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Toward Grapevine Digital Ampelometry Through
Vision Deep Learning Models
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Abstract—Several thousand grapevine varieties exist, with
even more naming identifiers. Adequate specialized labor
is not available for proper classification or identification of
grapevines, making the value of commercial vines uncertain.
Traditional methods, such as genetic analysis or ampelome-
try, are time-consuming, expensive, and often require expert
skills that are even rarer. New vision-based systems benefit
from advanced and innovative technology and can be used
by nonexperts in ampelometry. To this end, deep learning
(DL) and machine learning (ML) approaches have been suc-
cessfully applied for classification purposes. This work extends the state of the art by applying digital ampelometry
techniques to larger grapevine varieties. We benchmarked MobileNet v2, ResNet-34, and VGG-11-BN DL classifiers to
assess their ability for digital ampelography. In our experiment, all the models could identify the vines’ varieties through
the leaf with a weighted F1 score higher than 92%.
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I. INTRODUCTION

THE choice of adequate grape varieties is critical for
successful wine yield and quality in any viticultural

system. Therefore, there is a strong demand for accu-
rate and operational identification of grape varieties to
improve the efficiency of vineyard decisions, wine quality/
authenticity, and enforcing appellation laws, such as certi-
fication of the protected designation of origin (PDO) [1].
Also, the mitigation of climate change scenarios points to
the need to reconvert large areas of vineyards for the instal-
lation of better-adapted varieties, which must be correctly
identified [2].

The widespread of grapevine [3] and the insufficiencies of
traditional identification of varieties based on visual phenotyp-
ing often lead to multiple local synonyms [4], [5].

Experts estimate the existence between 5000 and
8000 grapevine’s varieties around the world, being used
between 14 000 and 24 000 different names for identifying
them [6]. The Organization Internationale de la Vigne et
du Vin (OIV) identifies around 4000 varieties [7], which
contrasts with the 12 000 varieties names presented by the
Vitis International Variety Catalog (VIVC) [8]. The successful
identification of the different varieties of fruit can be made
using a genetics analysis [9], [10]. However, these methods
are expensive, time-consuming, and challenging for the
viticulturist to work in the field.
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Ampelography is the science of identifying and classifying
grape varieties through the unique characteristics linked to
morphology detected in the different phases of its phenological
development [11]. Inside ampelography, ampelometry (“vine”
and “technique of measuring”) examines the landmark features
of the grapevine’s palate leaves (e.g., lobes, sinuses, and
vines angles) to identify varieties [11], [12]. It is based on
linear and angular measurements, in general, and is used to
characterize with precision the type of medium leaf, the shape
of berry, and the shape of seed using digital programs, such
as SIAMS Mesoplant,1 imageJ [13], or others. This visual
phenotyping-based technique is time-consuming, costly, and
demands high-level experts often confined to a wine region.
In general, depending on the practice of the Ampelogra-
pher, he builds in the memory occurrence characteristic that
characterizes the variety, such as, for example, the Cabernet
Sauvignon: shown obligatory five lobes in maximum seven,
the shape of the leaf is round, and the shape of the base
of upper lateral sinuses sinus is U-shaped. So, the accuracy
practiced by the human ampelographer varies according to
his experience and subjectiveness. Also, many of the studied
characteristics are not always uniform due to edaphoclimatic
differences across regions or are not simultaneously available
at a single phenological stage (i.e., bloom, fruit set, and cluster
closure). The traditional ampelometry based on grapevine
phenotyping beyond low transferability is not appropriate
for the high throughput required to identify large quantities
and diversity of grapes varieties. Yet, high-performance and
automated identification methods for wide grape varieties are
still unavailable. Simpler and low-cost setups are required
to allow easy integration into a portable system suitable for
field use (e.g., smartphone), with real-time processing capa-
bility to assist producers/technicians without deep knowledge
in ampelometry. Image processing techniques and machine
vision [e.g., machine learning (ML) and deep learning (DL)]
have already been widely applied for plant species char-
acterization [14] and also for the within-species (varieties)
classification [15].

The automatic classification of 16 grapevine varieties was
presented in [16] using two artificial neural network (ANN)
based on leaves: one based on leaves’ morpho-colourimetric
features and the other based on leaf spectroscopy parameters.
The first model rendered an accuracy of 94 %, while the other
showed an accuracy of 92 %. Similar to this author, others
have presented systems based on spectroscopy parameters:
Gutiérrez et al. [17] presented an on-the-go hyperspectral
imaging and ML algorithms system for the classification of
30 varieties. The authors studied ML solutions based on sup-
port vector machine (SVM) and ANN multilayer perceptrons,
reaching individual classification accuracies for each variety
between 87% and 99%. Fernandes et al. [18] built SVM and
convolutional neural network (CNN) to identify one specific
variety (Touriga Nacional or Touriga Franca) from 63 others,
based on leaves spectra. 81.90 % of the Touriga Nacional
spectra was correctly classified by the SVM and 93.82 % for

1See SIAMS, 2021. SIAMS Mesoplant Analyzer. URL: https://siams.com/
siamsmesoplant/. Last accessed on 11 January, 2023.

the Touriga Franca spectra by the CNN. Even though the
mentioned systems performed well, they imply the acquisition
of expensive equipment, which is not within reach of the
common user searching for a simple and affordable system.

Nasiri et al. [19] addressed the topic of grapevine varieties
classification using a DL model trained with RGB images
of the leaves. The developed VGG16-based model, a CNN,
identified six Iranian varieties with an average classification
accuracy of over 99 %. Other CNNs were applied for the same
purpose, and Adão et al. [20] presented three CNNs (VGG-16,
ResNet, and Xception) for the detection of six varieties,
with Xception being the one with the best performance.
Also, AlexNet [21], [22], GoogLeNet [22], DenseNet [22],
and MobileNet v2 [23] were applied for grapevine variety
classification taking into account leaf features extraction on
RGB images.

This work contributes to the state of the art about digital
ampelometry by introducing a grapevines’ classification sys-
tem by the following:

1) the creation of a dataset of a larger number of
grapevines’ varieties (26 classes) than the previous
works on the topic;

2) the validation of the grapevines’ varieties identification
using small size and mobile compatible ANN, i.e.,
MobileNet v2;

3) benchmarks small size CNN with bigger CNNs
ResNet-34 and VGG-11-BN.

The following sections of this article present the devel-
opment strategies and test results. Section II explains the
required materials for the current experiment and the adopted
procedures and assumptions. Section III presents the results
of the different essays along the various experiments and
discusses and compares them with the state of the art. Finally,
Section IV concludes the overall experiment and retains the
main conclusions and future work.

II. MATERIALS AND METHODS

A. Data Acquisition
The use of supervised DL models for classification requires

the creation of a dataset with a large number of images and
with relevant characteristics. The collected dataset comprises
scanned and photographed leaves of the selected grapevine
varieties. The leaves were harvested from Dois Portos Station
Hub—National Wine Station from Instituto Nacional de Inves-
tigação Agrária e Veterinária, I.P. (INIAV)2 at Torres Vedras,
Portugal. This station hub is a scientific field for wine study
with hundreds of grapevine varieties, the largest Portuguese
ampelographic collection established in 1988.

The varieties included in the dataset were selected to contain
the most representative grapevine varieties in Portugal and
two of the world’s top six varieties (Cabernet Sauvignon and
Syrah). Fig. 1 contains sample images of all vine varieties
in the dataset and the number of leaf samples for each
variety. As observed, some varieties are slightly unbalanced,

2See INIAV, I.P., 2022, INIAV, URL: http://www.iniav.pt. Last accessed
on 18 August, 2022.
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Fig. 1. Samples of leaves images of the vines varieties in the dataset.

Fig. 2. Description of a vine with the indication of the main canes and
the harvested leaves at the mid-shoot.

but increasing the number of samples for each class was more
important.

As stated in [19], [24], [25], and [26], the sampled leaves
were harvested from the best representative grapevines in the
vineyard from the main shoot at the nodes 7th, 9th, and
11th in the mid-shoot (Fig. 2). According to ampelographic
experts, the leaves harvested from these nodes are the most
representative of the variety’s phenotype features [12]. The
leaves were harvested on the morning of 23 June 2021, and the
image acquisition was performed on the same day. The images

Fig. 3. Images acquisition for leaves’ dataset creation. (a) Scanner
used to acquire leaves images. (b) Support for leafs image acquisition
in a controlled environment using a digital camera.

Fig. 4. Sample of (a) image acquisition and (b) preprocessing of an
Aragonês leaf for the dataset.

were scanned and randomly photographed. The primary source
of leaves data for the dataset was the scanner. Using the
scanner, we could get uniform images of the leaves with a
white background and its flattening. This kind of data made
the model easier to train and supports highlighting the main
morphologic features for identifying grapevine varieties.

All the harvested leaves were scanned in a Kyocera
TASKalfa 2552ci [Fig. 3(a)], using a white background
[Fig. 4(a)], helping the segmentation to generate a new image
without background [Fig. 4(b)]. The result of the leaf scanning
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is a high-resolution colored image with 7008 × 7008 px and
white background. The background also has the correct variety
of the leaf written [Fig. 4(a)].

Some scanned leaves were also randomly sampled for pho-
tography shooting [Fig. 3(b)], originating a secondary source
of image data for training. The setup for photographing the
leaves is composed of a camera support frame with individual
and constant illumination and a Nikon D5200 above the
scenario [Fig. 3(b)]. This setup maintains a constant distance
and position between the images.

B. Dataset Generation and Preprocessing
The input for our DL model was a low-resolution gray-

scaled image, 416 × 416 px. We consider that the leaves’
color is not significant and can even derange the classification
process. So, we intend a square leaf image in gray scale with
a clean white background for the network input.

The scans can have more than one leaf and a tag of the
grapevine variety. Therefore, the image was segmented to
obtain an image for each processed leaf. The Otsu threshold
method was used to fully remove the image background,
remove elements, such as shadows or variety identification,
and separate the different leaves in the scan. We only selected
the closed contours from the Otsu threshold with an area
bigger than 6 000 000 px2. Given the high-image resolution of
the original images, the selected contours were rescaled and
tight-cropped to configure a low-resolution square image with
480 × 480 px without distortion [Fig. 4(b)]. All the images
were also rotated to set all the leaves with the same orientation,
and the background was replaced by white pixels.

After applying this preprocessing strategy, the dataset ended
up with 976 individual leaves belonging to 26 classes. Fig. 1
illustrates the different grapevine varieties in the dataset and
the number of leaves for each grapevine variety.

We divided the dataset into train, validation, and test sets
using the stratified split method. This method conserves the
proportion of each class in all sets, improving dataset balance.
A random seed was defined to guarantee consistency in
the dataset division, resulting in a more reliable comparison
between results. The train set contains 70 % of the images, and
the validation and test sets contain 15 % each. This results in
682 samples, 147 samples, and 147 samples for each set. The
train set was used to transfer learning the DL model and the
validation set to track the evolution of the training process,
assessing any overfitting case. The test set is an independent
dataset to assess the final performance of the network in the
evaluation metrics (Section II-C2).

To improve the ability of the models to generalize and avoid
overfitting, we augmented all the images. Data augmentation
implies applying small transformations to the original images,
such as rotation, scaling, color transformations, or noise addi-
tions. To support the data augmentation process, we used
the Albumentations library [27], allowing us to change the
image information and create unique data easily. We designed
a unique augmentation pipeline (see supplementary material)
that creates randomly different images. We aimed to create
new images without deforming the images too much, keeping
the leaves’ shape and veins valid, so we avoided affine and

TABLE I
NUMBER OF TRAINABLE PARAMETERS

blurring transformations and used the last ones with discretion.
For each image in the dataset, we generated 40 new images.
In addition, we aggregated the generated images with the
original image in the same set to reduce the correlation
between data between the different sets. For the test set, a less
aggressive augmentation pipeline was used. This pipeline aims
to get more reliable data similar to the original data. Here,
we avoid some transformations, such as color transforma-
tions. Therefore, after augmentation, our dataset increased to
40 428 images (28 250 images in the train set, 6069 images in
the validation set, and 6109 images in the test set).

C. Data Training and Evaluation
1) Classifiers: We assess the availability of three state-of-

the-art CNN feature extractors (MobileNet v2, ResNet-34,
and VGG-11-BN) for identifying the studied grape varieties.
For all the studied DL models, we used pretrained models
in the ImageNet dataset and applied transfer learning in the
Pytorch framework. At the end of each feature extractor,
we attached a classification head composed of two dense layers
of 216 and 26 (number of classes) units. We should be training
the different models from scratch, because our task is different
from the task of the ImageNet dataset. However, according
to [28] and [29], the capability of neural networks to extract
features from images is transferable between tasks, and it is
better to transfer these networks’ weights than to train from
scratch. Anyway, some essays in training from scratch were
made to corroborate these conclusions.

Visual Geometry Group (VGG) has been widely used for
classification problems after winning the first place in the
ImageNet contest in 2014. The first study about VGG studied
different depth architectures between 11 and 19 layers [30].
The VGG-11 has 11 depth layers composed of eight convolu-
tion layers and three fully connected layers. This architecture
is less depth in the family but has more trainable parameters
than the other DL models in this study (Table I), consuming
much of the available memory. Simonyan and Zisserman [30]
concluded that the use of normalization layers is not relevant
for the accuracy of the trained model to ILSVRC-2012 but
could help to lead to increased memory and computational
time. In spite of not being state of the art for classification
problems, VGGs is still a reference on these problems and
should be considered in this work. The use of a less depth
architecture supports to lead with overfitting issues due to a
small size dataset.

Attempting to improve VGG performance and reduce the
training complexity, He et al. [31] studied residual networks
(ResNets). This architecture is inspired by plain architectures
with shortcuts for residual learning. After VGG, ResNet won
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TABLE II
HYPERPARAMETERS FOR TRANSFER LEARNING

the ImageNet contest in 2015. This type of architecture
reduced the number of trainable parameters (Table I) and the
training complexity. Besides, it also improved the model’s
accuracy and allowed more depth architectures (between
18 and 152 layers). The architectures can vary in the mul-
tipliers block usage (ResNet-18 to ResNet-34) or the internal
structure block (ResNet-34 to ResNet-50). He et al. [31]
concluded that deeper architectures might lead to accuracy
degradation and that is not related to overfitting. So, we chose
a less deep architecture, ResNet-34.

MobileNet v2 [32] is the most recent architecture considered
for this study. The main aim of this architecture is to provide a
capable architecture that can execute on mobile devices. In this
architecture, Sandler et al. [32] replaced the full convolutional
operators with a factorized version that splits the convolution
in two layers: depthwise convolution and pointwise convo-
lution. The first convolution is responsible for lightweight
filtering, while the pointwise convolution creates new features.
This approach reduced severely the training complexity as well
as the number of training parameters (Table I). Despite this
reduction in the number of parameters, the literature has been
proofing that MobileNet V2 is equally capable. A comparative
analysis on different DL architectures for identifying COVID-
19 in patient lung images proves that MobileNet V2 and
ResNet are equally capable, and VGG has a severe accuracy
dropping [33]. This comparative work is relevant to us because
of its wide analysis in a difficult task similar to ours, where
the network has to identify details to distinguish between the
different classes.

Given the features of each ANN, Table II states the
hyperparameters for transfer learning the models from
the ImageNet dataset. The batch size was set to optimize the
number of samples being simultaneously trained and that fit in
the graphical processing unit (GPU) NVIDIA RTX2060 Super
memory. The number of epochs was adjusted to ensure that
all the ANN converged.

Since the dataset is not perfectly balanced, the F1 score
was used to assess the models’ performance instead of the
accuracy. So, during the training routine, the F1 score is
computed over the validation and training sets at the end of
each epoch. To avoid overfitting, the early stopping technique
was applied. So, at the end of the training process, the model
stored for inference was the one that optimizes the F1 score
in the validation set.

2) Models Assessment: To evaluate the models, we used
state-of-the-art evaluation metrics: recall (1), which is the
model’s ability to detect all relevant objects, precision (2),
the model’s ability to identify only relevant objects, and

TABLE III
SUMMARY OF THE EVALUATION METRICS FOR

THE DIFFERENT DL MODELS

F1 score (3), the first-harmonic mean between recall and
precision. As can be concluded, all these metrics depend essen-
tially on the number of true positives (TP) and establish ratios
to the total number of detection and ground truths. We also
represent the confusion matrix for a better understanding of
the results

Recall =
TP

All ground-truths
(1)

Precision =
TP

All detections
(2)

F1 = 2 ×
Precision × Recall
Precision + Recall

. (3)

III. RESULTS AND DISCUSSION

Table III summarizes the metrics used to evaluate the per-
formance of the DL models developed for grapevine classi-
fication, and the confusion matrices for the transfer learned
models are presented in Figs. 5–7.

The assessed results comprise the performance of the
DL models in the test set of the augmented dataset, i.e.,
in 6109 images. For better engagement with the origi-
nally acquired data, we use less aggressively augmented
data in the test set. As initially expected, transfer learned
models performed better than trained from scratch models
(Table III) [28], [29]. Pretrained models on the ImageNet
dataset are prepared with tools to identify many features in
the images, while our data has a restricted number of features.
Therefore, we will be analyzing the transfer learned models
only.

Despite the effort to keep reliability in the augmentation
process to generate more varied data similar to the original
one, additional experiments prove that it is difficult to avoid
performance decreasing in the augmented dataset. Table III
displays the DL models’ performance in the augmented
dataset. In addition, we also essayed the same models in
the test set without augmentation (i.e., using only the ini-
tially acquired and preprocessed images—146 images). The
results are more satisfactory, behaving the different DL models
with the F1 score of 99.33 %, 94.41 %, and 95.26 % for
the MobileNet V2, ResNet34, and VGG11 BN, respectively.
In this last essay, we used the transfer learned models. As hap-
pened in Table III, the performance of the models trained
from scratch was worse. Although, the low amount of leaves
for each variety cannot offer us reliable conclusions. So, in the
following analysis, we only essay the models in the augmented
test set.

MobileNet v2 outcome the results with the best F1 score,
having more confusion in the classification of leaves
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Fig. 5. Confusion matrix for MobileNet v2 classifier.

Fig. 6. Confusion matrix for ResNet-34 classifier.

between Mortágua and Trincadeira (Fig. 5). ResNet-34 and
VGG-11-BN performed similarly with slightly lower results.
Anyway, the performance of the networks for all the tested
models is high enough to support digital ampelometry.

A deeper analysis of the confusion matrices in Figs. 5–7
allows stating similarity relationship between grapevine vari-
eties. In a general overview, the selected grapevine varieties
have a low similarity ratio, increasing identification success.
The CNN could discretize the different varieties’ features
for successful classification. However, some varieties have
similar features, which leads to some classification mistakes
between these varieties. These cases can be stated, for instance,
between Mortágua and Trincadeira, which are the most con-
fusable varieties. These two varieties are two clones of the

Fig. 7. Confusion matrix for VGG-11-BN classifier.

same variety with identical genetic information (also, Tinta
Antiga do Curral and Tinta Negra are clones). Besides, this
dataset also contains parent relationship: Verdelho is a parent
of Terrantez do Pico, and Alfrocheiro, Verdelho, and Viosinho
are siblings, having the same parent Savagnin Blanc.3 The
essays on the original test set are unreliable due to the
small amount of data. However, the augmented test set to
40 times the original one allows for validating the suitability of
these models to distinguish and classify between the different
grapevine varieties.

Considering the high relationship between Mortágua and
Trincadeira, and while they are clones of the same variety,
if consider them in the same class, we get that MobileNet v2
reaches an F1 score of 98 %, ResNet-34 reaches an F1 score
of 97 %, and VGG-11-BN reaches an F1 score of 96 %. All
these results were got on the augmented test set. Therefore,
removing the highly correlated classes in this dataset, we got
results near 100 %.

From the observed results of the different experiments,
we can conclude that all the essayed DL models are suitable
for digital ampelometry. However, there are still some con-
cerns in this experiment that should be approached. Despite
augmentation improving the network performance, this tech-
nique does not offer new relevant information and variability in
data. Instead, augmentation provides data with small variations
to the original one, making the trained model more robust
and prone to overfitting. So, the biggest efforts in future
work should concern increasing the amount of data with
representative and heterogeneous samples of leaves from the
different grapevine varieties.

The essayed DL models are the most common architectures
in the literature and widely used for multiple applications,

3The grapevine varieties can be reproduced with small changes in their
genetic information. As a result, they are clones and have too many similari-
ties. The analysis for synonyms and the relationship between varieties can be
supported by the VIVC database [8].
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TABLE IV
SUMMARY OF THE PERFORMANCE OF THE ESSAYS

IN THE LITERATURE AGAINST OURS

but more recent studies are showing up with relevant results
in the benchmarking datasets (ImageNet); this is the case of
EfficientNet family and Visual Transformers, that should be
essayed. We chose to use small size DL models with a low
number of trainable parameters, because we have a limited
amount of data that could compromise the training of the
DL models and conducting to overfitting. However, increasing
the number of samples could provide more varied data and
the reinforcement of features, leveraging to bigger and more
capable ANN.

The current solution aims to be an offline product that
could identify grapevine varieties under request in an exter-
nal and dedicated server. The user has time to wait for a
system’s answer, and the application should have a restricted
number of requests. So, this study does not aim to analyze
the models’ performance under real-time conditions nor in
restricted systems, such as mobile platforms. So, the future
use of deeper DL models and transformations to the models’
architecture should approach to improve the networks’ results
and accommodate more grapevines varieties.

Compared with the literature, the obtained results perform
similar to the other works, namely, [22]. Table IV summarizes
this comparison of our results with the performance of other
works in the literature. While the approach presented in [19]
performed better than ours, they used a short sample of six
vine varieties. A similar conclusion can be obtained from [23]
and [20]. So, against most studies in the literature, our
work benefits from an extended dataset with varied grapevine
varieties, with some similarities between the leaves’ shape
and size, grapevine clones (such as between Mortágua and
Trincadeira, or Tinta Antiga do Curral and Tinta Negra),
and parent proximity. Besides, our work benefits from a
curated dataset gathered under ampelographic supervision and
a restricted protocol of collecting leaves from the mid-shoot of
genetically confirmed vineyards. A fair comparison with our
work is found in [22], that do not benefit from the last protocol

characteristics. Similar to us, these authors also looked at
many grapevine varieties and studied diverse DL models.
However, [22] reached a better accuracy than us. The dataset
comprises 5091 images with more than 200 images for each
class. This aspect highlights future lines to improve our work.
The dataset used in [22], despite only comprising images of
leaves under controlled environments, also comprises images
of leaves acquired in the trees under natural conditions.
These conditions have lighting variations, different distances
to the leaf sample, and noisy background with other leaves,
trunks, and other objects. Despite challenging the model, this
varied dataset gave it relevant and varied features for image
classification. Against the work present at [22], this study
benefits from a structured protocol to gather the samples from
the vines. Also, we added four more grapevine varieties and
have a high correlation ratio due to kinship closeness, such as
between Touriga Nacional and Touriga Franca. Besides, this
study benefits from samples of the main grapevine varieties in
Portugal.

Analyzing the used protocols in the reviewed literature,
only [16] and [19] stated a detailed data acquisition protocol.
Both authors gathered leaf samples from the trees’ fifth nodes
from the apex. Adão et al. [20] and Koklu et al. [23] did
not detail their protocol, and the other authors did not gather
leaves nor explain how did they acquire the images. Using
that leaves, [16] and [19] are avoiding child and undevel-
oped leaves, contributing with fully developed samples of the
tree for the dataset creation. According to best ampelometry
practices, the ninth node is most representative of grapevine
variety [12]. However, limiting our dataset to the ninth node
restricts the amount of data. In this scenario, the 7th and 11th
nodes can also be considered with some similar representative-
ness. Besides, these leaves contribute to polymorphism in the
dataset. Most of the time, the 11th node is not fully developed,
representing the samples of undeveloped leaves of the vine.

IV. CONCLUSION

We present a benchmark of three DL models for assessing
the capability of CNN to identify grapevine varieties through
the leaf between an increased dataset with many vine cultivars.
A manually acquired dataset was used, containing 976 samples
of leaves from 26 different classes.

The dataset benefited from a manually curated dataset
using samples of leaves carefully acquired from genetically
identified trees and from the 7th, 9th, and 11th nodes. So, all
the image samples in the dataset are fully representative of the
different grapevine varieties and noise free.

The essay proves that all the assessed DL models performed
similarly, but MobileNet v2 and ResNet-34 are the best. How-
ever, additional experiments are required with an improved and
increased dataset with more varied data and more samples for
each variety.

The ability to correctly identify grapevine varieties of the
developed DL models justifies their use for improved in situ
high-through-output digital phenotyping systems. However,
substantial work is still required to improve the models with
more samples for each grapevine variety and increase the
number of grapevine varieties in the dataset.
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Future work concerns to the following.
1) Balance the number of samples between classes.
2) Increase the number of vine varieties and the number of

samples for each variety in the dataset.
3) Add more varied data from different sensors and with

more varied backgrounds and luminosity.
4) Visualize the class activation maps to understand better

the most critical features of the leaves for classification.
5) Essay architectural modifications in the DL models to

improve the system’s accuracy.
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