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Abstract—We propose a peak detection method for mea-
suring fiber Bragg gratings (FBGs) using convolutional neu-
ral network (CNN) to improve the performances of wavelength
division multiplexing. In wavelength division multiplexing,
each FBG occupies a certain wavelength range; therefore,
the number of FBGs that can be installed is limited by the
wavelength band of the light source. To address this issue,
methods for overlapping multiple FBGs of the same wave-
length within a single occupied wavelength range have been
studied. This contributes to improving the limit of multipoint
FBG’s manifold. However, this method results in the complex overlapping of multiple FBG reflectance spectra, making
it difficult to accurately measure the peak wavelengths of individual FBGs using conventional peak detection methods.
Therefore, we developed a peak detection process using CNN, which is suitable for identifying unique feature data. Each
FBG of the same wavelength was characterized to have a unique spectral shape by assigning a different full-width at
half-maximum (FWHM) values to each. We introduced noise-additive learning, a well-known method of data augmentation
that increases tolerance to variations in the experimental signal. As a result, the standard deviation for peak wavelength
detection significantly improved to 2.8 pm and the strain measurements with three complex overlapping FBGs were
successfully demonstrated. The CNN model is the first to solve the problem of three overlapping FBGs for arbitrary
wavelength changes. Furthermore, the developed peak detection process was found to be applicable to measurements
that combined multiplexing of FBGs of either identical or different wavelengths.

Index Terms— Convolutional neural networks (CNNs), deep learning, fiber Bragg gratings (FBGs), optical fiber sensors,
wavelength division multiplexing.

I. INTRODUCTION

OPTICAL fiber sensors have excellent performance. They
are explosion-proof and corrosion-resistant, and have

been attracting attention owing to the demand for monitor-
ing social infrastructure [1], [2], [3], [4], [5], [6]. Among
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them, fiber Bragg gratings (FBGs) are capable of multipoint
measurement of strain and temperature using inexpensive and
simple optical devices and are applied in a wide range of
fields, such as aerospace, defense, and energy. FBG is an
optical fiber sensor that reflects light of Bragg wavelength,
and its wavelength varies in proportion to strain and temper-
ature [7], [8], [9], [10], [11], [12].

A typical method of multiplexing FBGs is to use
wavelength-division multiplexing and assigning occupied
wavelength ranges to individual FBGs [7], [13], [14]. How-
ever, there is a limit to the number of occupied wavelength
regions that can be allocated within the wavelength band of
a typical light source, making the multiplexing of increas-
ing multipoint FBGs challenging. Under these circumstances,
a method for installing multiple FBGs of the same wavelength
within one occupied wavelength range has been proposed.
This is expected to improve the multipoint limit several times
over. In this method, multiple FBG reflectance spectra with
a complex overlap were observed. Therefore, it is difficult to
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accurately measure the peak wavelength of individual FBGs
using conventional peak detection methods such as maximum
value and center-of-gravity detection. Several methods have
been considered and discussed to solve this problem.

One proposed solution is to use a frequency-modulated
continuous-wave radar (FMCW) [15], [16]. This method uses
interferometric optics and analysis in the frequency domain
to separate overlapping FBGs. Therefore, the analysis can
be performed using conventional peak detection. However,
there are issues that impose restrictions on their measurement,
such as the need to configure interference optics. This makes
the equipment complex and expensive and the sensor more
sensitive to ambient disturbances [17]. Further research is
underway to address these issues. In contrast, studies have
reported peak detection methods that directly analyze the
reflectance spectra of overlapped FBGs without special optical
adjustments, such as interference optics in the equipment [18],
[19], [20], [21], [22], [23], [24]. These methods only require
the incorporation of peak detection processing in the optical
system and are expected to significantly improve the multi-
point performance at a low cost.

Artificial intelligence (AI) has made remarkable progress in
recent years, achieving performance rivaling that of humans
in areas such as image and voice recognition. The spread of
the technology continues unabated, and even in the field of
optical fiber sensors, research has been reported to achieve
measurement performance superior to conventional methods
by introducing AI technology [25], [26], [27]. Under these
circumstances, it is clear that AI could provide a break-
through in the development of peak detection methods. AI is
useful in identifying unique features. Therefore, for each
overlapped FBG, parameters such as reflectance and full-
width at half-maximum (FWHM) were adjusted to provide
a unique reflectance spectral shape. This enabled highly
accurate peak detection of individual FBGs at the same
wavelength. Genetic algorithms, decision trees, and support
vector regression have been proposed as methods for peak
detection [18], [19], [20], [21]. Among them, deep learn-
ing, with its high learning capability, has been reported to
enable picometer resolution and millisecond computation time.
Additionally, it has the potential for unprecedented high-
performance multipoint sensing [22], [23], [24]. Recent studies
using AI have reported a variety of important findings. How-
ever, current research has been verified under the constraints
of fixed wavelength of one of the two overlapping FBGs or
changing wavelength in a unidirectional and linear manner in
the direction of the longer wavelength. Therefore, measure-
ment with a high degree of freedom to accommodate arbitrary
wavelength changes in which individual FBGs operate inde-
pendently, which is required in actual measurements, has not
been reported. To realize such measurements, it is necessary to
consider the problem of varying the independent wavelengths
of individual FBGs, and a new peak detection method that can
handle more complex overlaps must be proposed. In addition,
the working of more than two overlapping FBGs should be
experimentally demonstrated to observe the improvement in
the multipoint performance.

This study uses a convolutional neural network (CNN),
a type of deep learning algorithm, to demonstrate multi-

Fig. 1. FBG measurement system with CNN. (a) Measurement system.
(b) Spectrum of multiplexed FBGs.

point measurements with three overlapping FBGs. CNN is
a powerful method for extracting unique features using con-
volutional filters, and its high accuracy has been reported in
medical imaging and signal data analysis [28], [29]. Therefore,
in this experiment, peak detection of individual FBGs was
made possible by assigning a unique FWHM to each FBG to
provide unique characteristics. The training data for the CNN
were generated by creating a numerical model of the FBG
using the Gaussian approximation. The validation results of
the FBG multipoint measurements revealed a large difference
in the standard deviations for peak wavelength detection of the
numerical simulations and experiments. To increase the toler-
ance to variations in the experimental signal, we introduced
noise-additive learning, which is a well-known method of data
augmentation in the field of image processing [30], [31]. This
significantly improves the standard deviation for peak wave-
length detection by 2.8 pm. Consequently, strain measurements
with three FBGs multiplexed at the same wavelength were
successfully performed. Furthermore, multiple and simulta-
neous FBG measurements were achieved in the 1550 and
1555 nm wavelength regions, demonstrating the feasibil-
ity of combining same-wavelength and different-wavelength
multiplexing.

II. EXPERIMENTAL SETUP

A. Measurement System With CNN
Fig. 1(a) shows the FBG measurement system with a

CNN. The optics setup has a very simple configuration. The
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Fig. 2. Design flow of peak detection with CNN.

broadband light source (Lightwaves 2020) is a fiber-optic
type doped with erbium ions and has a central wavelength
of approximately 1550 nm. The light from the broadband
light source was split by the coupler through the circulator
and entered the FBG sensor. Six FBGs were used in the
experiment. FBG11, FBG12, and FBG13 have Bragg wave-
lengths λB_11, λB_12, and λB_13 of 1550 nm, reflectance of
approximately 3%, and FWHM 1λB_11, 1λB_12, and 1λB_13
of approximately 0.2, 0.4, and 0.7 nm, respectively. FBG21,
FBG22, and FBG23 have Bragg wavelengths λB_21, λB_22,
and λB_23 of 1555 nm, reflectance of approximately 3%,
and FWHM 1λB_21, 1λB_22, and 1λB_23 of approximately
0.2, 0.4, and 0.7 nm, respectively. In this experiment, the
Bragg wavelength of the FBG was selected for the central
wavelength region of the light source. The Bragg wavelengths
of 1550 and 1555 nm were selected to ensure a sufficient
wavelength margin to void interference between the FBGs.
The FBGs of the same wavelength were characterized by
assigning a unique FWHM. The reflected light from each FBG
entered the optical spectrum analyzer through the circulator.
The optical spectrum analyzer (AQ6317B, Ando) acquires
FBG spectra in the wavelength range of 1549.2–1557.5 nm
with an output resolution of 2 pm. The acquired spectra were
smoothed by applying a Gaussian filter as a pre-processing
step. Each FBG had a unique FWHM, as shown in Fig. 1(a).
Therefore, as shown in Fig. 1(b), three FBGs with different
FWHMs were observed in a complex overlapping spectrum.
The FBGs at different wavelengths were observed separately
in the 1550 and 1555 nm wavelength regions. The observed
results were used in the peak detection process using a CNN.
This experiment demonstrates the measurement of the peak
wavelengths of complex overlapping FBGs resulting from the
multiplexing of FBGs of the same wavelength to improve the
performance of wavelength-division multiplexing.

B. Design Flow of Peak Detection With CNN
CNN training is important to accurately detect overlapping

FBGs. Therefore, the peak detection process using CNN was
developed according to the design flow shown in Fig. 2.
Training data of tens of thousands of samples are required

to improve the accuracy of the CNN. Training data should
include the spectral patterns of overlapping FBGs under vari-
ous conditions. It is not practical to collect a large amount of
experimental training data. Therefore, it is necessary to create
a numerical model of the FBG to generate the training data.
The design process first used an optical spectrum analyzer to
acquire the spectrum of each FBG (see Section II-C). The
design process then performed a Gaussian approximation of
the collected spectra to create a numerical model for each
FBG. By adding the numerical models of each FBG that varied
under various conditions, training data simulating overlapping
could be created in a short time. Here, noise was added to
the created training data to improve the performance of peak
detection with CNN [30], [31]. The added noise used for
noise-additive learning was provided as random numbers in
a normal distribution. The effectiveness of the noise addition
is discussed in Section III-A. These training data were used to
train the CNN and develop a high-performance peak-detection
process. The training was performed using a processor with an
Intel Core i7-9800X CPU, NVIDIA GeForce RTX 3070 TI,
and 32 GB RAM. In addition, MATLAB (MathWorks) was
used as the software environment. The Deep Learning Toolbox
in MATLAB was used for designing, training, and analyzing
deep learning networks. The Parallel Computing Toolbox was
also deployed to reduce the training time for deep learning in
GPU processing.

C. Creation of Numerical Models of FBG and Training
Data

First, the reflectance spectrum of each FBG was mea-
sured using an optical spectrum analyzer to create a numer-
ical model for each FBG [see Fig. 3(I)]. Fig. 3(I-a)–(I-c)
shows the results for FBG11 (1λB_11 – 0.2 nm), FBG12
(1λB_12 – 0.4 nm), and FBG13 (1λB_13 – 0.7 nm), respec-
tively, at a Bragg wavelength of 1550 nm. Here, the spectrum
of each FBG as shown in Fig. 3(I-a)–(I-c) can be observed
by alternatively connecting the three branched couplers as
the experimental setup shown in Fig. 1(a). The reflectance
spectra of each FBG with different FWHMs were observed.
Fig. 3(I-d) shows the results for all FBGs being connected,
overlapped, and observed simultaneously. Using the results in
Fig. 3(I-a)– (I-c), a numerical model was generated using the
Gaussian approximation of the following equation [24]:

Ri j
(
λ , λB_i j

)
= Ipeak_i j exp

[
−4 ln 2

(
λ − λB_i j

1λB_i j

)2
]

(1)

where i = 1, 2 and j = 1, 2, 3.
Here, Ipeak_i j is the intensity of the FBG, λB_i j is the Bragg

wavelength of the FBG, and 1λB_i j is the FWHM of the FBG.
i is the address in the wavelength multiplexing direction of the
FBG. j is the address in the FWHM multiplexing direction of
the FBG.

Fig. 3(II-a)–(II-c) shows the results of the numerical model-
ing of each FBG. Each numerical model agrees well with the
spectrum of each FBG obtained in the experiment. Fig. 3(II-d)
shows the results of adding the numerical models for each
FBG. The spectra are generally consistent with the overlapped



9346 IEEE SENSORS JOURNAL, VOL. 23, NO. 9, 1 MAY 2023

Fig. 3. Numerical modeling using Gaussian approximation. (I) Experi-
mental results. (II) Numerical models. (a) FBG11. (b) FBG12. (c) FBG13.
(d) Multiplexed FBGS.

FBG spectra as shown in Fig. 3(I-d). Therefore, numerical
models of each FBG were added by changing the Bragg wave-
lengths under various conditions to produce the training data.
The training data were targeted for FBG11, FBG12, and FBG13
(1550 nm) with a wavelength range of 1549.2–1552.5 nm,
wavelength resolution of 2 pm, 1651 data points, and 150 579
data sets. Similarly, numerical models were created for FBG21,
FBG22, and FBG23 (1555 nm), with a wavelength range of
1554.2–1557.5 nm, a wavelength resolution of 2 pm, 1651 data
points, and 150 579 data sets. In addition, noise was added to
the training data to improve the performance of peak detection
with the CNN. The amplitude of the noise addition was set to
5% of that of the FBG signals.

D. Design and Training of Peak Detection With CNN
The experiments were conducted in a configuration where

the peak detection modules corresponding to the peak wave-
length of each FBG were arranged in parallel, as shown
in Fig. 4. This figure shows the measurement design of the
three FBGs in the 1550 nm wavelength range. First, the
spectra of the overlapped FBGs in the wavelength range of
1549.2–1552.5 nm were acquired with an optical spectrum

Fig. 4. Concept of FBG measurement with peak detection modules.

analyzer. The acquired spectra were input into the parallelized
modules D11, D12, and D13. Each module was optimized to
detect the peak wavelengths corresponding to FBG11, FBG12
and FBG13. Each module outputs the peak wavelength corre-
sponding to each FBG.

The design of the peak detection module D11 for FBG11
with a CNN is shown in Fig. 5. The CNN was designed
based on convolutional layers [32], [33]. The CNN operates
by optimizing the filters and weights in each layer through
iterative learning using the training data. The module with
the CNN was designed with four convolutional layers. First,
the FBG spectrum was passed through the input layer. The
input data were then fed into the convolution layer. In the
convolution layer, the features were extracted by a convolution
filter with 64 filters and a kernel size of 21 × 1. Therefore,
the feature data were expanded to 64 types compared with the
input data. The extracted feature data were adjusted to equalize
the data size with the input data by the padding process.
To make the feature extraction more active, the output was
generated using ReLU. ReLU, also called a ramp function, is a
simple activation function and is known to have characteristics
that allow for fast computational processing. For this reason,
it is widely used as an activation function in the field of
deep learning. The output feature data were downsampled
using a pooling layer to prevent the number of features from
becoming too large and to aggregate them. The pool size used
to determine the compression ratio was 2 × 1. The iterations of
the convolution and pooling layers aggregated the feature data
that were important for FBG11 peak detection. The aggregated
feature data were input into the flat layer. The flat layer
converts the 2-D feature data into 1-D format. Finally, the
module uses the dense layer to multiply and aggregate the
feature data by weights and convert them to the desired peak
wavelength λB_11 for FBG11. In this study, the dense layer
multiplies the 13 814 × 1 feature matrix by a 1 × 13 814
weight matrix, and a bias is added to the results to obtain the
desired wavelength data (a 1 × 1 matrix). The optimization
algorithm for learning used Adam. Adam is similar to a
method called root mean squared propagation (RMSProp),
but it uses parameter updates with an additional momentum
term. This is a typical optimization algorithm in deep learning.
Modules for peak detection have been developed for FBG12
and FBG13. Furthermore, for FBG21, FBG22, and FBG23
with different wavelength regions, modules corresponding to
the wavelength range of 1554.2–1557.5 nm were developed
simultaneously.

Fig. 6 shows the results of training four-layer CNN. Train-
ing performance was evaluated using the root-mean-square
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Fig. 5. Design of peak detection module D11 with CNN for FBG11.

Fig. 6. Variation of RMSE with number of epochs.

Fig. 7. Variation of RMSE with number of convolution layers.

error (RMSE) defined by the following equation [24]:

RMSE =

√∑n
i=1

∑m
j=1

(
λB_i j − λi j

)2

n × m
(2)

where n = 2 and m = 3.
Here, λi j is the Bragg wavelength predicted by the CNN. n

is the number of FBGs in the wavelength multiplexing direc-
tion. m is the number of FBGs in the FWHM multiplexing
direction.

An epoch is an indicator of the number of training ses-
sions, and one epoch represents the progression of training
using 150579 training data sets. Using the same numerical
model as the training data, 150579 validation data sets were
created. As a result of the training, a peak-detection perfor-
mance of approximately 2 pm was achieved at epoch 30 in
the validation data.

Next, to examine in detail the peak detection performance
using CNN, the RMSE for different numbers of convolution
layers was calculated. The number of epochs was set as 30.
Fig. 7 shows the RMSE results with respect to the number
of convolution layers. The RMSE is significantly improved
beyond the three layers, indicating that sufficient features have

been extracted and aggregated. The RMSE for the four-layer
CNN was accurate to approximately 2 pm. The trained module
attempted the peak detection process 10 000 times, requiring a
peak detection time of approximately 3 ms/attempt. Therefore,
subsequent experiments used the four-layer CNN to detect the
peak of each FBG.

III. EXPERIMENTAL RESULTS

A. FBG Strain Measurements With CNN and Noise
Addition

First, the strain measurements of FBG11, FBG12, and FBG13
(1550 nm) were evaluated using the peak detection process
with CNN. In addition, to verify the effectiveness of noise-
additive learning, the study compared learning without and
with 5% noise added to the signal amplitude of the FBG.
Fig. 8(I) shows the results of the numerical simulations using
the numerical model and Fig. 8(II) shows the results of the
experiments. Fig. 8(I-a) and (II-a) shows the strain condi-
tions applied to each FBG; the numerical simulations and
experimental conditions were identical. The applied range
of strain was 0–1000 µε, and the step size was 50 µε.
The strain was applied via tension using a movable stage
installed in each FBG. The experiment was conducted under
different conditions of strain application, and 43 measurements
were obtained. Fig. 8(I-b) and (II-b) shows the results of the
FBG spectra in the numerical simulations and experiments,
respectively. FBGs with different FWHMs produce complex
overlapping states owing to wavelength changes caused by the
strain. The experiments showed that the spectra were in good
agreement with the numerical simulations. Because of this
complex spectral variation in overlapped FBGs, it is difficult
to detect the peak wavelengths of individual FBGs with high
precision using conventional peak detection processing.

Fig. 8(I-c) and (II-c) shows the results of the peak wave-
length detection with the CNN trained without noise. The
numerical simulation in Fig. 8(I-c) detects the change in the
peak wavelength of each FBG with respect to the strain from
a complex overlapping spectrum. This suggests that the CNN
is useful as a peak detection process for overlapping FBGs.
On the other hand, the experiment in Fig. 8(II-c) shows that,
although the peak wavelengths of each FBG can be tracked,
the detection performance is much worse than that in the
numerical simulation. This is likely due to the fact that the
FBG spectrum of the experiment, including the effects of noise
and other factors, does not perfectly match the ideal Gaussian
distribution curve, as evidenced by the results in Fig. 3, and
the accuracy is reduced by the gap with the numerical model.
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Fig. 8. Strain measurements of multiplexed FBGs with the same wavelength. (I) Simulation results. (II) Experimental results. (a) Strain condition.
(b) Spectra of three FBGs. (c) Peak wavelengths using CNN trained with 0% noise. (d) Peak wavelengths using CNN trained with 5% noise.

To increase the tolerance to such variations in the experimental
signal, noise-additive learning was introduced.

Fig. 8(I-d) and (II-d) shows the results of the CNN trained
with 5% noise-additive learning. In spite of the complex over-
lapping of the three FBGs, a change in the peak wavelength of
each FBG with strain was clearly observed in the experiment.
It is clear that the introduction of noise-additive learning can
significantly improve the performance of the peak wavelength
detection. The maximum change in peak wavelength with
respect to strain is 1.10 nm for FBG11 and 1.15 nm for FBG12
in the numerical simulations. In the experiment, the values

for FBG11 and FBG12 are 1.11 and 1.15 nm, respectively,
which indicates that their values are in good agreement. This
indicates that CNN with noise-additive learning is effective
in improving the performance of wavelength-division multi-
plexing because it is flexible enough to handle complex over-
lapping where the wavelength of the multiple FBGs changes
independently. It was also demonstrated that the three FBGs
could be detected in spite of the complex overlapping between
them.

The relationship between the peak wavelength and
strain was analyzed to further evaluate the peak detection
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Fig. 9. Response of peak wavelength to strain in FBG12. (a) CNN
trained with 0% noise. (b) CNN trained with 5% noise.

performance in detail. Fig. 9(a) and (b) shows the results of
analyzing the peak wavelengths due to the strain on FBG12 for
CNN trained with 0% and 5% noise in Fig. 8(II-c) and (II-d),
respectively. In the case of noise addition, the linearity of the
wavelength with respect to the strain improved. The sensitivity
of the peak wavelength to strain when noise was applied was
approximately 1.15 × 10−3 nm/µε. This is in good agreement
with the commonly known sensitivity of FBGs.

Next, the effect of the noise magnitude applied in the CNN
training on peak detection performance was examined. The
effect of noise on the linearity of the peak detection perfor-
mance was first evaluated. The coefficient of determination
(R2), which represents the linearity of the wavelength response
to the strain in Fig. 9, was calculated. Noise-additive learning
was applied in the range of 0%–20% of the FBG signal
intensity. Fig. 10 shows the R2 results for the CNN trained
with added noise. The value with noise at 0% was 0.9898,
whereas the value with noise at 5% improved to 0.9993 and
then remained almost unchanged.

To further evaluate the wavelength resolution of the CNN,
experiments were validated with a constant strain on each
FBG, and the standard deviation of the peak wavelength
of each FBG was calculated. Fig. 11 shows the results of
the mean of the standard deviations of all FBGs for the
CNN trained with added noise. The value with noise at
0% is 30.2 pm, while the value with noise at 5% is sig-
nificantly improved to 2.8 pm. Later, the value with noise
remained almost unchanged. This indicates that the intro-
duction of noise-additive learning can significantly improve

Fig. 10. Evaluation of coefficient of determination by CNN trained with
noise addition for FBG12.

Fig. 11. Evaluation of standard deviation by CNN trained with noise
addition.

the performance of the FBG peak detection. In subsequent
experiments, peak wavelengths were calculated using CNN
trained with 5% noise.

Furthermore, the presence and absence of a Gaussian filter
in the smoothing preprocessing of the experimental data were
evaluated. It was determined that the standard deviation to
noise was constant with and without the Gaussian filter.
Therefore, it was found that noise-additive learning can reduce
the standard deviation even when a Gaussian filter is not
used as a preprocessing step. However, in this experiment, the
Gaussian filter was introduced to reduce noise and to create a
numerical model of the Gaussian approximation as shown in
Fig. 3.

To verify the performance of noise-additive learning in
detail, RMSE was calculated from the experimental val-
ues. The reference wavelengths for calculating RMSE were
obtained by peak detection from the spectrum of each FBG in
Fig. 3(I-a) –(I-c), respectively. The measurement wavelengths
were calculated using CNN by observing the overlapped
FBGs. The RMSE was 127 and 11 pm with the noise at 0%
and 5%, respectively. When the noise was further increased,
the RMSE values remained unchanged. Noise-additive learn-
ing was found to be effective in improving both the standard
deviation and RMSE of peak wavelength detection.

B. Verification of Combining Same Wavelength
Multiplexing and Different-Wavelength Multiplexing

Next, to evaluate the effectiveness of peak detection
with CNN for combining same-wavelength and different-
wavelength multiplexing, simultaneous measurements of mul-
tiplexed FBGs in the 1550 and 1555 nm wavelength regions
were performed. The spectra in each wavelength region were



9350 IEEE SENSORS JOURNAL, VOL. 23, NO. 9, 1 MAY 2023

Fig. 12. FBG measurements combining same- and different-wavelength multiplexing. (I) FBG11, FBG12, and FBG13 with 1550 nm. (II) FBG21,
FBG22, and FBG23 with 1555 nm. (a) Strain condition. (b) Peak wavelengths using CNN.

analyzed using each peak detection module with a CNN
corresponding to each FBG, as shown in Fig. 4. Fig. 12(I)
shows the results for FBG11, FBG12, and FBG13 (1550 nm)
and Fig. 12(II) for FBG21, FBG22, and FBG23 (1555 nm).
Fig. 12(I-a) and (II-a) shows the strain conditions of the FBGs
in each wavelength range. FBG21 was strain free. Fig. 12(I-b)
and (II-b) shows the peak wavelength results, where the
wavelength variation with strain was clearly observed for
each FBG in each wavelength range. The peak wavelength
changes with the strain levels of up to 500 µε for FBG11
and FBG23 and 1000 µε for FBG12 and FBG22. The changes
in peak wavelength were 0.56 and 0.58 nm for FBG11 and
FBG23, respectively, and 1.14 and 1.17 nm for FBG12 and
FBG22, respectively. The strain condition in Fig. 12 has a long
section where the strain levels of FBG11, FBG12, FBG22, and
FBG23 were identical and completely overlapped, but the peak
wavelengths of each FBG were detected without interference.
The wavelength sensitivity to strain was approximately 1.11 ×

10−3 nm/µε (R2
= 0.9997) for FBG11, 1.15 × 10−3 nm/µε

(R2
= 0.9993) for FBG12, 1.17 × 10−3 nm/µε (R2

= 0.9997)
for FBG22, and 1.16 × 10−3 nm/µε (R2

= 0.9993) for FBG23.
In this experiment, it was found that the developed peak
detection method is effective for multipoint and simultaneous
measurement of FBGs for same-wavelength multiplexing and
different-wavelength multiplexing.

FBG measurements with a small strain were performed
to evaluate the wavelength resolution for peak detection.
Fig. 13(a) shows the strain conditions. Each FBG was sub-
jected to a small strain in the range of 0–100 µε in 5 µε

steps. Fig. 13(b) shows the peak wavelength results for each
FBG, where the peak wavelength was detected in response to
a small strain. FBG22 responded with a wavelength shift of
0.13 nm for a strain of 100 µε, and FBG23 responded with

Fig. 13. Consideration for small strain measurement. (a) Strain condi-
tion. (b) Peak wavelengths.

a wavelength shift of 0.06 nm for a strain of 50 µε. The
standard deviation of the wavelength from the peak detection
of the experimental results as shown in Fig. 11 is 2.8 pm,
which corresponds to a strain resolution of approximately
2.5 µε. The results of the above-mentioned experiments show
that the peak detection process using the CNN can analyze
three overlapped FBGs over a wide strain range, and it was
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experimentally demonstrated that it can improve the perfor-
mance of wavelength-division multiplexing.

IV. DISCUSSION

Most AI model studies on overlap limit the wavelengths of a
large number of overlapping FBGs to fixed values. Therefore,
many studies have focused on the problem of simple overlaps
where only one FBG changes with wavelength. However, it is
difficult for the models developed in this way to accommodate
arbitrary wavelength changes of individual FBGs. In actual
industrial applications, it is essential that each installed sensor
operates independently. However, the AI model research has
yet to demonstrate a model that can accurately analyze arbi-
trary wavelength changes of even two overlapped FBGs, and
solving this problem is an important challenge. This article is
the first to address the problem of arbitrary wavelengths with
three overlapping FBGs using an AI model. In this report, the
wavelengths of FBGs are arbitrarily varied, so it is necessary
to construct a data set that includes more complex overlap con-
ditions than that in previous studies. Therefore, the model for
arbitrary wavelengths was slightly less accurate than the model
focusing on a single FBG. However, we found that introducing
noise-additive learning improved the standard deviation and
RMSE by almost an order of magnitude. The developed model
is the first to solve the problem of overlapping three FBGs
for arbitrary wavelength changes. Furthermore, it is clear that
the AI model is effective for measuring FBGs in different
wavelength regions.

In actual FBGs, small variations in the FWHM may occur
due to manufacturing. Therefore, we attempted to evaluate
the AI model for small variations in the FWHM. FBG12
with an FWHM of approximately 0.4 nm was used for the
evaluation. The evaluation was done by increasing or decreas-
ing the FWHM of the numerical model by up to 5% from
the original value. The experiment used 5% noise-additive
learning, as shown in Fig. 9, to evaluate the linearity of FBG12
for different FWHMs of the numerical model. As a result, the
slope and coefficient of determination were almost the same
for variations within 5%. This indicates that the developed AI
model may be able to tolerate small variations in the FWHM.

To advance the use of AI models in practical industrial
applications, it is important to increase the number of FBG
sensors that can operate with arbitrary wavelengths. This
requires a large number of data sets to accommodate the more
complex overlaps resulting from an increase in the number
of sensors. The current number of data sets is based on the
upper limit that the model can handle without encountering
memory overflow in the Windows OS environment. Therefore,
the number of data sets can be improved through memory
augmentation to enhance the AI model.

V. CONCLUSION

In this study, we proposed an FBG peak detection method
using a CNN to improve the wavelength-division multiplexing
performance. The CNN was designed using four convolutional
layers. Training was performed using a numerical model of
the FBG with the Gaussian approximation. The developed
CNN showed high accuracy for numerical simulations but

significantly lower accuracy in experiments. To address this
problem, we introduced noise-additive learning to increase
tolerance to variations in the experimental signal. This signif-
icantly improved the standard deviation of peak wavelength
detection from 30.2 to 2.8 pm in the experiment. Conse-
quently, an experimental demonstration of the peak wave-
length measurement of three complex overlapping FBGs was
successfully achieved. Furthermore, it was demonstrated that
the method could be applied to same-wavelength multiplexing
and different-wavelength multiplexing, and that it could be
applied to a wide range of strains. The method using a CNN
does not require special optical adjustments and can improve
the wavelength division multiplexing performance through
computational processing at a low cost. The experimental
demonstration using three overlapped FBGs contributes to
the ability to triple the performance of wavelength-division
multiplexing.

In this study, it was shown that the peak wavelengths of
three FBGs can be measured with a simple network design
and that noise-additive learning can improve peak detection
performance. AI models are known to be powerful tools that
use data representative of the problem domain to extract the
desired features. However, due to the vast number of tunable
parameters and the high freedom in layer design, it can take
a substantial amount of time to optimize the AI model to
a practical stage, particularly for a complex AI model like
the present one that handles arbitrary wavelengths of FBGs.
In this article, as the first AI model designed to handle arbitrary
wavelengths of FBGs, we chose CNN, which are widely
used in various fields and are a standard technique in deep
learning. Our future work aims to find a more optimal AI
model for arbitrary wavelengths. The advantages of using
CNN for peak detection are its high learning performance,
picometer resolution, millisecond-order computation time, and
ability to handle complex overlaps due to arbitrary changes in
wavelength. In the future, we plan to use deep learning to
verify the design of networks that can multiplex more FBGs
of the same wavelength.
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