithm on the sensor node,
resulting in energy-negative HAR. In contrast to SolAR and
KEHAR, AccAR does not harvest any power and, thus, offers
energy-negative HAR according to (2).

We plot the average HAR accuracy and average HAR power
ratio using AccAR, KEHAR, SolAR, and FusedAR in Fig. 14.
It shows that AccAR and KEHAR indoor/outdoor reside in
the energy-negative region due to the lower harvested power
than the consumed power in implementing the end-to-end
HAR algorithm. On the other hand, SolAR and FusedAR offer
energy-positive HAR in both indoor and outdoor environments
due to the higher harvested power compared with the required
power in running the HAR algorithm.

2

VI. DISCUSSION
In contrast to conventional energy-negative HAR, which
relies on external energy source(s) to power the inertial sensors
(such as accelerometers), FusedAR generates sufficient energy
to power the wearable IoT device and, thus, offers end-
to-end energy-positive HAR. This allows uninterrupted and

@ SolAR-in V KEHAR-out <> FusedAR-out

= O B SolAR-out @ FusedAR-in & ACC
(o] .
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©
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Fig. 14.  Average HAR accuracy versus average HAR power ratio

using AccAR, KEHAR (KEH size: 18.03 cm?, 30.46 g), SolAR (SEH
size: 14.7 cm?, 4.5 g), and FusedAR in indoors and outdoors.

autonomous operation of wearable IoT devices without the
need for human intervention. Note that, in contrast to [14],
which samples the KEH signal locally and streams the raw
data to a server, FusedAR also implements feature extrac-
tion, classification, and activity transmission on the wearable
device powered only by the harvested energy from the solar
panel and KEH transducer. Implementing the complete HAR
pipeline on the IoT sensor node not only reduces the power
consumption [32], [33], but also improves application latency
and privacy [34], [35]. Omitting conventional power-hungry
activity sensors, rectification circuits (required for KEHAR),
and external energy sources (required for AccAR), FusedAR
minimizes the cost, complexity, form factor, and environmental
impact of the wearable 10T system. This finally realizes the
vision of energy-positive HAR, in which end-to-end HAR is
performed in real time on the wearable devices using only the
harvested energy.

In addition to providing higher energy per area, FusedAR
achieves increased HAR accuracy compared with KEHAR
and SolAR. Another advantage of FusedAR over KEHAR
is that it can recognize not only activities but also the
environment/context (i.e., indoors and outdoors), in which
activities are performed, while reliably recognizing activities
independent of the environment (see Fig. 11). FusedAR can
recognize human activities in various lighting conditions and
reliably detects the activities even at night time (see Fig. 10)
when the ambient light is quite low. Interestingly, FusedAR
provides better results on unseen data and offers improved user
robustness than KEHAR and SolAR (see Table VI), which
proves its applicability in real-world environments. While we
considered five strongly dissimilar human activities in this
work, we are confident that the proposed algorithm can reliably
work in applications that involve even a higher number of
activities due to the unique interference and interaction pattern
of each activity with the ambient light and generation of
distinct vibration patterns. In addition, FusedAR can offer
promising results in applications that involve activities in
different contexts compared with previous KEH-based HAR.
Thus, FusedAR can be employed in applications that demand
real-time activity recognition without the need of human
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intervention to regularly recharge/replace the batteries of wear-
able devices.

Although SolAR also provides better results than KEHAR,
it needs a light source for its operation, which means that
it may face difficulties in recognizing activities in low light
conditions, such as at night. In addition, it may not harvest
sufficient power at night (and during low light conditions) to
allow the perpetual operation of the wearable device. However,
these challenges can be addressed by employing FusedAR that
provides energy and context information concurrently using
KEH and SEH transducers. In order to further enhance the
performance, thermal and RF energy harvesters can also be
employed in the future to obtain rich context information and
higher energy yield.

It is interesting to mention that manually tuned KEH trans-
ducers can generate higher power [48] from human move-
ments. However, it is impractical to tune the KEH transducer
to specific scenarios. Furthermore, KEH transducers are funda-
mentally unable to deliver sufficient power during mostly static
and sedentary activities. As humans generally spend a great
proportion of their time performing such activities (e.g., office
work), the average harvested power from KEH transducers
may not be adequate to ensure the continuous operation
of the wearable sensing devices. Thus, both FusedAR and
SolAR offer energy-positive HAR for all activities (indoors
and outdoors), and the remaining harvested energy can be used
to power other body sensors leading toward truly pervasive
wearable [oT.

VII. CONCLUSION AND FUTURE WORK

This article presents FusedAR, a novel HAR mechanism,
which employs miniaturized wearable solar and kinetic energy
harvesters for recognizing human activities as well as energy
sources. In contrast to conventional accelerometer-based HAR
and recently developed KEH-based HAR, FusedAR generates
sufficient energy to offer energy-positive HAR, in which end-
to-end activity recognition algorithm is implemented on the
wearable device using only the harvested energy. Rigorous
experiments reveal that FusedAR, which combines the respec-
tive embedded context information from both solar and kinetic
energy harvesters, recognizes not only activities but also the
environment/context in which activities are performed (i.e.,
indoors/outdoors and day/night). As both energy harvesting
signals complement each other, the FusedAR offers signif-
icantly higher HAR accuracy compared with the individual
energy harvesting signals, particularly in nighttime or outdoor
environments.

However, this work evaluates FusedAR using only five com-
mon human activities. Therefore, in the future, more activities
can be included to explore its performance in real environ-
ments. Furthermore, in the future, deep learning algorithms
can be employed to explore the performance of FusedAR using
raw signals. In addition, this work has limitation in terms of
implementation of end-to-end HAR classification pipeline on
real hardware test beds, which can be investigated in the future.

An interesting future direction is to evaluate FusedAR using
an extended activity list and to explore lightweight deep
learning models to further enhance the activity recognition

accuracy. In addition, studying the practical challenges when
running FusedAR online on custom-designed hardware would
be an important step toward making energy harvesting-based
HAR a reality. Moreover, other energy harvesting sources,
such as thermal and RF, can be employed concurrently in
the future to provide more energy and context information
enhancing the overall performance of the activity recognition
system.
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