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Multivariate Dynamic Mode Decomposition and
Its Application to Bearing Fault Diagnosis

Qixiang Zhang, Rui Yuan , Member, IEEE, Yong Lv , Zhaolun Li , and Hongan Wu

Abstract—In practical engineering applications, the
multivariate signal contains more fault feature information
than the single-channel signal. How to realize synchronous
extraction of fault features from the multivariate signal is
of great significance in fault diagnosis of rotary machinery.
Dynamic mode decomposition (DMD) has attracted much
attention due to its excellent dynamic feature extraction
ability. However, DMD lacks mode aliasing property when
dealing with the multivariate signal, which may lead to
the loss of critical fault feature information. Cater to this
problem, this article proposed a multivariate DMD (MDMD)
algorithm that is the multivariate extension of DMD. First,
snapshot tensors are defined to convert multivariate signals
to tensor format. Then, the MDMD algorithm is proposed
by introducing tensor operations into the original DMD
algorithm, where a tensor low tubal rank component
extraction framework is constructed to enable simultaneous
extraction of bearing fault features from the multivariate
signal, to enhance the robustness and effectiveness of
the algorithm. Finally, both numerical simulations and
experiments verify that the proposed MDMD has higher fault
diagnosis accuracy than other multivariate signal-processing
methods.

Index Terms— Bearing fault diagnosis, multivariate
dynamic mode decomposition (MDMD), multivariate signal
processing, transient feature extraction.

I. INTRODUCTION

FAULT diagnosis is essential to ensure the stable operation
of machinery [1], [2]. As a key component of rotating

machinery, rolling bearings are prone to failure due to heavy
loads and extreme temperatures during operation [3], [4], [5].
Once the bearing fails, the maintenance cost of the equipment
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will increase due to unexpected downtime and even cause
catastrophic accidents [6], [7], [8]. Therefore, early fault
diagnosis for rolling bearings has attracted much attention
from researchers.

The early fault of the bearing usually behaves as a single
failure, and the periodic impulses will be generated when
the rollers pass the damaged part [9]. Due to the complex
transmission chain of the mechanical system, the periodic
impulses are easy to be coupled with the periodic components
generated by other components (such as shaft misalignment,
gear meshing, etc.), which makes the collected signals show
obvious nonlinear characteristics [10]. Meanwhile, the fault
features are often submerged in strong noise, which brings
great difficulty to fault feature extraction. Therefore, it is the
main task of bearing fault diagnosis to accurately extract fault
feature components from noise signals. In recent years, many
feature extraction methods have been proposed to improve
the accuracy of fault diagnosis. Signal filtering methods,
such as spectral kurtosis [12] and empirical wavelet trans-
form [13], can extract fault features by identifying fault-related
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frequency bands. In addition to the above methods, the
cyclostationary analysis methods [14], [15] can display the
energy spectrum that is composed of spectral frequency
and cycle frequency. These methods can effectively extract
fault characteristic frequencies through envelope analysis
techniques.

Signal decomposition methods, such as empirical mode
decomposition [16], local mean decomposition [17], varia-
tional mode decomposition [18], and dynamic mode decom-
position (DMD) [19], decompose the signal into fault-related
modes to extract fault features. The above methods provide
a rich theoretical basis for bearing fault diagnosis. However,
considering the practical application, the location of the fault
cannot be known in advance, and the prearrangement position
of the sensor may not be optimal, which may lead to weak
fault features contained in the collected signal. Therefore,
it is a common operation in practical engineering applications
to use multiple sensors to collect multichannel signals to
increase the collection of fault-related information. However,
the single-channel fault diagnosis method cannot efficiently
utilize the collected signals due to the uneven energy distribu-
tion of fault features among multiple channels. Hence, it is of
great significance to develop a high-accuracy and robust mul-
tivariate signal-processing method for bearing fault diagnosis.
How to realize information fusion between channels, extract
fault features synchronously, and improve the robustness of the
algorithm are the key issues of multivariate signal-processing
methods.

To solve the above problems, researchers extended some
mode decomposition algorithms to the field of multivariate
signal processing. Multivariate empirical mode decomposition
(MEMD) [20] realizes information fusion between channels
by constructing a multidimensional space using a uniform
projection-based approach. Then the local mean is estimated to
fulfill the simultaneous decomposition of multivariate signals
at different frequency scales. With the merits, MEMD and
its improved methods [21], [22], [23] have been widely
employed in mechanical fault diagnosis. However, as the
multivariate extension of the EMD method, MEMD inherits
the limitations of single-channel EMD. In addition to mode
mixing and endpoint effects, the lack of noise robustness
also restricts its engineering applications. Therefore, how to
enhance the noise robustness of MEMD has aroused the inter-
est of researchers. Lv et al. [24] improved the noise robustness
of MEMD using nonlocal means denoising approach. They
verified that MEMD can effectively extract bearing multivari-
ate fault features. Hao et al. [25] proposed a joint denoising
framework for MEMD. The denoising performance of MEMD
is improved by using a subspace projection scheme. Multivari-
ate variational mode decomposition (MVMD) [26] extracts
multivariate modulation oscillations synchronously from the
Fourier domain and thus directly has mode alignment property.
In other words, the mode alignment property guarantees the
accuracy of MVMD in fault diagnosis when all channels
contain common fault information. However, the performance
of MVMD depends on the selection of two key parameters.
Song et al. [27] proposed a self-adaptive MVMD method for

bearing fault diagnosis. They determined the mode parameters
and initial center frequencies based on the convergence trend
of MVMD. Lu et al. [28] proposed an adaptive parameter
selection method for MVMD based on the difference in
correlation coefficients.

The above research provides valuable ideas for solv-
ing the key problems of multivariate signal processing.
In recent years, DMD has been widely used in various
fields [29], [30], [31], [32] due to its complete theoretical
foundation and excellent dynamics feature extraction capabil-
ity. DMD characterizes the dynamics of the original system
by constructing a proxy dynamical system matrix and decom-
posing it into single-frequency DMD modes to extract the
dynamical features hidden in the signal. However, the standard
single-channel DMD lacks the mode alignment property. The
energy-based DMD mode selection strategy cannot accurately
locate fault features due to the uneven energy distribution of
bearing fault features between channels. To further solve the
problems of information fusion and simultaneous extraction
of bearing fault features, a novel multivariate DMD (MDMD)
algorithm is proposed in our research here. First, we intro-
duce the tensor product into the operation of MDMD and
realize the information fusion between channels by using the
characteristic of circular convolution of the tensor product
in the time-domain signal. Then, a robust tensor low-rank
component extraction framework is constructed in MDMD for
the simultaneous extraction of bearing fault features from the
multivariate signal, which enhances the noise robustness of the
proposed method. In our previous work [33], we have verified
that the fault features are low-rank distributed in the dynamical
system matrix. As the multivariate extension of the traditional
DMD algorithm, multivariate fault features are also low-
rank distributed in the dynamic system tensor (DST). Finally,
numerical simulations verify the mode alignment property
of the proposed approach, while the mode alignment rate
(MAR) of the proposed method is higher than that of MEMD
and MVMD. The subsequent experiments further verified the
conclusion. The innovations of this article are summarized as
follows.

1) A novel MDMD algorithm is proposed. The tensor
singular value decomposition (TSVD) and tensor product are
constructed during the operation of MDMD. It is worth noting
that the proposed MDMD has mode alignment property due
to the nature of circular convolution operations of the tensor
product.

2) A novel robust low-rank tensor component extraction
framework is constructed in MDMD for multivariate fault
feature extraction. The proposed framework not only enhances
the noise robustness of the algorithm, but also avoids the
problem of multivariate DMD mode selection.

3) A bearing fault diagnosis method for multivariate signals
based on MDMD is proposed. The snapshot tensor is defined
to convert the multivariate bearing fault signal into a tensor
format. Then the proposed method provides a robust fault
feature extraction for multivariate fault signals. Numerical
simulation and experimental analysis verify the effectiveness
of MDMD in bearing fault diagnosis.
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The remaining structure of this article is organized as
follows. Section II provides the theoretical background of
DMD. Section III describes the proposed MDMD algorithm.
Section IV illustrates the mode alignment property of the
proposed MDMD algorithm. Section V verifies the effective-
ness of the proposed multivariate signal-processing method
in bearing fault diagnosis, and the conclusions are drawn in
Section VI.

II. DYNAMIC MODE DECOMPOSITION

In this section, the basic idea of standard DMD is introduced
so that it can be extended to the field of tensor computing later.
The DMD algorithm provides a spatiotemporal decomposition
of 1-D time series into DMD modes so that the low-rank
structure in a complex system can be extracted by combining
specific modes. A sampling window divides the 1-D time
series into snapshots as [x1, x2, . . . , xn], and the time interval
between the two snapshots is 1t , DMD assumes that the non-
linear system is approximately linear in time 1t , and the actual
dynamic system can be characterized by a high-dimension
dynamical system matrix A

xk+1 = Axk . (1)

To minimize the approximation error of the dynamical
system matrix, two snapshot matrices are constructed

X =

 | | |

x1 x2 · · · xn−1
| | |

 and

Y =

 | | |

x2 x3 · · · xn
| | |

 . (2)

Thus, the dynamical system matrix A can be expressed as

Y = AX. (3)

The locally linear approximation problem can be expressed
as

min ∥Y − AX∥F . (4)

The optimal dynamical system matrix A is given by

A = Y X† (5)

where X† is the pseudoinverse of X . Then, an singular value
decomposition (SVD)-based pseudoinverse solving method is
introduced below. Assume that X = U6V T , where 6 is the
diagonal singular value matrix. The pseudoinverse of X can
be calculated as follows:

X†
= V 6−1U T . (6)

To increase the efficiency of the algorithm, it is more
convenient to compute Ã by projecting a dynamical system
matrix A on U

Ã = U T AU = U T Y V 6−1. (7)

Assuming Ã = 3W is the eigendecomposition of Ã, where
3 and W are the eigenvalue matrix and the eigenvector matrix,
respectively. The DMD modes are defined as follows:

8 = U W. (8)

Algorithm 1 Standard DMD
Input: snapshot matrices X and Y .
1. [U, 6, V ] = svd (X)

2. Ã = U T Y V 6−1

3. [W, 3] = eig
(

Ã
)

4. 8 = U W
5. b = 8†x1
Output: 8, b

The 1-D time series can be reconstructed by

x (t) =

r∑
k=1

φk exp (ωk t) b (9)

where b = 8†x1 is the initial conditions of the reconstruction
process. The pseudo-code of standard DMD is shown in
Algorithm 1.

III. MULTIVARIATE DYNAMIC MODE DECOMPOSITION

In this section, the MDMD algorithm is proposed to process
multichannel or multivariate signals synchronously. First, the
tensor product is introduced as the basis for the multivari-
ate DMD. Second, the matrix operations in standard DMD
are rewritten as tensor operations. In particular, the detailed
algorithms for the computation of tensor pseudoinverse and
DMD modes are discussed. Afterward, a tensor low tubal rank
component extraction framework is introduced to fulfill the
automatic identification of DMD modes. Finally, the algorithm
of MDMD is given at the end.

A. Notations and Preliminaries
In this article, tensors are represented by Euler script

letters, for example, X ; matrices are represented by capital
letters, for example, X ; vectors are represented by lowercase
letters, for example, x ; and scalars in tensor are denoted
by xi jk , where xi jk denote X (i, j, k) in MATLAB notation.
The inner product between X and Y is defined as ⟨X, Y ⟩ =

T r(X∗Y ). The inner product between X and Y is defined
as ⟨X , Y⟩ =

∑ n3
i=1⟨X (i), Y (i)⟩, where X (i) denotes the

X (:, :, i) in MATLAB notation.
Some norms of the tensor are used below. The ℓ1-norm of

the tensor is ∥X∥1 =
∑

i jk |xi jk |; the infinity norm of the
tensor is ∥X∥∞ = maxi jk |xi jk |; the Frobenius norm of the
tensor is ∥X∥F = (

∑
i jk |xi jk |

2)1/2; the tensor nuclear norm
is ∥X∥TNN =

∑r
i=1 S(i, i, 1), where X = U ∗ S ∗ VT is the

TSVD of X .
Definition 1 (TSVD [34]): Let X ∈ Rn1×n2×n3 . Then it can

be factorized as

X = U ∗ S ∗ VT (10)

where U ∈ Rn1×n1×n3 , V ∈ Rn2×n2×n3 are orthogonal, and
S ∈ Rn1×n2×n3 is an f-diagonal tensor.

Definition 2 (Tensor Product [35]): Let X ∈ Rn1×n2×n3 and
Y ∈ Rn2×l×n3 . Then the tensor product X ∗ Y is defined as

X ∗ Y = fold (bcirc (X ) · unfold (Y)) (11)
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Fig. 1. Steps to form a snapshot tensor from a multivariate signal.

where fold(X ), unfold(X ), and bcirc(X ) are defined as

unfold (X ) =


X (1)

X (2)
...

X (3)

 (12)

fold (unfold (X )) = X (13)

bcirc (X ) =


X (1) X (n3) · · · X (2)

X (2) X (1) · · · X (3)
...

...
. . .

...

X (n3) X (n3 − 1) · · · X (1)

 .

(14)

It can be seen from Definition 2 that the tensor product
in the time domain is actually the circular convolution between
the layers, while it is equivalent to the matrix multiplication in
the Fourier domain. Benefiting from this property, the tensor
product operations are performed in the Fourier domain to
improve the operational efficiency of the MDMD algorithm.

B. Multivariate DMD
Before formulating the MDMD algorithm, a multivariate

signal needs to be constructed as snapshot tensors. Assume
a set of n-channel signal S = [s1(t), s2(t), . . . , sn(t)] ∈

Rn×m . First, the snapshot matrices are constructed by using
a sampling window to synchronously intercept the data of
different channels. Then the snapshot tensors are obtained by
horizontally stacking the snapshot matrices. It is worth noting
that signals from the same channel should be placed in the
same forward slice to activate the information fusion property
of tensor operations. Therefore, proper rotation of the snapshot
matrix is necessary. The detailed steps are shown in Fig. 1.
Similar to standard DMD, the two snapshot tensors X and Y
are constructed with a delay of 1t . The DST of MDMD is
defined as

A = Y ∗ X †. (15)

Next, a TSVD-based tensor pseudo-inverse framework
is constructed, and the detailed algorithm is shown in

Algorithm 2 Calculation Steps of the Tensor Pseudoinverse
Input: tensor X ∈ Rn1×n2×n3 .
1. X̄ = f f t (X , [], 3);
2. for i = 1, . . . ,

⌈
n3+1

2

⌉
do[

Ū (i) , S̄ (i) , V̄ (i)
]

= svd
(
X̄ (i)

)
;

X̄ (i)†
= V̄ (i) S̄ (i)−1 Ū (i)T

;

end for
for i =

⌈
n3+1

2

⌉
+ 1, . . . , n3 do

Ū (i) = conj
(
Ū (n3 − i + 2)

)
;

S̄ (i) = S̄ (n3 − i + 2) ;

V̄ (i) = conj
(
V̄ (n3 − i + 2)

)
;

X̄ (i)†
= V̄ (i) S̄ (i)−1 Ū (i)T

;

end for
3. X †

= i f f t
(
X̄ , [], 3

)
;

Output: X †.

Algorithm 2. It can be observed from Algorithm 2 that all
operations are done in the frequency domain. It is the convo-
lution in the time domain that can be converted into the product
in the frequency domain that the operation can speed up
the efficiency of the algorithm. Meanwhile, the layer-by-layer
inversion of the diagonal matrix S in the frequency domain
simplifies the steps of the conventional tensor unfolding.

The projected DST B can be calculated as

B = UT
∗ A ∗ U = UT

∗ Y ∗ V ∗ S−1. (16)

The multivariate dynamic modes are defined as the eigen-
vector of B. To calculate MDMD modes, we also use the prop-
erties of the tensor product to perform the eigendecomposition
of frontal slices in the Fourier domain. Thus, the tensor B can
be factorized as

B = E ∗ W (17)

where E is an f-diagonal tensor and W can be viewed as
a tensor whose frontal slices are composed of eigenvectors.
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Algorithm 3 Calculation Steps of MDMD Modes
Input: B ∈ Rn1×n1×n3 , U ∈ Rn1×n1×n3 .
1. B̄ = f f t (B, [], 3);
2. for i = 1, . . . ,

⌈
n3+1

2

⌉
do[

Ē (i) , W̄ (i)
]

= eig
(
B̄ (i)

)
;

end for
for i =

⌈
n3+1

2

⌉
+ 1, . . . , n3 do

Ē (i) = conj
(
Ē (n3 − i + 2)

)
;

W̄ (i) = conj
(
W̄ (n3 − i + 2)

)
;

end for
3. E = i f f t

(
Ē, [], 3

)
;

W = i f f t
(
W̄, [], 3

)
;

4. M = U ∗ W ;
Output: M.

Thus, the MDMD modes can be calculated as

M = U ∗ W . (18)

The procedure for computing the MDMD modes is given in
Algorithm 3.

To this end, we have completed the formulation of MDMD
and realized the synchronous decomposition for multichannel
signals. It is worth noting that MDMD behaves as a slice
operation on tensors in the Fourier domain, which may cause
a misunderstanding that the proposed method does not involve
data fusion between multichannel signals. But the fact is
that the tensor product in MDMD can be viewed as the
circular convolution of the tensor slices. Hence, the proposed
MDMD is able to extract fault feature information from the
multichannel signals, synchronously.

Another point to highlight is the identification of multivari-
ate DMD modes. In standard DMD, the low-rank dynamical
model is constructed through specific combinations of DMD
modes. Compared with the single-channel DMD modes, mul-
tivariate DMD modes are obtained in a matrix form, which
increases the difficulty of bearing fault feature identification.
In this article, a tensor low tubal rank component extraction
framework for MDMD is proposed, which is aimed at directly
extracting fault feature components from DST and avoiding
the selection of multivariate DMD modes. The tensor low tubal
rank component extraction problem in MDMD can be written
as

arg minBL ,BN
∥BL∥TNN + λ∥BN ∥1

s.t. B = BL + BN (19)

where BL represents the low tubal rank component in DST and
BN represents the noise that is sparsely distributed in tensors.
The joint optimization problem is known as the tensor robust
principal component analysis [36] model which can be solved
via the alternating direction method of multipliers (ADMMs).
The augmented Lagrangian function of (15) can be written as

L (BL , BN , Y, µ) = ∥BL∥TNN + λ∥BN ∥1

+ ⟨Y, BL + BN − B⟩

+
µ

2
∥BL + BN − B∥

2
F (20)

Algorithm 4 Tensor Low Tubal Rank Component Extraction
Input: B ∈ Rn1×n1×n3 , parameter λ.
Initialization: BL0 = BN0 = Y0 = 0, µ0 = 1e−3, µmax =

1e10, ε = 1e−5

while not converged do
1. Fix others and update BL by (21);
2. Fix others and update BN by (22);
3. Update Y by (23);
4. Update µ by (24);
5. Check the convergence conditions∥∥BLk+1 − BLk

∥∥
∞

≤ ε,
∥∥BNk+1 − BNk

∥∥
∞

≤ ε,∥∥BLk+1 + BNk+1 − B
∥∥

∞
≤ ε

end while
Output: BL .

where Y is the Lagrange multiplier. BL and BN can be
updated by iteratively minimizing (16), while fixing the others.

Step 1: Update BLk+1

BLk+1 =arg minBL ∥BL∥TNN+
µk

2

∥∥∥∥BL +BNk − B+
Yk

µk

∥∥∥∥2

F
.

(21)

Step 2: Update BL N+1

BNk+1 =arg minBN
λ∥BN ∥1+

µk

2

∥∥∥∥BLk+1 +BNk −B+
Yk

µk

∥∥∥∥2

F
.

(22)

Step 3: Update Yk+1

Yk+1 = Yk + µk
(
BLk+1 + BNk+1 − B

)
. (23)

Step 4: Update µk+1

µk+1 = 1.1µk . (24)

The initial parameter settings and iteration-stopping conditions
are presented in Algorithm 4. The regularization parameter
λ controls the process of low-rank approximation, which is
related to the noise in DST. The error ε is the stopping
condition of the iteration, which is related to the accuracy
and running time of the algorithm. The recommended settings
for the above parameters can be referred to [36].

To sum up, the framework of the MDMD algorithm is given
in Algorithms 2 and 3, which extends DMD to multivariate
signal processing. Algorithm 4 is designed to extract low tubal
rank components from DST directly, which increases the noise
robustness while avoiding the mode selection problem. It is
worth noting that the low tubal rank component extraction is
proposed for fault diagnosis of rotating machinery, which has
a prior that the fault component is low rank [28]. The whole
algorithm of the proposed MDMD is given in Algorithm 5.

IV. NUMERICAL SIMULATION

In this section, the mode alignment property of MDMD is
discussed. Then, the comparative studies with representative
multivariate signal-processing methods (MEMD and MVMD)
are proposed.
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Algorithm 5 Multivariate DMD
Input: X ∈ Rn1×n2×n3 , Y ∈ Rn1×n2×n3 .
1. Perform tensor SVD to X by (10)
2. Compute the projected DST B by (16);
3. Extract the low tubal rank DST BL by (19);
4. Compute the multivariate DMD modes M by (18);
Output: M.

TABLE I
PARAMETERS OF THE SIMULATED MULTICHANNEL SIGNAL

A. Research on the Mode Alignment Property of MDMD
The mode alignment of a multichannel signal refers to the

alignment of joint oscillations across different channels [26].
In other words, similar vibration frequencies are present in
each channel of a multichannel signal. For bearing fault
diagnosis, the mode alignment property of signal-processing
methods is of fundamental importance to ensure physically
meaningful decisions. However, the arrangement of the sensors
and noise interference may cause energy imbalance between
channels during the acquisition of the signal. Taking the signal
collected by the multichannel sensor as an example, the energy
levels of fault components between each channel are different,
but the energy levels of noise interference between channels
are the same. Therefore, the bearing outer-race fault simulation
model [37] is introduced to simulate the multichannel fault
signal 

x1 (t) =
∑I

i=1 A1si (t − iTo − ςi )

x2 (t) =
∑I

i=1 A2si (t − iTo − ςi )

x3 (t) =
∑I

i=1 A3si (t − iTo − ςi )

si (t) = e−βi t cos (2π f t + ϕi )

(25)

where x1(t), x2(t), x3(t) represent the signal collected from
the three channels. The amplitudes of the three channels are set
to [1], [2], [4] to simulate energy imbalance. The parameters
are shown in Table I.

The simulated multichannel signal can be expressed as

Sn = S + N (26)

where S = [xT
1 (t), xT

2 (t), xT
3 (t)] is the clean signal and N

is the white Gaussian noise (WGN) with the signal-to-noise
ratio (SNR) = –5 dB. The waveform and the spectrum of the
simulated signal are shown in Fig. 2. It can be observed from
the spectrum that only the fault characteristic frequency (FCF)
can be identified in Channel 1, while the FCF in Channels
2 and 3 are masked by noise.

First, MDMD is employed to process the above-simulated
signal. It can be observed from Fig. 3 that the FCF( fo) can
be identified in all three channels. It is worth noting that,
although the SNR of the multichannel signal is −5 dB, the
SNR of Channel 3 is much smaller than −5 dB. It may cause
a misunderstanding that more WGN is added to Channel 3 than
the other two channels. But the fact is that the amplitude of the

Fig. 2. Simulated signal with SNR = −5 dB.

Fig. 3. Simulated signal processed by MDMD.

Fig. 4. Simulated signal processed by standard DMD.

vibration signal collected by Channel 3 is lower than the other
two channels, which is consistent with the actual situation.
Afterward, DMD is employed to process three single-channel
signals. Fig. 4 is the result of standard DMD. Obviously, the
interference frequency and noise still exist in Channels 2 and 3,
which makes it difficult to identify the FCF and its multiples.

Next, a novel FCF detection indicator is proposed to eval-
uate the mode alignment property of MDMD, which is based
on the idea of outlier detection in statistics. In the processed
signal, the FCFs are inevitably mixed into the interference
frequencies and even submerged by the noise. But it should
be noted that the FCFs are sparsely distributed in the frequency
domain, and the amplitude of the noise is relatively low. From
this, it can be considered that the FCFs and the interference
frequencies are the outliers of the frequency-domain sequence
obtained by the discrete Fourier transform. The frequency
detection indicator is defined as

k = mean (y) + 3σ (27)

where mean(y) and σ denote the mean and standard deviation
of the frequency-domain sequence from [0, 4 fo], respectively.
Then, the MAR and the mode alignment error (MAE) are



7520 IEEE SENSORS JOURNAL, VOL. 23, NO. 7, 1 APRIL 2023

defined as

MAR =

3∑
i=1

ei ni

a
(28)

MAE =
m − n

m
(29)

where ei is the weight of the i th FCF MAR which is set
to [0.5, 0.3, 0.2], ni is the number of the i th FCF detected
in all channels, a is the number of channels, n is the total
number of the detected FCFs, and m is the total number of the
detected frequency. Therefore, the larger MAR indicates that
more FCFs can be identified in the frequency domain, while
the smaller MAE indicates fewer interfering frequencies exist
in the frequency domain.

To visualize the indicators, the frequency detection thresh-
old k is indicated by a red dotted line. The MAR of MDMD
and standard DMD are 0.93 and 0.80, respectively. The
MAE of MDMD and standard DMD are 0.11 and 0.63,
respectively. Compared to the results of standard DMD,
MDMD has better mode alignment properties and less inter-
ference frequencies. Benefiting from the circular convolution
in the process of the tensor product, MDMD can fulfill the
information fusion between channels, which enables MDMD
to extract the common fault impulses in the multichannel
signal.

B. Performance Analysis
In the above simulations, the mode alignment property of

MDMD has been illustrated. Next, a comparative analysis with
representative multivariate signal-processing methods (MEMD
and MVMD) is presented below.

The performance of MDMD under strong noise is tested.
The simulated signal with SNR = −10 dB is employed
in this case. It can be seen from Fig. 5 that there are no
obvious periodic impulses in the time-domain diagram, and
corresponding FCFs in the spectrum are buried by strong
noise. Fig. 6 is the envelope spectrum (ES) of the result
obtained by MDMD. It can be seen from Fig. 6 that all FCFs
in the three channels are extracted. Meanwhile, the noise
mixed in the signal is almost removed due to the robust
approach in MDMD. Fig. 7 shows the ES of the top six
order intrinsic mode functions (IMFs) of MEMD. Although
the FCFs can be identified from IMF2 of Channels 1 and
2, noise still exists in Channel 3, which leads to the MAR
of MEMD only reaching 0.83. Meanwhile, a slight modal
aliasing phenomenon appears in IMF2 and IMF3 of Channel 1,
resulting in a lower amplitude of MEMD than the other
two methods. Fig. 8 shows the ES of the result obtained
by MVMD. Similar to the results of MEMD, the FCFs in
Channel 3 are buried by noise. Hence, the simulation results
verify that the proposed MDMD is superior to MEMD and
MVMD under strong noise. There are two reasons for this: 1)
the tensor operation in MDMD involves circular convolution
between multichannel data, which realizes information fusion
and synchronous extraction between channels and 2) the tensor
low-rank approximation framework further enhances the noise
robustness of MDMD.

Fig. 5. Simulated signal with SNR = −10 dB.

Fig. 6. Result of the simulated signal with SNR = −10 dB processed
by MDMD.

Fig. 7. ES of the simulated signal with SNR = −10 dB processed by
MEMD.

Fig. 8. ES of the simulated signal with SNR = −10 dB processed by
MVMD.

V. EXPERIMENTAL ANALYSIS

The mode alignment property and noise robustness of
MDMD has been verified in simulations. But in actual bearing



ZHANG et al.: MULTIVARIATE DMD AND ITS APPLICATION TO BEARING FAULT DIAGNOSIS 7521

Fig. 9. Bearing test rig from CWRU. (a) Actual test rig photograph.
(b) Test rig structure diagram: 1—motor, 2—torque sensor, and 3—
dynamometer.

Fig. 10. Multichannel inner-race fault signal.

Fig. 11. Result of the inner-race fault signal processed by MDMD.

fault diagnosis, the collected signal contains not only WGN,
but also interference caused by other components. Therefore,
two sets of actual multichannel signals are employed to further
verify the effectiveness of the proposed method.

A. Bearing Inner-Race Fault Diagnosis
In this section, a multichannel fault signal from Case

Western Reserve University (CWRU) is used to verify the
effectiveness of MDMD. As shown in Fig. 9, the test rig
consists of a motor, a torque sensor, and a dynamometer. The
fault bearing is SKF 6205 that is located at the driving end
of the motor. The speed of the test bearing is 1750 r/min,
and the theoretical FCF of the inner-race is 158.20 Hz. The
multichannel signals are collected by three sensors with a
sampling frequency of 12 kHz, and the sensors’ location is
shown in Fig. 9(b). The waveform and the spectrum are shown
in Fig. 10. As can be seen that the fault in the three channels
shows obvious uneven energy distribution.

First, the proposed MDMD is employed to process the
above multichannel signal. In this case, the size of snapshot
matrices is 76 × 3 and the size of snapshot tensors is 76 ×

150 × 3. The result of MDMD is shown in Fig. 11. It can be
seen that all three channels clearly show the inner-race FCF
and its multiples, and the MAR of MDMD is 0.9. Moreover,
it is worth noting that although the fault impact still exhibits

Fig. 12. ES of the inner-race fault signal processed by MEMD.

uneven energy distribution in the time-domain diagram, FCFs
can be identified in all channels from the frequency-domain
diagram. The result verifies the powerful feature synchronous
extraction capability of MVMD in bearing fault diagnosis.

For comparison, two classic multichannel signal-processing
methods (MEMD and MVMD [27]) are employed in this case.
The result of MEMD is shown in Fig. 12. Although FCF can
be identified from all three channels, there are still interference
frequencies in the ES that affect fault diagnosis. The MAE of
MEMD is 0.59, greater than 0.27 of MDMD. The results show
that although MEMD can extract fault features synchronously,
the noise robustness needs to be further improved. The ES
of MVMD is shown in Fig. 13. The MAR of MVMD is
only 0.5, far less than 0.9 of MDMD. The results show that
although MVMD can extract fault features synchronously, its
performance is greatly affected by the interference frequency
in the case of uneven energy distribution. In this case, the
runtime of MDMD is 1.4194 s, while the runtimes of MEMD
and MVMD are 43.5722 and 1.0974 s, respectively. It should
be noted that although the computational efficiency of MDMD
is slightly lower than that of MVMD in this dataset when the
parameter selection problem is ignored, the feature extraction
performance of MDMD is much better than that of MVMD.
The above results demonstrate that MDMD has satisfactory
computational efficiency. The above algorithms are run on a
desktop with a CPU of AMD Ryzen 2700, 3.20 GHz. The
above comparison verifies the mode alignment property of
MDMD, and MDMD outperforms MEMD and MVMD when
multichannel signals have uneven energy distribution.

B. Bearing Outer-Race Fault Diagnosis
In this section, a set of multichannel signals with an outer-

race fault is used to verify the noise robustness of the proposed
approach. As shown in Fig. 14, the test rig is composed of an
ac motor, a support shaft, a gearbox, and a magnetic powder
brake. The fault bearing is SKF 6202 that is located at the
support shaft [see Fig. 14(b)]. The speed of the test bearing is
900 r/min, and the theoretical FCF is 45.60 Hz. The sampling
frequency is 12 800 Hz. The time-domain waveform and the
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Fig. 13. ES of the inner-race fault signal processed by MVMD.

Fig. 14. Bearing test rig. (a) Actual test rig photograph. (b) Test rig
structure diagram: 1—ac motor, 2—fault bearing, 3—gear-coupling, 4—
coupling, and 5—magnetic powder brake.

Fig. 15. Multichannel outer-race fault signal.

frequency spectrum are shown in Fig. 15. It can be seen from
Fig. 15 that the FCFs are buried by strong noise.

First, MDMD is employed to process the above signal.
In this case, the size of snapshot matrices is 288 × 3 and
the size of snapshot tensors is 288 × 40 × 3. Fig. 16 is the
result of MDMD. Obviously, MDMD can efficiently extract
the FCFs in all channels. Meanwhile, it can be seen from
Fig. 16 that MDMD almost eliminates noise and interference
frequencies in the ES. Then, MEMD and MVMD are used to
process the above signal, respectively. The result of MEMD
and MVMD are shown in Figs. 17 and 18. The MAR of
MDMD, MEMD, and MVMD are 1, 0.8, and 0.7, respectively.
It can be seen from the results that MDMD is more noise
robust than MEMD and MVMD due to the tensor low tubal
rank component extraction framework of MDMD. In addition,
the result verifies MAR indicator can accurately identify
FCFs that are buried by noise. Moreover, MDMD has high
computing efficiency. In this case, the runtime of MDMD
is 0.7356 s, while the runtimes of MEMD and MVMD are
53.2031 and 7.7086 s, respectively. The comparison analysis
verifies the noise robustness of MDMD, and its superiority

Fig. 16. Result of the outer-race fault signal processed by MDMD.

Fig. 17. ES of the outer-race fault signal processed by MEMD.

Fig. 18. ES of the outer-race fault signal processed by MVMD.

over other multivariate signal-processing algorithms in dealing
with the multichannel signal containing strong noise.

VI. CONCLUSION

In this article, a novel multivariate signal-processing-based
fault diagnosis approach is proposed, where DMD has been
developed into multivariate scope. This article provides a
new insight into multivariate signal processing, indicating
an inspiration for the formulation of the proposed MDMD
algorithm by tensor operations. The tensor low tubal rank com-
ponent extraction framework is proposed to enhance the noise
robustness of MDMD. Numerical simulation demonstrates the
mode alignment property and noise robustness of MDMD. The
subsequent experiments verify that MDMD can effectively
extract multivariate fault features from multichannel bearing
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fault signals. The main novelties and contributions of the
conducted research can be summarized as follows.

1) A novel multivariate extension algorithm of DMD which
is MDMD is proposed in the article. This novel multi-
variate algorithm has inherent mode alignment property
due to the tensor operation and is of great significance
in fault feature extraction of multivariate signals.

2) A robust low tubal rank tensor component extraction
framework is constructed in MDMD for the synchronous
extraction of fault features hidden in the multivariate
signal. In addition, the constructed framework enhances
the noise robustness of the proposed MDMD algorithm.

3) An FCF detection indicator called MAR is proposed to
measure the mode alignment property of multivariate
signal-processing algorithms quantitatively. Both simu-
lation and experiment verify the effectiveness of MAR
in identifying FCF when the spectrum is interfered with
by strong noises.

4) A novel multivariate signal-processing-based bearing
fault diagnosis approach is proposed. The snapshot ten-
sor is defined to convert the multivariate fault signal into
the tensor format. The experimental results illustrate the
superiority of MDMD over the traditional multivariate
signal-processing algorithms in fault diagnosis of rolling
bearing.

It should be noted that compound fault diagnosis is very
difficult in the field of fault diagnosis of rotary machinery,
since MDMD achieves satisfactory results during fault feature
extraction of multivariate signals of rolling bearing, it could
offer a novel solution for compound fault diagnosis. Thus,
in our future work, MDMD will be employed to diagnose
the compound fault of rotating machinery. More tensor low-
rank approximation frameworks of MDMD will be explored
to enhance the performance of the proposed method.
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