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An Autonomous Underwater Vehicle Simulation
With Fuzzy Sensor Fusion for

Pipeline Inspection
I-Chen Sang and William R. Norris

Abstract—Underwater pipeline inspection is an impor-
tant topic in off-shore subsea operations. Remotely oper-
ated vehicles (ROVs) can play an important role in multiple
application areas including military, ocean science, aqua-
culture, shipping, and energy. However, using ROVs for
inspection is not cost-effective, and the fixed leak detection
sensors mounted along the pipeline have limited precision.
Although the cost can be significantly reduced by apply-
ing autonomous underwater vehicles (AUVs), the unstable
current, low visibility, and loss of GPS signal make the
navigation of AUVs underwater very challenging. Previous
studies have been conducted on coordinate-based, vision-
based, and fusion-based navigation algorithms. However, the coordinate-based algorithms suffered from the denial of
GPS signals while the vision-based methods typically relied on terrain and landscape knowledge that required collection
prior to the mission. As a result of these issues, a navigation system for an AUV that incorporates vision and sonar
sensors is presented in this article. In a robot operating system (ROS)/Gazebo-based simulation environment, the AUV
had the ability to find and navigate toward the pipeline and continuously traverse along its length. Additionally, with a
chemical concentration sensor mounted on the AUV, the system demonstrated the capability of inspecting the pipeline
and reporting the leak point with a resolution of 3 m along the pipeline.

Index Terms— Autonomous underwater vehicle (AUV), fuzzy controller, pipeline inspection, robot operating system
(ROS), sensor fusion, simulation.

I. INTRODUCTION
A. Motivation

UNDERWATER pipelines are essential infrastructure for
the transportation of oil and gas. However, cracks are

likely to be found on pipelines due to the extreme marine envi-
ronments. Furthermore, underwater pipelines become more
vulnerable as they age, thereby exposing them to more damage
[1]. Gas and oil leaks, and other forms of ocean pollution
caused by pipeline systems are extremely expensive to repair
and negatively impact fuel reserves. As a result, periodic
inspection of underwater pipelines is a necessary and impor-
tant issue in oceanic engineering.

Before the development of advanced autonomous vehicle
technology, pipeline inspections were primarily performed
using visual inspection and sensor networks [2]. Visual
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inspections are carried out by examining close-up images
collected by divers or remotely operated vehicles (ROVs).
Fluorescent dyes could be added to raise the accuracy of the
leak detection. Apart from visual inspections, acoustic sensors
or chemical sensors installed along the pipelines could indicate
the presence of a leak [3]. When detecting a leak, a signal
is sent either through the network, or to cruising ROVs [4].
These approaches have several weaknesses as sensor networks
are vulnerable and have limited precision due to the distance
between sensors. In addition, the power required for a sensor
or receiver network increases complexity for the whole system.

ROVs and AUVs were introduced to the field of underwater
pipeline inspection to overcome precision and mobility issue
[5]. Among the two options, AUVs outperform ROVs due to
better automation and reduced workforce requirement. It was
first proposed in [6], that inspections can be performed by
AUVs with predefined task flows. After finding the pipeline,
AUVs can navigate along the pipeline to conduct the inspec-
tion mission.

Despite the improvements made possible by AUVs, the
highly complicated environment underwater makes the nav-
igation of AUVs extremely challenging. For example, limited
access to GPS signals significantly constrains localization
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precision. Low visibility and shadows add to the complexity
of capturing and interpreting vision-related data. Moreover, the
current flow and disturbances pose an even greater challenge
to controlling AUVs.

The goal of this study was the development of a navigation
algorithm that can overcome the difficulties mentioned above.
Under a GPS-denied environment with typical sea currents
and limited visibility, the algorithm is expected to navigate
the AUVs to follow the pipeline and conduct leak detection
tasks.

B. Related Work
There have been many studies exploring the navigation of

an AUV along pipelines [7]. One of the popular approaches
has been to save the coordinates along the pipeline, and use
the current AUV position for navigation [8], [9]. Reinforce-
ment learning [10] and fuzzy logic [11], [12] were used for
increased precision. However, due to the lack of GPS signals
and drift in inertial sensing, the precision of coordinate-based
methods was limited.

To overcome the GPS issue in coordinate-based navigation,
the vision-based approach was widely used to assist the
systems. Given the limited visibility in this simulation, nav-
igation methods using natural landscapes as references were
excluded due to the extended distances. The systems searched
for features from nearer objects, such as the seabed [13],
artificial landscapes [14], or the pipeline. A common approach
involved extracting underwater pipelines from images using
edge detection algorithms [15], [16], [17], [18]. Learning-
based models were used to translate the acquired image into
corresponding control commands [19]. However, the reliabil-
ities of vision-only approaches were dominated by visibility,
and the difficulties in acquiring underwater datasets [20].

Sonar images from scanning sonar sensor arrays have been
commonly used in AUV navigation to overcome the visibil-
ity issues. Thus, similar edge detection techniques could be
applied toward sonar images to localize along the pipeline
[21], [22], [23]. Semiautomated pipeline inspection using
scanning sonar sensors has been introduced into the market
as they are not limited by underwater visibility. However, the
cost of sonar array sensors is much higher than RGB cameras.

The research community has been exploring potential solu-
tions combining the vision-only and sonar-only approaches
given the advantages and disadvantages previously discussed.
Sensor fusion is the most promising approach for provid-
ing robust vision-only navigation methods [24]. Underwater
camera information can be fused with various sensors for
navigation purposes.

The fusion of the camera with other sensors has been used in
a variety AUV general localization studies. Karras et al. [25]
used the fusion result of the inertial measurement unit (IMU)
and a downward-looking camera to obtain the position of
the AUV. Billings et al. [26] combined a stereo camera and
a fish-eye camera to construct a simultaneous localization
and mapping (SLAM) structure. Similarly, Vargas et al. [27]
incorporated acoustic odometry with an onboard camera for a
robust SLAM algorithm.

In the field of underwater pipeline inspections, few attempts
of applying sensor fusion have succeeded. Acosta et al. [28]
combined detection results from the multibeam sonar and
magnetometer to follow a pipeline. The studies performed
by Jacobi and Karimanzira [6], [24] proposed a pipeline
inspection framework incorporating cameras, multibeam echo
sounders, subbottom profilers, and magnetic sensors. A prob-
ability map was generated by combining the detection result
of all the sensors. The result demonstrated successful map
construction, but there were no navigation experiments.

C. Contribution and Overview of the Study
A fuzzy control method for fusing image and sonar data is

presented in this study to achieve higher levels of reliability
and lower cost. Instead of using side-scan sonar, a four-unit
sonar sensor was utilized to lower the cost. Moreover, with
the pipeline detection algorithm in this study, a predetermined
map of the terrain and others features was not required. The
navigation method enabled the AUV to successfully cruise
along the pipeline and simultaneously report the chemical
concentration in the simulation environment.

In verifying the proposed framework, experiments were
conducted in a simulation environment including complica-
tions from limited visibility and shadows. The experiments
demonstrated that even without access to GPS signals, the
algorithm could navigate the AUV to follow the under-
water pipeline and detect leaks in the pipeline with a
precision of 3 m.

The remainder of this article describes a method, result,
and conclusion for the study. All theoretical derivation and
experimental setup are illustrated in detail in Section II. The
errors from the pipeline detection, navigation, and during leak
detection are all presented in Section III. The conclusion of
the proposed study and several potential future research topics
are proposed in Section IV.

II. METHOD

The proposed algorithm integrated vision and sonar data,
enabling precise path following without access to GPS data.
By interpreting vision and sonar data into navigation error
measurements, the fuzzy controller was leveraged to make the
proper decision and control the propellers.

The validation of the proposed algorithm was done under
a simulation framework where all physical properties were
simulated and captured. It was shown that the AUV could suc-
cessfully approach the underwater pipeline, follow it precisely,
and identify the leak point simultaneously. In this section, the
simulation environment, navigation algorithm, leak detection
algorithm, and grid map construction methods are described,
respectively.

A. Simulated Environment
1) Physical Properties Simulation: A simulation environ-

ment [29] based on robot operating system (ROS)/Gazebo
platform was adopted to verify the proposed algorithm. As
Gazebo did not have a default underwater model available, an
“Ocean box” model simulated the role of the ocean.
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Fig. 1. Size and position setup of the underwater pipeline (a) global
view and (b) detailed view in the turning point [the marked box in (a)].

The attenuation of light over depth, distance, and wave-
lengths were included in the simulation. The exponential
attenuation followed the equation:

ic,m = ice−rac + (1 − e−rac )bc (1)

where c was the notation of the channel (R,G,B). ic and ic, m
were the intensity value of channel c before/after the attenu-
ation. bc was the background intensity. r was the distance to
the object, and ac was the attenuation factor of each channel.
In the default setting of the simulator, 0.1/0.1/0.03 represented
ac in red/green/blue, respectively. The system noise was added
to the camera by postprocessing the data. Moreover, shadow
was also made visible, which helped in simulating real-world
issues such as locating the pipeline with cameras.

According to [29], some dynamic properties have not been
added to the model. For example, the floating particles in
the ocean were not included in the simulation. Moreover, the
model did not consider surface waves and their resulting light
damping effect.

The precision of the visibility range was a limitation of
this simulator. Though the attenuation factors were provided
in the source code, they could change significantly with the
water quality and backscattering of the underwater particles.
Precise estimation of the visibility range was out of the scope
of this article. But, according to [30], a visibility range of
around 10 m was usually used for underwater vision systems.

As a result, the study used the visibility range estimate of
10 m. The AUV was assumed to start the navigation process
at a distance of less than 10 m away from the underwater
pipeline. When the AUV was released from the boat to start
the mission, the GPS position was known. With the use of
dead reckoning, the AUV maintained its position even after
losing the GPS signal with increasing depth. A recent study
of underwater dead reckoning [31] showed that the drift could
be controlled to 5 m over a time frame of 2 h, making the
assumption of having a drift amount less than the visibility
range reasonable. Once the AUV reached the required depth,
it searched for the pipeline.

The simulation world was composed of the “ocean box,”
the pipeline, and the AUV. The radius of the pipeline was
1 m. To create a gradual turn, the pipeline was separated into
four parts. Their size and positions are shown in Fig. 1. The
AUV used in the simulated environment had a dimension of
1.5(W )×2.6(L)×1.6(H) m3. It was spawned at a fixed depth
of 90 m. Apart from the essential components, several objects
other than the pipeline were placed along the way to test the
system’s capability to identify the correct target. The setup
of the virtual world is shown in Fig. 2. To better simulate the

Fig. 2. Simulated underwater world setup.

Fig. 3. Complete closed-loop structure of this research.

complicated environment underwater, constant sea current was
also applied to the simulation.

2) Software Structure: The experiment was a closed-loop
simulation system. The complete structure is shown in Fig. 3.
Using the current position of the AUV, the ROS/Gazebo world
simulated and reported the output from various sensors. With a
self-developed Python program, current navigation errors were
calculated and published to the ROS core. Additionally, the
Fuzzy control module was utilized to send velocity commands
to the AUV after making decisions according to the navigation
errors.

B. Dynamic Model of AUV
The position of the AUV was estimated using an extended

Kalman filter (EKF). A derivation of six degrees-of-freedom
(DoFs) dynamic model with a simplification to four DoF was
presented in [32].

The relation between the force from the thrusters and the
velocity was expressed with the equation below

M v̇ + C(v)v + D(v)v + g(η) = τ (2)

where M was the inertia of the AUV, C(v) was the Coriolis
effect matrix, D(v) was the fluid drag matrix, and g(η) was the
acceleration sum of gravity and buoyancy, and η represented
the vehicle position and pose. At the other side of the equation,
τ represented the generalized force-torque vector exerted on
the vehicle, including the force generated by the actuators, the
wind, and the waves. Using the equation above, the state-space
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Fig. 4. Graphical explanation of orientation error, heading error and
horizontal error in the proposed fuzzy controller module.

model was derived as[
v̇

η̇

]
=

[
M−1τ−M−1(C(v) + D(v))v − M−1g(η)

J (η)v

]
(3)

where J was the coordinate transformation matrix between the
body frame and the global frame.

The velocity measurements in the EKF were collected
from the Doppler velocity log (DVL) and the IMU sensors,
while the acceleration terms were derived by reading the force
output from the eight thrusters on the AUV. With this dynamic
model, the error of position estimation was around 0.7 m. The
detailed derivation is included in [32].

C. Fuzzy Controller Module
Fuzzy systems, also called expert systems, are constructed

using the knowledge of experts. The system makes decisions
with proper reasoning [33]. A rule-based fuzzy expert sys-
tem was adopted for the proposed algorithm. One distinct
advantage of the fuzzification process in fuzzy systems is in
improving the noise tolerance in the underwater environment.
The fuzzy control framework in [32] and [34] was applied. The
motion of the AUV was determined by analyzing three navi-
gation errors—heading error, orientation error, and horizontal
error. The heading error was the angle difference between the
current heading and the straight line from the AUV to the
next designated point. The orientation error was the angle
difference between the current heading and the pipeline’s
orientation. The horizontal error was the horizontal distance
between the AUV and the pipeline. The graphical explanation
of all three navigation errors is shown in Fig. 4.

According to the input values, the fuzzy control module
evaluated the magnitude of all errors with their predefined
linguistic variables (see Fig. 5). With the number of categories
in each error, 5 × 7 × 5 = 175 rules were expected in the rule
base. To reduce the size, the hierarchical rule base reduction
approach introduced in [34] and [35] was applied, reducing the
number to 29. The rule base used in this study is presented in
Table I. The final navigation decisions of the AUV were made
accordingly.

Fig. 5. Linguistic variable membership functions of (a) heading error,
(b) horizontal error, and (c) orientation error.

TABLE I
RULE BASE OF THE FUZZY CONTROLLER IN THIS STUDY

The output value was then defuzzified according to the
function in Fig. 6. In this experiment, the angular velocity
of the AUV was assigned according to the output value of
the fuzzy controller with a fixed linear velocity of 0.15 m/s
(forward).

D. Interpretations of Visual and Sonar Data
In leveraging the fuzzy controller, the data retrieved from

the camera and the sonar sensor were interpreted into the
navigation errors.
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Fig. 6. Defuzzification function of the fuzzy controller in this study.

Fig. 7. Analogy was made between the image and physical space. The
definition of next designated point and close point can be referred to
Fig. 4.

1) Visual Data: Two reference points mentioned in Fig. 4
were analogized in the image data. Fig. 7 is an example
of the detected image. When a pipeline was present in the
image, the middle point of the pipeline was analogous to
the next designated point, and the pipeline’s intersection with
the bottom of the image was referenced as the close point.

Different from the original approach where a series of
coordinate points are predefined, the “next designated points”
and “close points” were updated with every incoming images
in the proposed algorithm. Therefore, the resolution of the
route was also increased, leading to a more precise navigation.

The reference points were translated from its image coordi-
nates into vehicle coordinates through matrix transformation
calculation considering the geometry and specifications of
the camera system. Assuming the focal length of the camera
was f , the image resolution was H(height) × W (width), and
the camera was mounted at (x0, y0, z0) with yaw angle of θ

relative to the vehicle, the coordinate of the object relative to
the camera was expressed as

xc =
(a − 2/W ) × zc

f sin(θ)
(4)

yc =
(b − 2/H) × zc

f sin(θ)
(5)

zc =
h

sin θ +
b−2/H

f cos θ
(6)

where h is the current distance between the vehicle and the
ground.

A coordinate transform from image coordinates to AUV
coordinates was then applied with the equation belowXv

Yv

Zv

 =

x0
y0
z0

 +

0 0 1
0 −1 0
1 0 0

 1 0 0
0 cos θ sin θ

0 − sin θ cos θ

 xc
yc
zc

 .

(7)

Fig. 8. Illustration of the sonar configuration on an AUV.

The three error values required for the fuzzy controller,
horizontal error, front error, and orientation error were derived
from the coordinates of the reference points. Assuming
that the AUV coordinate of the next designated point and
the close point were derived to be (xnext, ynext, znext) and
(xclose, yclose, zclose), then the navigation errors were expressed
as

Ehorizontal = −yclose

Eheading = tan−1 ynext − yclose

xnext − xclose

Eorientation = tan−1 ynext

xnext
. (8)

2) Sonar Data: Horizontal error, heading error and orienta-
tion error can also be derived from the detected ranges from
a four-unit DVL sonar sensors. Assuming that the pipeline
has a radius of r , the four sonar sensors are installed at the
four corners of the AUV. The sensors are separated from each
other at a distance of 2 m from the left to the right side, and
2n from the front to the back. An illustration is shown in
Fig. 8. Viewing from the top of the AUV, the sonar sensors
detect the distance at four different directions. The four sonar
sensors point toward the seabed slantingly. The end of the
arrow represents the position where the sonar beam touches
the ground.

Since the size of the pipeline and the distance from the
vehicle to the ground were known values, distinguishing
whether a single sonar sensor detected the pipeline was not
difficult. According to the detection result of four sonar
sensors, 24

= 16 cases could be listed. And the navigation
errors corresponding to each case were derived by averaging
their probabilities.

When all four sonar sensors detected the pipeline, the aver-
aged position/orientation of the vehicle is shown in Fig. 9(a).
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Fig. 9. Averaged position of the AUV when (a) all four sensors detected
the pipeline, (b) only the two diagonal sensors detected the pipeline,
(c) only one of the sensors did not detect the pipeline, and (d) only one
of the sensors detected the pipeline.

In this case, the navigation errors were

E[Errorhorizontal] = 0 (9)
E[Errororientation] = E[Errorheading] = 0. (10)

The notation E[·] represented the expected value of the
parameter inside the bracket.

When only the two diagonal sensors detected the pipeline,
as shown in Fig. 9(b), the averaged condition led to the result

E[Errorhorizontal] = 0 (11)

E[Errororientation] = E[Errorheading] = tan−1
(m

n

)
. (12)

In the case where the vehicle was horizontally flipped, that
is, only the sensor at front-right and back-left detected the
pipeline, the sign of the two angular errors was reversed.

If only one of the four sensors was out of the area of the
pipeline, as shown in Fig. 9(c), the horizontal position relative
to the pipeline had an offset to the left side. Therefore, the
expected value of the errors was

E[Errorhorizontal] = −0.5r (13)

E[Errororientation] = E[Errorheading] = tan−1
(m

n

)
. (14)

Similar calculation could be done on the case where the AUV
was horizontally or vertically flipped.

In the last case shown in Fig. 9(d), where only one sonar
sensor detected the pipeline, the AUV deviated from the
pipeline at a larger distance than the previous cases. The
expected value of the errors was

E[Errorhorizontal] = −1.5r (15)

E[Errororientation] = E[Errorheading] = tan−1
(m

n

)
. (16)

Although the navigation errors in most of the cases could be
estimated with the equations above, four special cases could
not be successfully interpreted. When only two adjacent sonar
sensors detected the pipeline, while the other two did not,
the situation became indeterminate. One example is shown
in Fig. 10. If only the two sensors at the front of the AUV
detected the pipeline, the AUV could possibly be at the left or
the right side relative to the pipeline. A similar situation was
also found when only the sensor on the left/right/back side of

Fig. 10. Illustration of one of the indeterminate cases.

TABLE II
NAVIGATION ERROR INTERPRETATION OF EVERY

POSSIBLE DETECTION RESULT

the AUV detected the object. In these four cases, the naviga-
tion errors were not derivable. Under these circumstances, the
image-processing results were referred to for the navigation
errors.

Combining the results derived above, the navigation errors
are represented in Table II. In Table II, “+” represents
“detected” while “−” represents “not detected” The order of
the sensors is front-left, front-right, back-left, and back-right.

The interpreted navigation errors from both visual and
sonar sensors were processed by the fuzzy controller, thereby
navigating the AUV toward the predetermined route. This
function was verified with a series of experiments done in
a simulated environment.

E. Navigation in the Simulated Environment
The proposed navigation algorithm was applied on the

simulated AUV. The detection data from the Gazebo world
and the calculated navigation command were communicated
through the ROS core of the system.

1) Image Processing: The camera mounted on the simulated
AUV had a resolution of 768×492 with 8-bit RGB depth. The
camera was installed at a position of (1.15, 0, 0.4) with respect
to the AUV. Furthermore, the line of sight of the camera was
tilted toward the ground at an angle of 0.6 rad. The sketch of
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Fig. 11. Position and line of sight of camera relative to AUV.

TABLE III
INSTALLATION DIRECTIONS OF SONAR SENSORS

the spatial relation between the AUV and the camera is shown
in Fig. 11. The horizontal and vertical fields of view of the
camera were 124.2◦ and 100.8◦, respectively.

After acquiring the image, an enhancement process was
applied to the image. A detailed block diagram is shown in
Fig. 12. After the image was converted to grayscale, it went
through a plateau histogram equalization [36] process with a
threshold value of 10 to present an image with better contrast.
A 3 × 3 median filter [37] was then applied to eliminate
speckle noise from the environment. After noise reduction,
a Sobel edge detection filter [38] was applied in the x- and
y-direction on the image, respectively. Since the simulated
AUV was intended to cruise along the pipeline, the weights
of the vertical edge were weighted more than horizontal edge.
The ratio was set to be 2:1. This weight adjustment enhanced
the system’s capability in recognizing the pipeline that aligned
with the vehicle’s direction.

After the image enhancement processes, a Hough transform
[39] was applied to the image. Ten detected straight lines with
the highest response were recorded. To represent the detected
pipeline with one single line, the ten recorded lines were
averaged and expressed as

ximg cos θavg + yimg sin θavg = ρavg (17)

where θavg and ρavg were the average value of all ten recorded
lines. An example of the detection result is shown in Fig. 13.
In Fig. 13, the red line represents ten lines with the highest
response and the yellow line represents their average.

The averaged pipeline detection results were then applied
to the proposed algorithm [see (8)], deriving the appropriate
motion commands.

2) Sonar Processing: In the simulated AUV, a four-unit
sonar sensor was mounted at (−1.4, 0, −0.312) relative to the
vehicle. The four single sonar sensors were installed in dif-
ferent directions (see Table III) with respect to the coordinate
axis as shown in Fig. 14.

TABLE IV
NAVIGATION ERROR INTERPRETATIONS FOR

EVERY DETECTION RESULT

The single sonar sensors returned the range measurements
in the corresponding directions. With a fixed AUV depth,
the sonar sensors’ detection points were directly measured to
be 0.64 m from the vertical center line and 3.4 m from the
horizontal center line. A clear graphical description is shown
in Fig. 15.

Based on the sonar sensors’ detection direction and the size
of the underwater pipeline, the detected range was between
8.2 (center line of pipeline) and 10.4 m (seabed.) Therefore,
the detection threshold was set to be 8.5 m. Any range value
smaller than 8.5 m was categorized as “detected.”

With only four sonar sensors, precise navigation errors
were not feasible. However, with the fuzzy controller and
the proposed interpretation algorithm, precise navigation was
achieved. Given the configuration of the simulated sonar
system, Table IV provides the corresponding navigation errors
under most cases. In Table IV, “+” represents “detected”
while “−” represents “not detected.”

3) Sensor Fusion: As discussed, four single sonar sensors
could not provide navigation errors under all conditions.
Moreover, the line detection algorithm was more susceptible
to errors due to other objects and noise. The coordination
between the camera and sonar sensors was beneficial for the
navigation system.

Since the camera had a much larger field of view than the
single sonar sensors, the camera was used in the initial search
of the underwater pipeline. When the AUV was close enough
to the pipeline, the sonar could cooperate with the camera and
contribute to the navigation process. In this scenario, since
the AUV was already approaching the pipeline, large errors
that appeared suddenly were unlikely to be found. These large
errors could have been a false alarm that came from other
nearby objects. When the navigation errors from both sensors
were present, the one with the smaller value was adopted. The
fused navigation errors were then sent to the fuzzy controller
for the motion control.
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Fig. 12. Detailed block diagram of the image enhancement process.

Fig. 13. Example of the pipeline detection results.

Fig. 14. Detection direction of sonar was defined relative to the
coordinate system shown in this figure.

F. Leak Detection
A leak detection mission was implemented for further

experimentation. A plume package developed by Tian and
Zhang [40] was used to simulate a leaking pipeline. A random
number of chemical particles were generated with random
moving velocities. Each existing particle contributed to the
concentration distribution function. A chemical particle con-
centration sensor detected the sum of the concentration distri-
bution function and published it to the ROS core. Detailed
derivations were included in [40] as well. The sensor was
mounted on the AUV and reported the chemical concentration
value with respect to the center of the AUV.

In this experiment, the leak point was set up at (0, 0, −99).
The position with the highest chemical concentration were
recorded and reported after the inspection was finished. This
point was marked as a leak point and reported to the users.
Fig. 16 shows the chemical concentration readout in one of
the trials.

III. RESULTS

With the simulation environment setup as described in the
method section, a series of experiments were conducted to
verify the ability of the system to navigate and detect leaks.

Fig. 15. Detection point by direct measurement is shown in this figure
(top view of the AUV).

Fig. 16. Example of chemical concentration measurement during an
inspection mission in simulation environment.

The AUV was operated at a depth of 90 m while the depth
of the ocean was set to 100 m. The current wave ranging
from 0 to 1.2 m/s was applied to the vehicle. The static
optical effects and noise had been included in the simulation
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Fig. 17. Squared deviation of the trial.

model. Detailed experimental results, errors, and analysis are
provided.

A. AUV Navigation
In evaluating the system’s abilities in navigation, the AUV’s

trajectory was measured while it navigated toward/along
the pipeline. Its precision was assessed by the root mean
square (rms) error of all points along the trajectory.

1) Pipeline Following Precision: In this experiment, the AUV
was spawned on top of the pipeline at a coordinate of
(0, 0, −90) heading in the positive y-direction. The trials
were conducted under image-only and sensor fusion control
schemes, respectively. The rms position errors were 0.905
(image-only) and 0.481 m (sensor fusion), respectively. The
results showed that the navigation result was greatly improved
by introducing the sonar sensor.

The improvement of navigation error mainly came from the
turning part of the pipeline. Since the camera had a relatively
large field of view, the turning point ahead of the AUV was
detected before reaching it. As a result, the AUV reacted to
the turning point earlier than it should have, leading to a
larger error. On the other hand, the sonar sensor only detected
the pipeline 3.4 m ahead and behind the AUV (see Fig. 15).
Therefore, the data retrieved from the sonar sensors navigation
improved the turning precision. However, as shown in Table II,
some of the conditions could not be interpreted with just sonar
sensors. In addition, it was impossible to retrieve the pipeline
once all four sensors lost track. As a result, a combination of
sonar and image sensors was the best solution.

2) Pipeline Approach Precision: In this experiment, the
AUV was spawned away from the pipeline at (10, 0, −90) to
evaluate the system’s performance in approaching the pipeline.
The squared deviation is shown in Fig. 17 while the rms
trajectory error is provided in Table V. All position data during
the experiment were plotted in order. The x-axis is the order
while the y-axis shows the deviation value. The black frame
shows where the pipeline turns.

From the measured results, it was observed that the AUV
navigated toward the pipeline properly initially. However,
an increased error could be found on Fig. 17 during the
pipeline turn. Moreover, it was found that the proposed sensor
fusion algorithm decreased the rms error significantly when
the AUV cruised along the bending part of the pipeline. This

TABLE V
RMS TRAJECTORY ERROR OF TWO TEST TRIALS THAT

STARTED AWAY FROM THE PIPELINE

TABLE VI
RMS TRAJECTORY ERROR OF TEST TRIALS THAT STARTED AWAY

FROM THE PIPELINE UNDER DIFFERENT LEVELS OF SEA

CURRENT MAGNITUDES (UNIT:m)

result corresponded to the previous test where the AUV started
on top of the pipeline. In conclusion, image data dominated
the navigation when the AUV searched and approached the
pipeline. Whereas, the inclusion of a sonar sensor helped the
navigation system further decrease the error in trajectory when
the AUV was cruising along the pipeline.

3) System Robustness Evaluation: To evaluate the system’s
robustness over a range of complex disturbances, a constant
sea current of various magnitude was applied to the simulation
environment. The setup of sea current magnitude followed
[41]. Similar to the pipeline approaching experiment, the AUV
was spawned at (10, 0, −90). The coordinate of the vehicle
was recorded compared with the ground truth, which was the
coordinate of the pipeline.

The experimental result is shown in Table VI. Though the
navigation error increased with sea current speed, the AUV
approached the pipeline and followed it. This successfully
demonstrated the robustness of the navigation framework
in noisy environments. In addition, a comparison between
image-only and sensor fusion approaches is also provided in
Table VI. A reduction in the navigation error resulted from
the inclusion of sonar sensors.

4) Comparison to Previous Work: A comparison was per-
formed between the proposed method and previous studies.
With the input of the position data, study in [12] navigated
the AUV to follow specific paths leveraging fuzzy logic.
The measured navigation error was 1.02 and 1.09 m in two
different trajectories. On the other hand, Li et al. [9] used
adaptive PID control and the GPS signal to navigate the AUV.
A comb-shaped trajectory was chosen for the experiment.
It was shown that the rms error in the main part of the
route was less than 1 m. The work in [42] proposed using
a proximity sensor to execute the pipeline following mission.
The rms error was approximately 2 m when initialized on top
of the pipeline.

Without relying on GPS data, the proposed navigation
framework reached the same level of accuracy as the
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TABLE VII
COMPARISON BETWEEN THE PROPOSED WORK AND PREVIOUS

WORKS (UNIT: m) (* APPROXIMATED FROM THE TRAJECTORY PLOT)

TABLE VIII
EXPERIMENTAL RESULT OF THE LEAK DETECTION TEST

position-based algorithms. In addition, in the experiments
where the AUV started on the designated path, the proposed
algorithm significantly outperformed the previous work. The
comparison table is shown in Table VII.

B. Leak Detection
To evaluate the system’s performance in recognizing a

leak point on the pipeline, the plume package mentioned
previously was used to generate a virtual leak point. The plume
source was set to be (0, 0, −99). The AUV was spawned
at 16 different points (PStart) with a depth of 90 m. The
AUV was navigated toward the pipeline with the chemical
concentration sensor. The points where the AUV was nearest
to the plume source (PNear) and where the AUV detected the
highest chemical concentration (PDetection) were recorded to
evaluate the precision of leak detection. With the difference
between the two points, an error was calculated to assess the
performance of the leak detection. The experimental data are
shown in Table VIII. In Table VIII, PStart is where the AUV
was released. PNear is where the AUV’s position is nearest
to the plume source. PDetection is where the largest chemical
concentration was detected.

From the experimental data, it was found that the detected
leak point had an error between 0.97 and 3.92 m. The
average error and standard deviation was 2.58 and 0.79 (m),
respectively. Apart from the magnitude of the errors, their

direction was also consistent. From the data, it was concluded
that Pdetection was always found once the vehicle reached PNear.
The reason is that the plume source kept releasing chemical
particles even after the AUV passed the point nearest to it.
This caused a delay in the detection of leak points.

IV. CONCLUSION

In this study, a precise and cost-efficient way to conduct
underwater pipeline inspection was demonstrated in a GPS-
denied environment. All of the presented challenges in the
underwater environment have been considered. With only a
camera and four-unit sonar sensors, the AUV successfully
navigated toward the pipeline and cruised along it with a
precision that outperformed the previous studies. Additionally,
with fuzzy logic included in the navigation framework, the
robustness of the navigation framework was demonstrated
under various current velocities. Finally, when using the pro-
posed navigation system, it was shown that the AUV could
achieve a much higher precision compared to the conventional
leak detection sensors.

The navigation framework proposed in this study has shown
great potential for application to autonomous underwater
pipeline inspection. This method can also be translated to
other vision systems working under environments with limited
visibility.

In future research, the system’s robustness for visibility
variations and obstacles could be enhanced. For instance,
including additional sensors into the fusion framework is
promising. In addition, using adaptive parameters as inputs
in image processing can help in significantly increasing the
environmental tolerance of the system. Finally, the dynamic
surface wave effects that were not included in the sim-
ulator can be determined through real-world experiments.
A down-scaled AUV that can be tested in pools is currently
under consideration.
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