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Smartphone Inertial Measurement Unit Data
Features for Analyzing Driver Driving Behavior

Khadija Kanwal, Furqan Rustam , Rajeskhar Chaganti, Anca Delia Jurcut , and Imran Ashraf

Abstract—Driving behavior is an important aspect of main-
taining and sustaining safe transport on the roads. It also
directly affects fuel consumption, traffic flow, public health,
and air pollution along with psychology and personal mental
health. For advanced driver assistance systems (ADASs) and
autonomous vehicles, predicting driver behavior helps to
facilitate interaction between ADAS and the human driver.
Consequently, driver behavior prediction has emerged as an
important research topic and has been investigated largely
during the past few years. Often, the investigations are based
on simulators and controlled environments. Driving behavior
can be inferred using control actions, visual monitoring, and
inertial measurement unit (IMU) data. This study leverages
the IMU data recorded using a smartphone placed inside the vehicle. The dataset contains the accelerometer and
gyroscope data recorded from the real traffic environment. Extensive experiments are performed regarding the use of
a different set of features, the combination of original and derived features, and binary versus multiclass classification
problems; a total of six scenarios are considered. Results reveal that “timestamp” is the most important feature and
using it with accelerometer and gyroscope features can lead to a 100% accuracy for driver behavior prediction. Without
using the “timestamp” feature, the number of wrong predictions for “slow” and “normal” classes is high due to the
feature space overlap. Although derived features can help elevate the performance of the models, the models show
inferior performance to that of using the “timestamp” feature. Deep learning models tend to show poor performance
than machine learning models where random forest and extreme gradient boosting machines show a 100% accuracy for
multiclass classification.

Index Terms— Autonomous vehicles (AVs), driver behavior, feature engineering, inertial measurement unit (IMU),
machine learning (ML).

I. INTRODUCTION

DRIVING behavior plays a vital role to maintain and
sustain safe transport [1]. It directly affects fuel con-

sumption, traffic flow, public health, and air pollution along
with psychology and personal mental health. The “driving
behavior” or “driving style” concepts have been defined by
many researchers differently [2]. Gwyther and Holland [3]
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defined driving behavior as follows: driving style concerns
individual driving habits that are, the way a driver chooses
to drive. The existing research work highlights the advantages
to adopt safe and more environment-friendly driver behaviors
for traffic circumstances, stress relief, emissions, and much
more. Moreover, driving behavior has significant importance
since particular driving behaviors are in considerable relation
to traffic congestion, carbon emission, and so on [4]. Driving
style is varying in the way drivers select to decelerate and
accelerate the distance as drivers kept from the leading vehicle
whatever they drive more than the speed limit [5].

Asymmetric driving behavior means that the drivers are
much more attentive in deceleration than in accelerometer,
which is closely related to an eminent traffic hysteresis phe-
nomenon [6]. Recently, three characteristics of asymmetric
driving behavior are defined as follows.

1) Hysteresis: The drivers are applied to keep a larger head-
way, while accelerometer than deceleration provided a
similar speed [7].

2) Discrete Driving: The accelerating and decelerating in
car-following (CF) are not sequential [8].
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3) Intensity Difference: The positive and negative relative
speeds are different though driving at the same condition
for response intensity of the drivers such as the same
speed, the similar magnitudes for relative speeds, and
the same gap among the following and leading vehicles.

In addition, the driving behaviors in deceleration and accel-
eration vary when analyzing the next-generation simulation
(NGSIM) data. In [9], experimental results of the presented
research have reported that the reaction time in acceleration is
different from that in deceleration. However, various driving
profiles have been acknowledged in existing research regarding
road traffic safety. In addition, aggressive driving has been
comprehensively studied in many research articles that have
focused to identify braking events and harsh acceleration [10].

Road transportation is commonly used to travel from one
location to another location. The emergence of technologies,
such as the Internet of Things (IoT), computer vision, wire-
less communication, and artificial intelligence, enables smart
transportation with advanced capabilities for safe traveling.
The wide adoption of advanced technology-enabled vehicles
for transportation is still in progress. On the other hand, road
accidents are not stopping soon. The World Health Organi-
zation (WHO) reported that more than one million people
are killed and around 50 million people are injured by road
accidents every year [11]. The road accidents trend is predicted
to be increasing over the next few years and expected that road
accident-based deaths become the fifth leading cause of death
by 2030 [12]. The majority of road accidents are caused by
human driving behavior. Although autonomous driving and
advanced safety monitoring capabilities are incorporated into
the vehicles, there is no guarantee that the driver is safe unless
the driving behavior is normal. Driving behavior may have
a direct impact on public health, traffic flow, air pollution,
and environmental condition. Thus, there is a need to analyze
driving behavioral patterns and understand individual driving
habits so that safe driving recommendations can be provided
to the users.

This study leverages the data from the inertial measurement
unit (IMU) of a smartphone that is placed in a car and predicts
driving behavior into several categories. In this regard, this
study makes the following key contributions.

1) Importance of feature selection from the IMU data
is investigated for the driver’s driving behavior. The
influence of using different original features derived
features and the impact of binary versus multiclass clas-
sification is investigated in this study. For driver behavior
prediction, six cases are considered, including binary
classification, accelerometer features alone, gyroscope
features alone, accelerometer and gyroscope features
combined, all features combined, and accelerometer and
gyroscope features plus derived features without using
the “timestamp” feature.

2) Extensive analysis of prediction performance regarding
driver behavior is carried out using the data recorded in
a real traffic environment. The dataset is recorded using
a smartphone placed in the vehicle in a fixed position
and readings from the accelerometer and gyroscope are
recorded.

3) Experiments involve using five well-known machine
learning (ML) models and two deep learning (DL) mod-
els. Such models include random forest (RF), extreme
gradient boosting (XGBoost) machine, support vector
classifier (SVC), extra tree classifier (ETC), logistic
regression (LR), long short-term memory (LSTM), and
convolutional neural network (CNN). Performance is
analyzed with several parameters such as accuracy and
precision in addition to standard deviation and the num-
ber of correct and wrong predictions.

The rest of this article is organized as follows. Section II dis-
cusses the state-of-the-art ML-based approaches to address the
driving behavior prediction problem. Section III presents the
proposed methodology to accurately predict driving behavior,
and also, a description of the datasets is provided. Section IV
includes the results from an extensive set of experiments
for driving behavior, as well as a discussion of the results.
Section V concludes this article.

II. LITERATURE REVIEW

Recent developments in driver assistance and autonomous
vehicles (AVs) led to a great deal of research and development.
Consequently, a large body of literature can be found on
different aspects related to driving. For example, the role of
trajectory data and its critical applications for microscopic
modeling has been discussed in detail in [13].

In the last few years, experimentation has been performed
on openly accessible trajectory datasets and reports have been
published related to several traffic flow phenomena. In addi-
tion, comprehensive empirical analysis has been reported,
including traffic oscillations [14], traffic hysteresis [15], and
heterogeneity [16]. In addition, various models have been
presented for a better approximation of car lane-changing
behavior [17] and the following behavior.

Conventionally, the trajectory data are collected using an
image processing technique that is based on recorded videos
from either fixed drones or cameras. Currently, driving datasets
are getting attention due to the demand for AV technology. The
main purpose is to comprehend the challenge of computer
vision systems in a self-driving context. In addition, the
vehicle-based techniques detect the vehicle operating param-
eters, including changes in steering, speed of the vehicle,
acceleration, lane tracking, and braking. On the other hand,
driver-based techniques are based on devices that directly
monitor the condition of the driver. Also, the driver-based
techniques are the physical movement’s parameters such as
blink ratios and eye closure ratios, and facial expression
tracking with video imaging methods. The most famous tra-
jectory dataset is possibly the NGSIM database [18], which
has a total duration of 150 min from fixed cameras at four
different sites. Also, another famous dataset is the highD
dataset, which contains videos from camera-equipped drones
and has a total duration of 16.5 h at six locations on the
highways of Germany [19]. The driving situations presented
in highD and NGSIM are quite limited. The NGSIM dataset
includes signalized intersection and highway driving scenarios.
However, traffic lights used to control signals and interactions
are slight and rare.



11310 IEEE SENSORS JOURNAL, VOL. 23, NO. 11, 1 JUNE 2023

Currently, many new datasets concerning the vehicles at
high-level automation are made available [20]. For example,
Argo [21], KITTI [22], BDD100K [23], Lyft Level 5 AV [24],
Waymo open [25], and nuScenes [22] contain the data for
AVs and similar driver assistance systems. These are related
to Lyft Level 5 AV, AV, nuScenes, and Waymo open datasets
and combine trajectories for AV and the human-driven from
real-world traffic. Moreover, these datasets are mentioned as
AV-oriented empirical datasets. Therefore, these datasets are
mainly helpful for driving behavior research. In addition, these
AV-oriented empirical databases are sophisticated, which helps
to understand complicated driving behaviors to understand and
use by traffic flow researchers. First, these datasets are com-
bined using an array of sensors; for example, light detection
and ranging (LiDAR), a novel sensor to record traffic flow,
is used. Second, the dataset contains several sensors and is
more sophisticated than the conventional dataset. It collected
not only comprehensive information for the movement of
AVs but also a vast amount of information for all objects in
the vicinity of the vehicle. Finally, the format and structure
of these datasets are not user-friendly. Moreover, BDD100K
contains ten tasks, namely, lane detection, image tagging,
drivable area segmentation, semantic segmentation, road object
detection, instance segmentation, multiobject segmentation
tracking, multiobject detection tracking, imitation learning,
and domain adaptation.

Ferreira et al. [26] performed a survey on driving behavior
improvement using ML and DL models. The study revealed
that the combination of sensors and intelligent methods
improves the performance of driving behavior classification.
The study [27] designed a driving behavior detection method
for identifying rash drivers. The contributions in this article
mainly include the architectural aspects of a system to build
the driving behavior identification, including the monitoring
system. However, the authors did not evaluate the driving
behavior using the ML and DL models.

Osman et al. [28] presented a two-level hierarchy classi-
fication of driver activity while driving. Five input features,
speed, longitudinal acceleration, lateral acceleration, pedal
position, and yaw rate, are considered for testing the driving
behavior classification. The driver’s secondary task while
driving is detected in the first level. Then, the different types
of secondary tasks are categorized in the second level. The
ML-based decision tree achieved the best results with an
accuracy of 99.8% to classify the driver’s secondary tasks.
The study [29] proposed a lightbgm model to detect abnormal
driving behavior. The accelerometer and gyroscope sensor data
are input features to predict driving behavior. The authors
reported that lightbgm achieved 82% accuracy on the test
dataset. The classification accuracy still needs to improve for
better driving behavior detection.

The study [30] proposed a 2-D CNN technique to analyze
the driving behavior. The sensor data, such as acceleration,
gravity, revolutions per minute, speed, and throttle, are used as
a feature to construct an input image. The output is classified
into five types, such as normal, aggressive, distracted, drowsy,
and drunk driving using 2-D CNN. The authors reported

that the proposed method obtained good results in predicting
driving behavior.

The study [31] explored multiclass gait classification
with ML approaches, including k-nearest neighbors (KNN),
extreme learning machines (ELMs), SVM, and multilayer per-
ceptron (MLP), and evaluated the performance for multiclass
gait classification. The presented approach achieved the best
results. The ELM is introduced to analyze the neuromuscular
mechanics that is associated with the brain of patients suffering
from multiple strokes and sclerosis. In addition, an artificial
neural network (ANN) is applied to classify the human gait
and its performance is compared with the ELM. A DL ensem-
ble technique is used for human lower activities recognition
to capture the learning process of bipedal robot locomotion
in [32]. The LSTM and CNN models are used to classify these
activities. In [33], a multibranch CNN-bidirectional LSTM
(BiLSTM) network is applied for automatic feature extraction
from raw sensor data with minimum data preprocessing.

Predominantly, existing literature on driver behavior pre-
diction is based on ML algorithms; however, the use of
non-ML architectures is also observed. For example, Oliver
and Pentland [34] used the hidden Markov model (HMM) and
coupled HMM (CHMM) for driver behavior prediction. Com-
bined with car and traffic data, promising results are obtained
regarding different driver actions. It is believed that ML
models are black boxes, and it is not clear how predictions are
made from such trained models. Consequently, several studies
prefer non-ML models. The study [35] leverages rule-based
models for driver behavior prediction. These models maintain
long-term coherence and are easy to interpret.

The study [36] utilizes an autoregressive input–output HMM
(AIO-HMM) for driver behavior prediction. The focus is
especially placed on driver behavior at intersections, and driver
gaze and traffic light recognition are used for that purpose.
Similarly, Xu et al. [37] determined aggressive driver behavior
by using multivariate-temporal features and driver’s intention
using HMM.

The above-discussed research studies have several short-
comings. First, the datasets containing smartphone sensor data
are not very well studied for analyzing driver driving behavior.
Second, although several studies utilize these datasets for
driver behavior prediction, the impact of feature combination
and ML techniques is not well covered in the literature. Third,
the context of the dependency between the features and the
prediction output is not explored very well. Last but most
important, the driving behavior prediction accuracy can be
improved for existing works. Keeping in view these research
gaps, this study proposes a highly accurate, ML-based driving
behavior solution with extensive performance analysis for
driver behavior.

III. PROPOSED METHODOLOGY
In this section, we discuss the proposed methodology

for driver behavior prediction. We used several ML models
to predict driver behavior as “slow,” “normal,” or “aggres-
sive.” Fig. 1 shows the flow of the proposed methodology.
This study leverages DL models for driver driving behavior
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Fig. 1. Flow of the adopted methodology.

TABLE I
DATASET FEATURE DESCRIPTION

prediction. The selection of DL models is based on the results
reported in the existing literature. For example, LSTM and
CNN models are commonly used on similar kinds of datasets
as in [38] for human behavior prediction and in [39] for human
activity detection. Similarly, Zhang et al. [40] used variants of
CNN and LSTM for driver behavior detection.

First, we acquire the dataset from the Kaggle repository.
The dataset consists of several samples related to three target
classes “slow,” “aggressive,” and “normal.” After acquiring the
dataset, we find that dataset features are not correlated with
target classes, which does not help the ML models to achieve
a significant accuracy. Feature engineering steps are included
in our proposed methodology to improve the performance of
ML models. In feature engineering, we generate new (derived)
features using old features to train learning techniques. Data
are split into training and testing subsets for training several
ML models. We split the dataset with an 80:20 ratio where
80% of the datasets are used for the training of models and
20% of the datasets are used for testing of models. In the end,
testing and validation are performed. We evaluate all models
in terms of accuracy, precision, recall, and F1 score.

A. Dataset Description
The mobile sensors generated driving behavior dataset

(DBD) is obtained from Kaggle [41]. The “Sensorrecords”
mobile application was used to capture the sensor data obser-
vations. This dataset is used by many recent studies [42], [43],
[44]. The three dimensions of accelerometer and gyroscope
sensor observations are mainly considered dataset features.
The combination of accelerometer and gyroscope sensors
helps to effectively track movement behavior. The accelerom-
eter captures the linear acceleration along the axis, whereas

the gyroscope captures the rate of rotation along the axis.
The timestamp is also included as a feature in the dataset.
The DBD was collected using mobile sensing technology
with accelerometer and gyroscope sensors enabled in the
mobile when the user is driving the vehicle. Table I shows
the input and output feature set along with measurement
metrics and the dataset count. The driving behavior output
is designated as “normal,” “slow,” and “aggressive” driving.
Normal driving behavior denotes that the driver maintains a
constant speed and is aware of the surroundings. Slow driving
may include low-risk driving behavior and essentially driving
with fear or overconscious. The aggressive driving category
includes unusual driving behavior with sudden breaks and
accelerating the vehicles, unexpected lane-changing behav-
ior, and unfocused driving due to eating, texting, and so
on. The dataset consists of 3084 samples with a different
number of samples for driving behavior classes as slow with
1273 samples, and normal and aggressive classes with 997 and
814 samples, respectively. The sample of the dataset is shown
in Table II.

The original dataset consists of three accelerometer features,
three gyroscope features, and a timestamp. These features are
not much correlated with the target classes so to improve
the accuracy of models we generate more features that are
more correlated with the target classes. Fig. 2 shows the
sample values for accelerometer and gyroscope data for each
of the three classes. We find that several values from the
“normal” and “slow” target classes are similar, which can
create complexity for learning models to distinguish these
targets based on sample values.

Along with the x-, y-, and z-axes values for both accelerom-
eter and gyroscope, the dataset also contains a timestamp
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TABLE II
SAMPLES FROM THE DATASET

Fig. 2. Sample data from the data for three classes. (a) Accelerometer data. (b) Gyroscope data.

Fig. 3. Histogram distribution of all attributes of the data.

attribute. The histogram distribution of all these attributes is
presented in Fig. 3.

To analyze the feature correlation of these features, RF is
used and the results are shown in Fig. 4. It can be observed
that features have different levels of correlation.

B. Feature Selection
We have seven features in the used dataset for driver

behavior prediction. All features are not important for ML
models. Thus, we make several scenarios/cases with feature
selection.

Fig. 4. Feature correlation using the RF model.

1) Case 1: Experiment with gyroscope features. In this
case, we used only the gyroscope x-, y-, and z-axes
feature for model training.

2) Case 2: Experiment with accelerometer features. This
case considers only the accelerometer x-, y-, and z-axes
feature for model training.

3) Case 3: Experiment without the “timestamp” feature
and binary target classes. In this case, we used both
the gyroscope and accelerometer features and excluded
the “timestamp” feature. We also converted three target
classes into two target classes for performance analysis
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TABLE III
DESCRIPTION OF DATA ATTRIBUTES

and the feasibility of using the features to obtain higher
accuracy. We find that several values for normal and
slow classes are similar, which creates complexity for
the models. Thus, we combined both target classes as
one (SLOW + NORMAL = SLOW). In this way,
we convert the multiclass problem into a binary class
problem (SLOW and AGGRESSIVE).

4) Case 4: Experiment without timestamp feature and three
target classes. In this case, we used both the gyroscope
and accelerometer features and excluded the timestamp
feature. We used three target classes in this case (SLOW,
NORMAL, and AGGRESSIVE).

5) Case 5: Experiment with the timestamp feature plus
three target classes. In this case, we used all features
(three features from the gyroscope, three features from
the accelerometer, and the timestamp feature) for model
training with three target classes (SLOW, NORMAL,
and AGGRESSIVE).

6) Case 6: Experiment with new (derived) features and
without the “timestamp” feature for three classes. In this
case, we used three gyroscope features, three accelerom-
eter features, and four newly generated features, includ-
ing mean, median, ProbRF, and ProbXGBoost. The
mean feature is obtained by taking means of the gyro-
scope and accelerometer features. Similarly, we take the
median of the gyroscope and accelerometer features.
Two additional features of ProbRF and ProbXGBoost
are generated using the tree-based ensemble models,
including RF and XGBoost. We train three models on
the whole dataset and then pass the whole dataset to
make prediction probabilities. These prediction proba-
bilities are used as features.

a) ProbRF: To drive the new features, we use ML
models. The derived features are closer to the tar-
get, which guides the learning models toward more
accurate predictions. We trained RF on original
features and find the prediction probability for the
target classes against each sample. This prediction
probability included in the feature set. We can

define it mathematically as

trainedrf = RFtraining(D) (1)

ProbRF = trainedrf

M∑
i=1

(Di ) (2)

where M is the size of the dataset and D is the
dataset.

b) ProbXGBoost: We used XGBoost also to drive the
features, and similar to RF, we also pass original
features to the model and find the prediction prob-
ability for the target classes against each sample.
We can define ProbXGBoost mathematically as

trainedxgboost = XGBoosttraining(D) (3)

ProbXGBoost = trainedxgboost

M∑
i=1

(Di ). (4)

Table III shows the details regarding the use of different
features for experiments. Each case considers different fea-
tures, including features from the accelerometer, gyroscope,
timestamp, and derived features.

C. ML Models
We used several ML algorithms for driver behavior predic-

tion. We used RF, XGBoost, SVC, ETC, and LR with their best
hyperparameters settings. We find the best hyperparameters by
tuning each model between a specific range.

1) Random Forest: It is applied for both regression and
classification problems. It is an ensemble model that uses the
decision tree concept for classification. The bagging technique
is applied to train a large number of decision trees with
several samples of bootstrap [45]. In addition, an RF is used to
reduce the overfitting problems with a bootstrap technique for
sampling. Sampling for the training dataset using replacement
is applied to attain a bootstrap sample where the training
dataset and sample size are similar [46]. All classifiers that
use the decision trees for the process of prediction apply the
same methods to construct the decision trees. For this, attribute
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TABLE IV
HYPERPARAMETERS USED FOR ML MODELS

selection of root nodes at every level is challenging during tree
construction in RF [47]. In ensemble classification, different
classifiers are trained and all classifier results are integrated
through the voting process. Many contributors have described
multifarious ensemble approaches; boosting and bagging are
very famous ensemble techniques [48]. Several classifiers are
trained on bootstrapped samples that lead to a drop-in for
classification in the bagging method. As shown in Table IV,
we choose m_ estimtr = 300 to obtain the best accuracy
when using the voting method for combining the individual
predictions. The maximum depth, mx_dpth, is set to be 300 to
reduce the probability and complexity of overfitting. The RF
class prediction is represented as

Ĉ B
rf (x) = majority vote{Ĉb(x)}B

1 (5)

where B represents the number of decision trees.
2) Extra Tree Classifier: It uses the process of randomization

as a base concept to construct trees [49]. For every node,
the split conditions are decided randomly at every node for
an extra tree, and the prime performing rule is selected to
associate with that node, which is based on a score calculation.
This is helpful when reducing the complexity significantly of
the induction process and increasing the training speed. To do
so, the correlation among the decision tree is reduced. The
process of node splitting is easy and the computational load
for the algorithm is dropped as the ETC is not included in
locally optimal cut points. The bagging process is not used as
the whole available learning set is provided to every decision
tree [50]. As described in Table IV, the three parameters,
rndm_state, mx_dpth, and m_estimtr, are chosen to be 27, 300,
and 300, respectively.

3) Logistic Regression: It is a pure statistical technique that
is applied for data analysis and contains one or more variables
for outcome prediction. LR is applied to evaluate the class
member’s probability because it is the best classifier when it
comes to a definite target variable. To estimate the probabili-
ties, a logistic function (LF) is used to evaluate the behavior
among dependent variables and independent variables [45].
The “slvr” parameter is set as “newton-cg” due to solving
the multiclass classification problem. In addition, the multi-
class parameter is set as “multinomial” because of multiclass
classification. “D” is set to 1. The “D” value is inversely
proportional to regularization strength and helps to reduce
the overfitting probability eventually [51]. The probability of
predicting the class k, given the input sample X i , is

Pr(Yi = k) =
eβk ·X i

60≤c≤keβc·X i
. (6)

4) Support Vector Classifier: It is a linear one, is used
for regression and classification, and has many applications.
SVC divides the sample data into different classes with a
hyperplane or set of hyperplanes in an m-dimensional space,
where m is used for the number of features [52], [53]. SVC
performs classification to find the “best fit” hyperplane that
is differentiated among classes. To deal with the nonlinear
issues, this research uses a “linear” kernel for the support
vector machine, which is frequently used when the dataset
has many features. The linear kernel training is faster due to
the requirement of D regularization parameter optimization.
In Table IV, D regularization parameter value is set to 3, and
rndm_state value is 500. The hyperplane function is denoted
as

H(x) =

{
+1, if w · x + b ≥ 1
−1, if w · x + b ≤ 1.

(7)

The objective function needs to be minimized such that
yi (w · xi+)b ≥ 1 satisfies all the time.

5) Extreme Gradient Boosting: XGBoost model works in a
way similar to the gradient boosting model. However, an addi-
tional feature is needed for assigning weights to every sample
such as in the Adaboost model [54], [55]. The XGBoost
is a tree-based classifier and it has received much attention
recently. XGBoost fits several distinct decision trees parallel,
which ensures the sequence. For this, XGBoost provides
a speed boost. The XGBoost has standardized methods to
control overfittings such as L1 and L2 and these methods are
not available in Adaboost and GBoost models. Here, α and λ

are the L1 and L2 regularization terms, respectively. In addi-
tion, an extra key feature of gradient boosting is scalability.
It helps to better perform on distributed systems and process
large-scale datasets. Moreover, it uses a log-loss function,
which is very helpful for loss minimization and increasing
accuracy. The log-loss function estimates the probability of
false categorizations. The loss function is defined as

Logloss =
1
M

6M
j=1x j · log(q(x j )) + (1 − x j )

· log(1 − q(x j )). (8)

In Table IV, values of four parameters are set for XGBoost.
The parameter m_estimtr = 300 implies XGBoost that is
used 300 decision trees for the base learner, which takes
part in the process of prediction. The parameter mx_dpth =

300 restricts the growth of the trees to a maximum of 300.
The lerning_ratio = 0.2 is used to control the overfitting [55].
The rndm_state = 27 restricts the random seed specified to
every tree estimator at every boosting repetition. In addition,
it controls random permutations for features at every split.

IV. RESULTS AND DISCUSSION

In this section, a detailed description of the experimental
results obtained using ML techniques and analysis is pre-
sented. The experiments were run on a standalone Linux
machine with a system configuration of 8-GB RAM and eight-
core processors. A notebook web application runs locally
on the machine to perform the experiments. The software
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TABLE V
DRIVING BEHAVIOR PREDICTION RESULTS USING ONLY

GYROSCOPE FEATURES

packages scikit-learn1 were installed and the python program-
ming language was used to write the code.

The performance metrics, accuracy, precision, recall, and
F1 Score, are used to compare the experimental results.
Accuracy is defined as the sum of the true positives (TPs)
and true negatives (TNs) divided by the sum of the TP, TN,
false positive (FP), and false negative (FN). The precision is
measured as the TP divided by the sum of the TP and FP.
The recall is defined as the TP divided by the TP and FN. F1
Score is the harmonic mean of precision and recall

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1 score =
2 ∗ Recall ∗ Precision

Recall + Precision
. (12)

A. Driving Behavior Prediction Using Gyroscope
Features (Case 1)

In this section, the driving behavior performance results
when the acceleration feature is ignored are discussed. Table V
shows the performance metrics for all five models when the
acceleration feature is excluded.

The prediction accuracy of the selected ML models varied
between 35% and 38%. It is evident that driving behavior
prediction using only the gyroscope data performed poorly.
The SVC and LR models performed slightly better than
decision tree-based models. In particular, the “slow” target
class prediction shows promising results with 99% recall for
both LR and SVC models. These results also show that the
“normal” class target is misclassified as a “slow” class target
in both SVC and LR models. The distinction between normal

1https://scikit-learn.org/stable/

TABLE VI
K-FOLD RESULTS AND CONFUSION MATRIX VALUES FOR DRIVING

BEHAVIOR PREDICTION USING GYROSCOPE FEATURES

and slow targets is challenging using mathematical models to
separate the classes. The precision and recall metrics follow a
similar trend as accuracy in decision tree-based models. Over-
all, the performance metrics indicate that acceleration features
are valuable for driving behavior classification and should
be included for multiclass evaluation as the performance of
models using the gyroscope data alone is not satisfactory.

Table VI shows the accuracy of consistency analysis by
measuring the standard deviation. The accuracy-based standard
deviation for all the models is varying between 0.02 and
0.04. These results indicate that we can rely on the obtained
accuracy values and not see significant variations even while
repeating the experiments. Here, CP is the number of correct
predictions and WP is the number of wrong predictions.

Table VI shows the driving behavior target class correct
and wrong prediction sample count for each model. The LR
model correctly classifies more test samples with 275 correct
classifications that are higher compared to other models.
On the other hand, the ETC model least correctly predicts the
test samples with 247 correct predictions. We can construct
that the decision tree-based models are least performed to
correctly classify the driving behavior compared to the LR
and SVC models.

B. Driving Behavior Prediction Using Acceleration
Features (Case 2)

In order to evaluate the performance of the driving behavior
under different feature combinations, we start with a feature set
of 4 by excluding the gyroscope attributes and using only the
accelerometer features. Table VII describes the performance of
the driving behavior with the accelerometer features case. The
five ML models, RF, LR, ETC, SVC, and XGBoost, are con-
sidered for our evaluation. Table VII clearly shows that none
of the ML techniques performed well when the gyroscope
features are excluded from the trained dataset. All five models
achieved similar prediction accuracy on the test datasets. The
SVC and LR obtained 40% accuracy, whereas RF, ETC, and
XGBoost achieved approximately 39% accuracy. A similar
trend appears in precision and recall metrics for all five models
except the recall for the “slow” class case when LR and SVC
are used. The LR and SVC report 84% recall for the “slow”
target case. The “normal” target case is greatly impacted by
recall performance when the “slow” target case is predicted
using LR and SVC. The macro average obtained for both
precision and recall metrics is almost the same for all five
ML models. Overall, these results show that gyro features are
essential for predicting driving behavior and should not be
ignored.



11316 IEEE SENSORS JOURNAL, VOL. 23, NO. 11, 1 JUNE 2023

TABLE VII
DRIVING BEHAVIOR PREDICTION RESULTS USING ONLY

ACCELEROMETER FEATURES

TABLE VIII
K-FOLD RESULTS AND CONFUSION MATRIX VALUES FOR DRIVING

BEHAVIOR USING ACCELEROMETER FEATURES

The accuracy of the ML models is verified using the
standard deviation measurement. Table VIII shows that the
accuracy standard deviation in all five models is minimal and
near zero. Thus, the accuracy results are consistent when the
standard deviation is considered regarding the ML models.

The test dataset samples’ correct and wrong predictions for
all the five ML models are shown in Table VIII. The SVC
model correctly predicts the highest number of test samples
with 291 correct predicts, which is higher than all other
models. On the other hand, the XGBoost and LR models show
the least correctly predicted test-driving behavior samples,
each with 278 correct predictions.

C. Driving Behavior Prediction Without Timestamp
Features and With Two Target Classes (Case 3)

In the above test case, we have seen that it is difficult to
discriminate between the “slow” and “normal” target classes,
which reduces the prediction accuracy of models. Thus,
we evaluate the performance of the models by combining the
“normal” and “slow” target classes as one target class and
excluding the timestamp feature from the input dataset. Thus,
the number of input features is 6, and the output classes are
2 in this scenario.

Table IX presents the performance metrics of the models
when two output classes are considered, and the timestamp is
excluded from the input dataset. The results indicate that all
five models achieve 100% accuracy, prediction, recall, and F1

TABLE IX
DRIVING BEHAVIOR PREDICTION RESULTS WITHOUT TIMESTAMP

FEATURE AND FOR BINARY CLASSIFICATION PROBLEM

TABLE X
K-FOLD RESULTS AND CONFUSION MATRIX VALUES FOR DRIVING

BEHAVIOR PREDICTION WITHOUT TIMESTAMP FEATURE AND

USING BINARY CLASSIFICATION PROBLEM

score. Thus, for binary classification, the decision tree-based
models, SVC and LR, are able to classify the target classes
even if the timestamp is not present in the input datasets.
When the gyroscope and accelerometer features are used to
train the models, the models classify the “aggressive” and
“normal” driving with 100% accuracy. However, the “normal”
and “slow” driving behavior classifications require additional
features to capture the driving behavior.

Table X supports the fact that the accuracy is 100% for
this dataset when the output classes are categorized into two
classes and no standard deviation is observed for this case.

Table X shows the number of samples that are correctly
classified for all five models when the classification categories
are two. All the 446 testing samples are correctly classified as
either “normal” or “aggressive” driving.

D. Driving Behavior Prediction Without Timestamp
Feature and Three Target Classes (Case 4)

In general, the timestamp feature may add little value to
accurately predict the detection or classification using ML
models. We excluded the timestamp from the input features
to test the case and trained the models with six features, three
features each from the accelerometer and gyroscope. Table XI
shows the performance metric values for the selected five
models when the timestamp feature is excluded from the
input feature. The prediction accuracy for all five models
is slightly better than in the previous two cases. However,
the overall performance follows a similar trend as the last
two cases. Except for the “slow” target classification using
LR and SVC, the performance is nominal. The “aggressive”
target classification precision for RF, LR, ETC, and SVC has
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TABLE XI
DRIVING BEHAVIOR PERFORMANCE RESULTS WITHOUT TIMESTAMP

FEATURE AND FOR THREE CLASSES

TABLE XII
K-FOLD RESULTS AND CONFUSION MATRIX VALUES FOR DRIVING

BEHAVIOR PREDICTION WITHOUT TIMESTAMP FEATURE

AND FOR THREE CLASSES

been slightly improved as well compared to the gyroscope and
accelerometer feature alone. Overall, based on the performance
metrics obtained when one of the features is excluded from
the input, a feature set suffers a performance loss. This can
be the fact that the target classification is multiclass and the
input features are not enough to distinguish the multiclasses,
in particular, the “normal” versus “slow” target classes.

Table XII shows that the accuracy is consistent for all
the models, even if ML training and testing experiments are
repeated with a slight standard deviation between 0.03 and
0.04. Thus, we can confirm that the timestamp exclusion also
has a consistent performance loss impact on the classification
results.

Interestingly, the RF performed slightly better than other
models when the timestamp feature is excluded from the
input feature dataset. Table XII shows the correct and wrong
predicted test classification sample count for the models.
RF can correctly classify 314 samples, whereas the SVC
correctly classified the least number of data samples, i.e., 278.

E. Driving Behavior With Timestamp Feature and Three
Target Classes (Case 5)

Although we obtained 100% accuracy for driving behavior
using binary classification, the best accuracy still needs to be
achieved for multiclass classification. Thus, we use all the
dataset input features and keep the target classes as three

TABLE XIII
DRIVING BEHAVIOR PERFORMANCE RESULTS WITH ALL FEATURES

AND FOR THREE CLASSES

TABLE XIV
K-FOLD RESULTS AND CONFUSION MATRIX VALUES FOR DRIVING

BEHAVIOR PREDICTION USING ALL FEATURES

(normal, slow, and aggressive) for performance evaluation.
Table XIII shows the performance metrics of the models
when all the input features are included to train and test
the models. We can see that decision tree-based models
obtain 100% accuracy for multiclass target classification. The
precision and recall are also 100% for decision tree models
such as RF, ETC, and XGBoost. However, the LR and SVC
models did not perform well for multiclass classification and
only obtained 37% accuracy. These models cannot distinguish
between the “normal” and “aggressive” target classes. Overall,
the RF, ETC, and XGBoost techniques suit well for driving
behavior target classification, in which the classes are not
easily separated with mathematical computations.

Table XIV reveals that the decision tree-based model’s
accuracy is consistent when performing the experiments mul-
tiple times. On the other hand, the LR and SVC obtained low
accuracy when repeating the experiments.

As we can see in Table XIV, the RF, ETC, and XGBoost
are able to correctly classify all the driving behavior samples
of 729 into three classes. On the other hand, LR and SVC
perform poorly and each has 458 wrong predictions.

F. Driving Behavior Prediction Without Timestamp
Feature and New (Derived) Features (Case 6)

As the number of features in the dataset is less, additional
features are included to test the ML models’ performances.
The mean of the accelerometer in the x-, y-, and z-axes is
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Fig. 5. Performance of all ML models for all cases.

TABLE XV
DRIVING BEHAVIOR PERFORMANCE RESULTS USING DERIVED

FEATURES AND WITHOUT TIMESTAMP FEATURE

included as another feature. Similarly, another feature is the
mean of gyroscope values in the x-, y-, and z-axes. Overall,
nine features are used to train the models. Table XV presents
the performance evaluation metric values when testing the
dataset with models. The prediction accuracy is improved in
all five models, and the accuracy range is between 65% and
67%. The “aggressive” target class obtained 100% precision
and recall for all five models. It shows that distinguishing the
“slow” and “normal” classes hampers the overall accuracy
of driving behavior multiclass classification. The “normal”
target class characteristics should be captured in training to
accurately classify all the classes in the DBD. As shown in
the previous cases, the SVC and LR models achieved “slow”
target classification with a recall of 86%. Overall, the mean
of the sensor values is essential and can obtain significant
performances in the multiclass category.

Table XVI shows the consistency of model accuracy values
by measuring the standard deviation. The results indicate that
the accuracy for all the models lies between 0.62 and 0.69.

TABLE XVI
K-FOLD RESULTS AND CONFUSION MATRIX VALUES FOR DRIVING

BEHAVIOR PREDICTION USING DERIVED FEATURES AND

WITHOUT TIMESTAMP FEATURE

TABLE XVII
DRIVING BEHAVIOR COMPUTATIONAL TIME IN EACH CASE

The ETC model can correctly predict more driving behavior
samples (485) than other models. XGBoost shows the least
performance model with a correct classification of 474 sam-
ples. The results in Table XVI show that most of those correct
predictions belong to the aggressive target class.

Fig. 5 shows the comparison between all cases. According
to the results, models show superb performance when the
“timestamp” feature is included in the dataset for training
and testing the models. Although, not as successful as the
“timestamp” case, when using the additional features, the
performance of the models is better than using the original
features without “timestamp.” Similarly, when the problem is
transformed into a binary problem (slow versus aggressive),
models show superior performance.

G. Computation Complexity of ML Models
Table XVII shows the time taken to predict the classes in

all five models. XGBoost took a minimum amount of time
of 0.3 s to accurately classify the driving behavior, whereas
RF took 0.7056 s to correctly classify all driving behavior
samples. Overall, based on the extensive study of the feature
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TABLE XVIII
CASE 6 SCENARIO RESULTS ON OTHER DATASETS

selection and output class selection and the corresponding
model performances, we propose that the XGBoost techniques
achieve the best performance with minimum computation time
for driving behavior sample multiclass classification. This
variation is because of the number of target classes and a
number of features for the experiments. Case 6 consists of
original features as well as new features. Thus, the increase
in feature set size also increases the computational time.

H. Results Using Additional Datasets
To prove the significance of the proposed approach, we uti-

lized two additional datasets for case 6 where additional
features are generated. In addition, used datasets include
the “DBD” [56] and the “Carla driver behavior dataset”
(CDBD) [57]. DBD consists of 60 features combining
accelerometer and gyroscopes features and four classes. The
dataset collection includes the use of Ford Fiesta 1.25, Ford
Fiesta 1.4, Hyundai i20, and three different drivers with the
ages of 27, 28, and 37. The collection involves an MPU6050
sensor and Raspberry Pi 3 Model B, while the CDBD
dataset consists of six features, three from the gyroscope and
three from the accelerometer. Seven drivers contribute to this
dataset, and for each instance, the dataset is categorized on
the driver names, mehdi, selin, onder, apo, berk, hurcan, and
gonca. For experiments, the best-performing models, RF and
GBM, are used and the results are shown in Table XVIII.
RF and GBM both show better results for the DBD dataset as
they achieve a 1.00 accuracy score, while for the CDBD, they
could not perform well as only RF can achieve a 0.72 accuracy
score. The model’s poor performance on the CDBD is because
of the poor relationship between the target classes and the
feature set.

Fig. 6 shows the confusion matrices for RF and GBM
for both datasets. For the CDBD dataset, confusion matrix
values 1–7 indicate the apo, berk, gonca, hurcan, mehdi,
wonder, and selin classes, respectively. For the DBD dataset,

Fig. 6. Confusion matrices for RF and GBM on CDBD and DBD
datasets.

RF gives 0 wrong predictions and GBM gives only one wrong
prediction. RF gives 14 285 correct predictions out of 19 872
predictions and GBM gives 12 848 correct predictions out of
19 872 predictions.

I. Performance of DL Models
This study also performs experiments using the DL

approach. We deployed two state-of-the-art models LSTM and
CNN for driver behavior predictions. This study uses two
models LSTM and CNN for driver behavior prediction as
these are commonly used models for similar kinds of datasets.
For example, the study [38] used CNN for human behavior
prediction, and the study [39] used LSTM and CNN for human
activity detection. The authors utilized variants of CNN and
LSTM in [40] for driver behavior detection. The wide use
of these models motivated us to choose these models in the
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Fig. 7. Feature space using different features. (a) Accelerometer feature space. (b) Gyroscope feature space. (c) Accelerometer + timestamp
feature space. (d) Gyroscope + timestamp feature space. (e) All features with binary target classes (SLOW and AGGRESSIVE). (f) All features
with three target classes.

TABLE XIX
ARCHITECTURE OF DL MODELS

current study for driver behavior prediction. We used these
models with their state-of-the-art parameters settings, as shown
in Table XIX. The embedding layer is an input layer that
defines the vocabulary size, output dimension, and length of
the feature set. We used these models with 100 epochs and
categorical_cross-entropy loss function because of multiclass
data. We also used the “Adam” optimizer to compile these
models.

Table XX shows the results of DL models, which indicates
that both models perform well when we used the “timestamp”
feature. LSTM outperforms with a 0.84 accuracy score for
case 5 when we used timestamp. Overall, the performance of
DL models is not significant in terms of accuracy compared
to ML models because of the small feature set. DL models
required a large feature set for a good fit.

TABLE XX
RESULTS FOR DL MODELS FOR ALL SCENARIOS

J. Comparison With Other Approaches
To show the significance of the proposed approach, we per-

formed a comparative analysis with other studies as well.
We deployed approaches from other studies on the dataset used
in the current study to perform a fair comparison. We selected
recent studies, which have done work on similar types of
datasets. The study [58] worked on human activity detection
using an MLP model. The authors utilized gyroscope and
accelerometer features for human activity detection. Similarly,
studies [59] and [60] used smartphone accelerometers and
gyroscope features using SVM and KNN models, respectively.
The study [61] worked on sign classification using an ML
approach. The authors deployed SVM using the accelerom-
eter and gyroscope features dataset. Similarly, smartphone
IMU data are used in [62] with an ensemble model for the
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TABLE XXI
COMPARISON WITH OTHER APPROACHES

same purpose. We deployed all these studies on our used
dataset with all cases to carry out a performance compari-
son. Table XXI shows the comparison with other approaches,
which indicates that the proposed approach outperforms the
existing state-of-the-art approaches.

K. Discussion
This study performs the experiments using a total of six

different cases where the influence of using a different set
of features is extensively investigated for driver behavior
prediction. Similarly, the impact of multiclass and binary
classification is also analyzed. It is found that “timestamp”
is the most important feature regarding the performance of
ML models. Adding this feature to the training dataset dra-
matically increased the classification accuracy for multiclass
classification. Although using additional (derived) features can
show better performance even without using the “timestamp”
feature than using individual features from accelerometer and
gyroscope features alone, this performance is inferior to that
of using the “timestamp” feature. Primarily, the “slow” and
“normal” classes seem to have similar feature space, as shown
in Fig. 7(f), which leads to a higher number of wrong pre-
dictions for these classes when the “timestamp” feature is
not used. Using accelerometer features or gyroscope features
alone is not sufficient to produce high performance, as shown
in Fig. 7(a) and (b). However, when the “timestamp” features
are combined with either accelerometer or gyroscope features,
the performance of the models is enhanced, as shown in
Fig. 7(c) and (d). The deliverable things of this research are a
software-based approach for driver behavior prediction, which
is more accurate and efficient. Linked with a data source, this
approach provides driver behavior prediction.

V. CONCLUSION

Driver behavior prediction is an important part of designing
the interaction between advanced driver assistance systems
(ADASs) and human drivers for future transportation systems.
Consequently, driver behavior prediction has emerged as an
important research topic and has been investigated largely
during the past few years. Often, the investigations are based
on simulators and controlled environments. This study inves-
tigates the use of a different set of features, feature combina-
tions, use of original plus derived features for driver behavior
prediction using the dataset recorded in a real traffic environ-
ment. The data recorded using the smartphone accelerometer
and gyroscope is used for experiments using several ML
and DL models. This study designs six cases to investigate

the impact of feature selection and binary versus multiclass
classification problems. Results indicate that using accelerom-
eter or gyroscope data alone is not sufficient to obtain high
performance. Combining the features though increases the
performance, and yet, the accuracy is still low. Primarily, the
“slow” and “normal” class feature spaces tend to overlap,
which reduces the performance of the models. Adding derived
features would further improve the performance, and however,
the best performance of 100% accuracy is achieved by RF and
XGBoost models when accelerometer and gyroscope features
are combined with the “timestamp” features. DL models tend
to show lower accuracy than ML models. This study uses a
small dataset, which can be seen as a limitation. The small
size of the dataset may not be enough for the training of
models, especially DL models. The second limitation is the
small feature set because DL models require a large feature
set to get a good fit. In future work, we intend to collect
our own dataset and perform experiments. Besides, the use
of non-ML architectures, including probabilistic methods or
statistical directed acyclic graphs, would be a good dimension
to explore.
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