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Privacy-Aware Gait Identification With
Ultralow-Dimensional Data Using

a Distance Sensor
Chengshuo Xia , Atsuya Munakata, and Yuta Sugiura

Abstract—As one of the most natural user behaviors,
walking has been widely focused on developing personal
identification systems due to its unique biometric authenti-
cation features. Popular visual solutions are usually affected
by various environmental conditions, and their redundant
user information (e.g., body type and appearance) makes it
more challenging for users to maintain privacy and security.
This article proposes a distance sensor-based gait identifi-
cation system that uses only 1-D data with a simple sys-
tem structure. Specifically, a time-of-flight (ToF) sensor was
placed in front of a walking person, and a time series of
distances was acquired. We extracted gait features from the
data by calculating the velocity and acceleration curves and
identifying individuals using a random forest (RF) classifier.
We evaluated our system on ten users using leave-one-out
cross validation. The average identification accuracy was 91.05% for ten users. This study shows that gait recognition
is possible using only 1-D time-series data with a noncontact sensor. It can be used as a contactless identification,
reducing the computational resources required for low-cost and low-power-consumption edge computing.

Index Terms— Distance sensor, gait identification, privacy, random forest (RF).

I. INTRODUCTION

IDENTITY recognition has been a widespread concern in
recent decades. With the development of application needs,

detection technologies with different characteristics can serve
various application scenarios, including biometric, wearable,
and visual. Among them, one of the important application
scenarios for authentication is for public facilities, as some
require identifying users who need access to ensure security.
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A number of research and technology efforts have been
made to help solve the identification problem for outdoor
facilities [1], [2], [3], [4]. In general, the first method is to
employ explicit information that identifies the user, such as
the individual’s name and address. The unique information
attributed to the user is used for identification. However, the
approach usually imposes a relatively inefficient burden, such
as handwritten input for registration and the long process
required for electronic processing. Other methods, such as
electronic ID cards, can quickly provide identification to
facilitate greater efficiency. However, property-based methods
are still subject to card loss, fraud, and theft risks. In addition,
with the development of sensing technology and information
processing, systems are gradually becoming more intelligent,
using the user’s biometric information for identification. Since
such features are collected from individual users, the problem
of loss is solved, and the natural way of identification can
be realized more efficiently, reducing the burden of users.
Among them, noncontact measurement technology is grad-
ually developing to fit the natural behavior of users and
improve the convenience of users’ use. Gait identification is
one of the biometric approaches. It is personal identification
based on individuality, such as stride length, arm swing,
posture, and left-right asymmetry, that appears in the pattern
of limb movement when a person walks. It has been studied
actively in recent years [5]. A popular method to measure
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gait is using image sensors, such as red, green and blue
(RGB) and depth cameras, and image processing and pose
estimation are adopted to extract features [6], [7], [8], [36].
The image sensor-based method employs nonwearable devices
and requires less attention or cooperation from users than
conventional biometric authentication techniques. Therefore,
it is a suitable method for identifying users in public facilities
in terms of ease of use. However, secondary information, such
as face image, race, and body silhouette, still can be extracted
from the captured images. A potential technical challenge
is that because biometric information is immutable personal
information, it needs to be carefully managed, and the cost
of security measures is high. There is also the issue that
given human-centered technology, users may be reluctant to
provide their biometric information for authentication due to
privacy concerns [9]. Therefore, there is still a problem with
the management cost of personal information and the users’
sense of resistance.

Other types of noncontact and nonvisual methods have
emerged to provide a more pervasive and suitable solution,
such as using Wi-Fi signals [11], [12], radar signals [13], and
acoustic signals [14], among others. According to the capture
reflected signal from the user’s walking behavior, the unique
characteristics are likely to be extracted as the features for
an individual to be identified. Because of this feature, Wi-Fi-
based channel state information (CSI) and gait detection at
the Doppler shift can be used for individual gait recognition.
In combination with machine learning techniques, excellent
performance has been demonstrated. However, such systems
usually require a stable external environment and a high signal
capture frequency to ensure high-accuracy gait information
acquisition. Although this benefits the system’s robustness,
it also imposes requirements on the system design, power
consumption considerations, device location, cost, and so on.
Improving the universality of the use of the system for gait
identification in multiple situations becomes a factor to be
considered in addition to accuracy improvement. Therefore,
it is important to explore gait identification systems for more
edge cases, such as low-power consumption and low-cost
system.

Practically, the application of gait identification is broad, the
system characteristics required for different applications are
not uniform, and the size of the pool of users needed varies.
Therefore, in this article, we explored the use of ultralow-
dimensional data to design contactless privacy-preserving gait
identification systems. From the literature, we first proposed
using a time-of-flight (ToF) distance sensor placed in front
of the walking user to identify the user by detecting 1-D
time-series data (Fig. 1). With the design of this system, the
possibility of gait identification with 1-D data is demonstrated.
Since the system involves only a single ToF sensor and
1-D data acquisition, the whole system maintains low-cost
(less than U.S. 10 cost) and low-power-consumption (less
than 1 mW) characteristics. Compared with other mainstream
noncontact gait-based identification systems, the introduced
design provides a simple solution for situations, where the user
pool is small and the identification performance requirements
are not extremely stringent.

Fig. 1. Proposed system using a ToF sensor to detect the distance
variation caused by a user’s walking.

II. BACKGROUND AND RELATED WORK

RGB cameras and depth cameras are mainly used for gait
recognition by image sensors. There are two main methods:
one is to extract the features of gait by image processing, and
the other is to estimate human posture from camera images and
obtain gait features from temporal changes in the coordinates
of each body part. El-Alfy et al. [15] proposed a personal
authentication method that captured the geometric properties
of silhouette boundaries in an image by evaluating the contour
curvature using gauss maps. Zulcaffle et al. [16] presented a
method that used images acquired by a 3-D ToF camera. They
extracted the silhouette of a person from the depth image and
used multiple classifiers to identify the person, which switched
the algorithm depending on the package’s existence and the
walking intensity. Combined with the external environment,
Zheng et al. [6] used a camera and a pressure sensor installed
on the floor. Cumulative pressure and walking images were
used as inputs for the system. They first calculated the
canonical correlation between the input pressure image and
the database to select the most appropriate camera images
from the dataset, and then, image matching was performed on
the camera input for personal authentication. Sabir et al. [7]
employed human 3-D posture information acquired by Kinect.
They focused on several joints in the posture information
and used the statistics of their distances and angles from the
ground for one walking cycle as feature values. They utilized
the k-nearest neighbor (KNN) method and a linear classifier
for the estimation. Yang et al. [8] also used human posture
information acquired by Kinect. They calculated the statistics
of the relative distances between symmetrical joints in the
human body as features, and the KNN method was deployed
with the Manhattan distance for the estimation. In these image
sensor-based personal authentication methods, the biometric
information acquired is highly subjective, and the RGB image
or depth image can be used to read the user’s appearance
and silhouette besides the gait characteristics. Thus, privacy
concerns have become the most significant barrier to adopting
such technologies.

To solve this privacy problem in video surveillance,
Koshimizu et al. [9] introduced an abstracting method for
people in the image. They listed the following abstrac-
tion levels: erasure (transparent), dotting (existence informa-
tion only), boxing, silhouetting, edging, blurring, head-only
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boxing, head-only silhouetting, head-only edging, head blur-
ring, and annotation (showing personal name).

In addition, to protect personal privacy, some wearable
devices and other daily accessory-based equipment exist. For
example, Fujii et al. [10] proposed a method that used time
series acquired by multiple accelerometers attached to slippers.
They used fast Fourier transform to extract features and a sup-
port vector machine (SVM) to identify the frequency features.
Kurahashi et al. [17] estimated the identity of individuals from
the angular velocity information obtained by the gyroscope
sensor attached to the shaft of toilet paper in the bathroom,
where it is challenging to install sensors, such as cameras and
microphones, due to privacy concerns.

Wireless sensing provided a suitable solution for privacy
protection issues in personal authentication. The wireless
signal can be altered due to personal behavior, and such a
technique captures the varied reflected wireless signal and
links it to personal identification. The Wi-Fi signal, as a
pretty common signal in daily life, has been proposed to
recognize the user’s gait and authentication [11], [12], [18],
[21]. The CSI from the Wi-Fi signal is detected and used
to analyze the unique features. Wang et al. [11] utilized the
spectrograms from CSI measurement leading by a walking
pattern. Korany et al. [20] measured the Wi-Fi magnitude of
a small number of transceivers to identify multiple users.
Through a multidimensional framework, the signal from each
individual can be separated. Xin et al. [21] introduced an
indoor-based user identification method that employed prin-
cipal component analysis, discrete wavelet transform, and
dynamic time warping (DTW) for CSI waveform. The dif-
ferent technical approaches focus on applying the reflected
signal from indoor Wi-Fi to identify the user. However,
Wi-Fi signals still maintain a low sampling frequency and are
susceptible to interference from other electromagnetic signals,
making them unstable. High-frequency radar-based detection
can also sense the user’s gait information. Saho et al. [13]
introduced a Doppler radar-based user identification scheme.
It employed the micro-Doppler signatures from the specific
motion, that is, sit-to-stand and stand-to-sit. The produced
Doppler spectrograms were input into a convolutional neural
network for identification. Besides the conventional spectro-
grams captured [19], Shah et al. [18] proposed to fuse Wi-Fi
and radar imaging to recognize the freezing of gait episodes
for patients with Parkinson’s disease. CSI and micro-Doppler
signatures were employed. In addition to the random forest
(RF)-based method, Xu et al. [14] designed AcousticID that
used the acoustic signal to capture body movement. As the
propagation speed is relatively low, it allows for measuring
body movement more accurately.

Although the application of wireless signals reduces intru-
sion to users, there are still more prefabricated conditions
in their application for the placement of equipment, signal
interference problems, environmental noise, and the system’s
layout. Therefore, it is essential to continue exploring gait
recognition under a high degree of abstract data, which can be
important for widening the application scenario. In this article,
gait recognition is accomplished using 1-D signals related to

Fig. 2. Flow of the proposed method.

the user’s walking behavior. We identified the gait using only
capturing the distance time series. It contains only the same
information as a dotted person, and it is considered the most
abstract information [9], [35].

III. PROPOSED METHOD

In this section, the proposed approach is introduced. Our
system uses distance sensors to measure the velocity-related
feature intervals of human gait from the front and to identify
individuals. Fig. 2 shows the flow of the proposed method
in the form of a diagram. The detailed implementation is
described below.

A. Hardware Sensing System
The sensing system employed Nucleo F446RE as the con-

troller and a VL53L1X ToF laser module for the distance
sensor (Fig. 3). This device is connected to the computer via
a universal serial bus (USB) serial interface and continually
sends the measured distance information. VL531L1X, as a ToF
sensor, can keep up to 4-m length detection [22]. Fig. 4 shows
an example of the time series acquired by the ToF distance
sensor.

B. Data Processing
A low-pass filter filtered the captured time-series data to

eliminate the noise at first. The data acquired by the ToF sensor
could be considered a form of human gait record. Thus, from
the recorded distance variation, the gait phase can be divided
into four stages: stop, accelerate, maintain a constant speed,
and decelerate (Fig. 4). Because each person has different
walking characteristics, the process of approaching the target
by walking can generally be reflected via the velocity variance.
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Fig. 3. Designed hardware sensing system.

Fig. 4. Example of the acquired time series and multiple walking
phases.

Fig. 5. Distance variations for different users’ gait.

Since the data dimension used in this system is extremely low,
we mainly obtain the changes in the distance sequence of the
user’s acceleration and deceleration process during walking to
capture the speed change as much as possible. Fig. 5 shows
the distance variations for walking.

C. Calculating the Velocity and Acceleration
To extract the velocity variations by each user, we calculated

the time series of discrete differences by the relationship
in (1) from the distance variation to obtain the velocity
data. Similarly, as the main difference reflected by various
users’ gait behavior is related to acceleration and deceleration,
we further calculated the discrete differences of the derived
velocity time series, i.e., the acceleration time series. Fig. 6

Fig. 6. Calculated (a) velocity and (b) acceleration time series.

Fig. 7. Handcrafted features extraction process.

presents an example of calculated velocity and acceleration
time series from original distance data

x ′
[i] = x[i] − x[i + 1] (1)

where x is the time series of distance and x ′ is that of velocity.

D. Classification
Due to the limited information regarding the gait and

low dimensionality of the collected time-series data with a
simple signal variation, the traditional frequency-domain data
features and deep learning are difficult to show superior. Thus,
we divided the obtained distance, velocity, and acceleration
time series into several intervals, respectively, and calculated
each interval’s statistical features, including the mean, vari-
ance, maximum, and minimum value to form the handcrafted
features set (Fig. 7). From the algorithm’s perspective, it aims
to capture more informative information regarding the human’s
walking status change based on different kinematic character-
istics (i.e., the velocity and acceleration), which mainly reflect
the different people’s gait patterns on approaching a target.
To process these handcrafted features, the RF classifier was
adopted. Following this method, the microscopic variations
from the gait pattern could be entirely explored, because all
the distance, velocity, and acceleration alterations have been
fully considered. The process of the classification algorithm is
shown in Algorithm 1.

IV. EVALUATION

A. Participants
A total of ten participants (five male and five female) were

recruited to evaluate the accuracy of the proposed system for
personal identification. The related demographic information
of participants was presented in Table I.
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Algorithm 1 Processing the Distance Time Series to Obtain
the Features
Input: Distance time series d = {d0, d1, . . . , dn}, Intervals
number m,
Output: Effective feature time series k for classifier,
k =

{
ka, kb, . . . , kq

}
1: Low-pass filter for eliminating the noise
2: Velocity {v} calculation by Equation 1, f (v) = f (d)′

3: Acceleration {a} calculation f (a) = f (v)′

4: Divided the time series data into m intervals I =

{I0, I1, . . . , Im∗3}

5: Calculated the features for each intervals from I0 to Im∗3,
e.g., for interval I0: k1 = mean(I0), k2 = var(I0), k3 =

max(I0), k4 = min(I0)

TABLE I
DEMOGRAPHIC INFORMATION OF PARTICIPANTS

(THE UNIT OF HEIGHT IS cm)

TABLE II
RESULTS OF TESTING WITH DIFFERENT TIME SERIES USED

B. Environment
The participants stood upright at the position 3 m away

from the sensing device and walked toward the sensor when
the experimenter gave a signal. The system was mounted at
1.1 m from the floor and was in front of the participant. The
participants were requested to walk naturally as usual.

C. Data Collection
The data were collected ten times per person. The sampling

rate was 20 Hz. The sensing system started measuring the
distance, while the distance between the user and the sensor
was less than 3 m. Thus, each participant had ten-trail data,
and each data generally had a 4–6-s length. The data from
the sensing device were saved as a comma-separated values
(CSV) file by executing a data recording script on the laptop.

D. Identification Result With Different Intervals and
Classification Methods

The identification accuracy was evaluated by leave-one
(trial)-out cross validation of each participant’s dataset. In our
method, we divided the time-series data into several intervals
and calculated their statistical features as the feature set. Thus,
the interval length/number could affect the feature number
and influence the identification performance. We evaluated

TABLE III
RESULTS OF TESTING WITH DIFFERENT CLASSIFICATION METHODS

Fig. 8. Different intervals number used.

Fig. 9. Feature visualization by t-distributed stochastic neighbor embed-
ding (t-SNE) plot.

the effect of interval length/number regarding the identifi-
cation result. In general, one walking time series consists
of 90–100 frames, so the interval numbers vary from 3 to
8 to test the system’s performance to ensure the interval
could contain enough effective information. Fig. 8 presents the
identification variations against the different interval numbers.
The performance of system alters between 85% and 91%. For
six or seven intervals used, the system could have the optimal
performance, as each interval normally keeps 0.7 s around
information, which have a good insight into microscopic
information regarding the gait, and enables the system to reach
91% around accuracy. Therefore, we divided the captured time
series into seven intervals for handcrafted feature extraction.

Since the captured distance time series is only 1-D, we cal-
culated the discrete velocity and acceleration time series to
increase the input information. Table II shows the accuracy
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Fig. 10. Different user numbers for identification.

result of different time series used for identification. From
the result, only 1-D data are challenging to provide enough
information, and all three-time series, including the distance,
velocity, and acceleration employed, are helping to improve
the system performance, as enough kinematic characteristics
could be captured.

Regarding the classification methods, we also evaluated sev-
eral benchmark machine learning approaches for identifying
the time series, including the DTW + KNN, DTW + SVM,
SVM (radial basis function (RBF) kernel and C = 1000),
decision tree (DT), and RF with 30 estimators. The DTW is
suitable for measuring the shapes in a time series and is less
affected by temporal expansion and contraction if the wave-
forms are similar [29], [30]. Notably, the kernel method with
a global alignment kernel (GAK) was adopted in SVM [31].
As the DTW only processes the two-time series, we tested a
single type of time-series data (distance/velocity/acceleration)
and utilized the best one, i.e., the velocity data, as the input
data to train the classifier for comparison. Also, for other
DT, SVM, and RF methods, the input was aligned with the
extracted features from several intervals. All the machine
learning algorithms were implemented in Python with the
TsLearn toolkit [32]. Table III presents the results of different
classification methods. The results show that the RF can out-
perform other classification methods with the highest accuracy
of 91.05%. Fig. 9 presents the visualized results of extracted
features used for the RF classifier.

E. Identification Result With Different User Pools
Since the data dimension used is extremely low, it is

incredibly challenging to require the system to be able to
be applied to an extensive range of user pools. However,
as mentioned earlier, the application scenario of user identi-
fication in public facilities is comprehensive. Therefore, the
system’s performance is experimentally investigated in the
case of small-scale user pools. Such small-scale user pools
are usually suitable for scenarios, such as homes, offices, and
so on. We evaluated different user pool sizes from three to ten
people. For the user number less than 10, tested users were

Fig. 11. Different used trails and user numbers for identification.

extracted from recruited participants through a combination
way. Also, the identification results under each combination
are averaged to obtain accuracy. Fig. 10 shows the accuracy
of the proposed system on different user pools from four to
ten people.

From the figure, the identification performance gradually
decreases, as the number of users increases. For smaller pools
of users (e.g., four to six users), the system is able to better
distinguish the gait characteristics of the users and is able
to maintain an identification accuracy of 97%–95%. This also
demonstrates the superiority of the method in situations where
the number of users required is small (e.g., family units).
However, for a larger number of users (e.g., eight to ten users),
the system is able to produce identification results of around
91%. Therefore, the system is still feasible for user aggregation
scenarios where the identification requirement is not really
high and strict.

F. Identification Result With Different Trails Numbers
As an identification system, it is also required to con-

sider the system’s implementation conditions. To reduce the
complexity and time it takes for users to build datasets,
we also investigated different training samples to validate the
system’s performance. Since ten walking trails were collected
for each participant, we varied the total trails from four to
ten and evaluated the system’s performance for different user
numbers. The used trails were randomly selected from the
initial dataset, and the evaluation method was still leave-one-
out cross validation.

Fig. 11 presents the results of using different trials for
identification training and testing with different user numbers.
For more users to identify, fewer trails cannot satisfy the
required recognition. With more samples used for training, the
system’s performance is improving. Nevertheless, for fewer
user numbers, few trials are able to train the classifier and
identify the user with an acceptable result. For example, for
only four users, six trials dataset with leave-one-out cross
validation shows 96% accuracy. Since the time-series data used
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Fig. 12. Cumulative match characteristic (CMC) curve when ten people
are identified.

Fig. 13. Confusion matrix when ten people are identified.

in this system are 1-D, its data distribution is simple, enabling
the system to use fewer samples to train the classifier. At the
user terminal, it is convenient to collect the dataset of users
in advance. Especially for smaller user groups, users usually
perform five to six walk data (less than 1 min) collection
to complete the training of the system to obtain 91% usage
performance.

V. DISCUSSION

A. Performance and Characteristics
The CMC curve and confusion matrix in Figs. 12 and 13

show that the accuracy is significantly improved between ranks
2 and 3. Even if identification is wrong, the correct user
is generally listed as the second/third possibility. Therefore,
a simple improvement in the dataset’s quality may solve the
problem. For example, we can increase the number of datasets
per user or the sensor’s sampling rate. Table IV shows a
comparison among the related nonvisual and noncontact gait-
based identification systems. Mainstream systems still focus
on radar and Wi-Fi-based signal utilization. Through detecting
the reflected wireless signal’s variations, the machine learning
method was employed to complete the feature representa-
tion and the identification. The performance was commonly
reported between 80% and 95%. Also, for wearable-based
gait recognition, such a system utilized the multiple inertial
measurement unit (IMU) sensor or pressure sensor to capture
the kinematic characteristics from human gaits to recognize the
identification [5], [28]. Such systems have already presented

TABLE IV
SYSTEMS COMPARISON WITH DIFFERENT WIRELESS SIGNAL-BASED

TECHNIQUES AND CHARACTERISTICS

a great performance, and the accuracy typically was higher
than 90%. For example, Fujii et al. [10] designed a slipper
embedded by several IMUs, and the device could identify ten
people with 93.3% accuracy with three IMUs used. Choi et
al. [27] used eight pressure sensors and one IMU to design
a smart insole, which could show over 95% accuracy with
fourteen people tested. Therefore, from this point of view, the
proposed system in this article has demonstrated acceptable
performance with a novel detecting method.

Compared with other solutions for nonvisual gait-based
identification, the proposed method made a unique contri-
bution to its novel detecting method and resulted in more
edge cases. Radar and Wi-Fi-based methods have attracted
close attention for the most popular schemes, because the
distribution of reflected wireless signals is wide. Information
from the various human body parts can be used, which is better
for building a classification system. However, in other words,
the abundant information also contains redundant features
that need to be distinguished. The abundant reflected wireless
signal generally requires relatively high-power consumption at
the signal transmitter (such as the WiFi transmitter typically
consumed more than 5-W power [33]), which potentially
challenges a more portable and flexible deployment solution
considering the energy supply. Though the advanced radar
sensor has become tiny and low power gradually, the high cost
still limits more pervasive applications (e.g., IVS-979 radar
sensor in [24] costs more than U.S. 300). On the contrary, this
article explored ultralow information to build the identification
system and demonstrated its feasibility to an extent. The ToF
sensor used in this article typically consumed the current at
the µA level [22] and 1 mW around power consumption and
costs less than U.S. 10. It is feasible to be combined with
any low-power-consumption microcontroller to be fused into
a internet of thing (IoT) scheme. It has broader distribution
characteristics than other wireless signal solutions, especially
for the more edge cases, such as budget-limited and power-
constraint cases.

B. Sensor’s Detection Range
The proposed system uses a ToF distance sensor to detect

changes in human–system distance caused by gait. The field
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of view (FoV) of the sensor used in the study is 27◦. Typically,
the measurable range of the sensor is tapered, and the longer
the distance, the more comprehensive the range. However,
humans sometimes have other body movements that impact
their measurements while walking. For example, if the FoV
is too large in the swing of the arm, the measurement data
may be contaminated by the measured distance on the arm.
If the FoV is too small, users need to walk straighter and
more accurately when measuring gait. Although arm swing is
a part of gait, it is better to separate it when measuring the
distance from the center of the body. Therefore, this trade-off
needs to be considered when adjusting the FoV and distance
range of the sensor. Besides, in the experiment, participants
did not change their clothing, so we did not discuss the effect
of clothing on recognition accuracy. Since the distance sensor
does not recognize the subject’s silhouette, it should be less
affected by clothing changes.

C. Sensor Placement and Application Scenarios
In this study, we placed a ToF sensor in front of a walking

person. In a practical application, the mounting location is
fixed, where the user walks directly toward a wall or a door.
For example, the sensor can be placed on a door surface
at the end of a path that the user can walk a few meters.
In this study, the scenarios used were primarily in apartments
or environments with long corridors. Also, it is suitable for
relatively small users group identification, such as the home,
office, and laboratory. Due to its low-power-consumption char-
acteristic, the system could be powered by general portable
power sources and flexibly deployed.

VI. LIMITATION AND FUTURE WORK

Though this article has introduced the feasibility of using
1-D distance data from a ToF sensor to recognize human
identity by walking behavior, it still has several limitations.
First, as the simple data were captured, the system only
focused on the velocity change. It potentially causes the
problem of nonhuman movement, which could lead to a false
positive of the system. The next step could be to improve the
system’s robustness to fit a more unclutter environment. As the
system uses the ToF sensor, it normally would be sensitive to
the ambient light to an extent. This characteristic could also
be fused to sense how the lightness alters (such as the indoor
light) according to the object’s movement and increase the
insight of detected objects.

In addition, the system currently only tracks one person’s
walking behavior. However, broader cases show that users
may be walking together and using distance data and face
difficulty identifying multiple people [37]. In future work,
coordinated designs using multiple distance sensors can be
continued to adapt to a richer set of application scenarios.
For example, human walking can be measured from the side,
which increases the flexibility of mounting locations.

Regarding the identification algorithm, so far, we have
tested several methods for handling time-series-based identifi-
cation. However, such methods are all related to handcrafted
features-based solutions. We did not implement any deep

learning method (such as 1-D convolutional neural network
(CNN) [34]). The main reason is that the proposed system
is superior in its lightweight, tiny computational resources,
and low-cost features. We expected the user’s burden to be
manageable, which means only a few data trails are needed
from the user’s end to form the user’s dataset before deploy-
ment. Under such a situation, only five to nine trials are
required, and the deep learning method is hard to figure out
the in-depth features from such a simple time series. However,
we believe that more complex situations could be considered
and may envision a more advanced algorithm to process the
data. The next step could also be figuring out the high-
performance algorithm against the complicated situation and
multiple sensors coordination.

VII. CONCLUSION

In this study, we proposed a privacy-aware system to iden-
tify individuals with ultralow-dimensional data. The system
is assumed to be placed in front of the user. It fused the
ToF sensor and detected the distance variance between the
user and the system during the walking process. By extracting
features from human gait patterns, we evaluated the system by
leave-one-out cross validation, and the average identification
accuracy was 91.05% for ten users. It provides a lightweight,
low-cost, high-distributive user identification system for exter-
nal facilitates. Although identification systems using nonvisual
and noncontact signals have gradually increased, the variation
of the single-dimensional distance data used in this article
has advantages in the characteristics, power consumption, and
cost of the system, even if the recognition performance cannot
directly beat other systems of the same type. This system is
extremely cost-efficient both in budget and power consumption
and can be used as a boundary condition system (with low data
dimensions) to provide coupling design with other systems to
achieve better usage.
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