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A Dataset for Radar Scattering Characteristics of
Vehicles Under Real-World Driving Conditions:

Major Findings for Sensor Simulation
Lukas Elster , Martin F. Holder , and Manuel Rapp

Abstract—In the virtual validation of automated driving,
trustworthy simulation models of perception sensors are
required. Radar sensors are particularly hard to model,
as their measurements are notoriously difficult to interpret.
This is due to their complex measurement principle, involving
multipath propagation of mm-waves, varying backscattering
characteristics of objects, and further factors such as limited
measurement ranges and resolutions that introduce uncer-
tainty to the measurements. This work presents a method
for studying the backscatter characteristics of vehicles under
real-world driving conditions. A slalom-like driving scenario,
which is representative of road driving where the vehicle is
visible under different aspect angles, has been designed.
It aims at a high level of reproducibility of the trajectories
driven by the vehicles, hence reducing additional sources
of uncertainty that were otherwise present in the measure-
ments. In a large-scale measurement campaign, 13 vehicles have been studied. The vehicles under test are observed by
multiple radars, mounted at different heights, and carry reference sensors for obtaining their positions. In this article,
we present the measurement campaign and show major findings from our measurement results. Our focus lies on
drawing conclusions for trustworthy sensor simulation. Both sensor measurement data and MATLAB code for data
analysis are made publicly available alongside this article.

Index Terms— Millimeter-wave sensors, sensor model analysis, sensor testing and evaluation.

I. INTRODUCTION

V IRTUAL test methods are required for the release of
automated driving. Such methods use simulation models

of the involved sensor modalities. Radar sensors are of the
utmost importance for automated driving functions, due to
their ability to measure relative velocity, robustness against
adversarial weather conditions, and low costs in comparison
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to frequency-modulated continuous-wave (FMCW) lidar
systems.

Still, the development of simulation models of radar sensors,
which are ready for deployment in simulation-based testing
toolchains, is the subject of current research. A research
problem, that is closely linked to radar sensor simulation, is the
ability to model mm-wave scattering behavior realistically in
virtual environments. Radar measurements are known to have
a noisy characteristic, which originates from the measurement
principle. Physically interpretable quantities, such as range,
velocity due to the Doppler effect, and angular positions
are deduced from spectral analysis of modulated mm-wave
signals.

The backscattered energy is dictating the existence and
achievable accuracy of radar detection. In radar theory, the
physics for obtaining backscatter is conceptually absorbed in
the radar cross section (RCS) denoted as σ . It is a measure of
the strength of the signal reflected by an object. Influencing
factors include object size, geometry, material, wavelength,
and aspect angle under which the object is visible to the
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Fig. 1. Stochastic nature of RCS observed for a vehicle during five
trials. The average value is indicated as a bold line and is obtained by
using a moving average filter over 2.5 s. In our work, we use Q(σ) to
denote RCS in the logarithmic scale, and σ for the linear scale.

sensor [1]. When inserted into the radar equation [2], as given
in the following equation, the received power PRx can be
obtained:

PRx = PTx
G2 V 2

mp σ λ
2

(4π)3 r4 . (1)

Here, PTx denotes the transmitted power, and G, λ, and
r denote the antenna gain, wavelength, and radial distance,
respectively. This equation disregards the atmospheric attenu-
ation and introduces Vmp as the so-called shaking factor (0 ≤

Vmp ≤ 2) to account for influences by multipath propagation.
The RCS is well known, or analytically available, for simple

geometries such as flat plates, spheres, or corner cube reflec-
tors (CCRs). Analytical models are, however, not available for
large objects with complex surfaces, such as vehicles.

In automotive radars, the RCS of objects is not mea-
sured directly. Instead, it is inferred from the received sig-
nal strength, the radial distance, and the angular position.
Therefore, influences due to the free-space propagation loss,
which is governed by r−4, and the antenna gain pattern are
compensated. Still, it is widely used as a quantification of the
backscatter on an ordinal scale. Therefore, RCS, indicating
the intensity of a detection, allows for object detection or free
space estimation [3]. The noisy characteristic of the received
power is also present when obtaining the corresponding RCS
values in measurements. This is illustrated by the following
example, obtained in a simple scenario where a vehicle is
placed in front of the Ego vehicle, where “Ego” refers to the
radar sensor carrier vehicle. As it is traveling at a higher speed
than the Ego, the distance between the cars increases gradually.
The RCS of the detections associated with the object of interest
(OOI) are displayed in Fig. 1 and a distinct stochastic nature
of the RCS is visible. By smoothing the noisy measurements,
a moderately constant RCS value is revealed. This is, however,
overlaid by additional phenomena, for example, multipath
propagation, that causes a significant spread between repe-
titions and even adjacent measurement values. These results
indicate that RCS measurement is influenced by the number
of factors in a stochastic, nondeterministic fashion.

Radar models must be validated with real data to allow
their usage for virtual safety validation. Therefore, the virtual

environment is assessed together with the sensor model, as the
real sensor is also subject to many real-world effects outside of
idealized testbench conditions and anechoic radar chambers.

Although methods from the field of computational electro-
magnetic wave propagation allow us to compute backscatter
profiles, it is debatable to what extent such simulation results
may be transferred into real-world conditions. In reality, effects
like multipath propagation and interference directly influence
the RCS profiles and the validity of analytical models in
comparison to real-world measurements, as it is highlighted
in [4] and [5]. Similarly, measurement campaigns conducted in
anechoic radar chambers need yet to prove their applicability
to field measurements on public roads.

Therefore, we conducted an open-source available large-
scale measurement campaign to obtain vehicle RCS pat-
terns from automotive radar sensors under real driving
conditions.

A. Related Work
The noisy and random nature of RCS is a well-known

phenomenon in many radar applications. In radar literature,
stochastic behavior is also referred to as fluctuation loss.
Prominent research on this topic was carried out already in
1954 by Swerling [6]. He derived probabilistic models based
on Rayleigh distributions describing the statistical properties
of the RCS of objects with complexly formed surfaces, such
as an aircraft. However, their application to automotive radar
application, operating at mm-waves, is limited as different
conditions apply here: Most notable is the presence of mul-
tipath reflections, for example, induced by reflections of the
pavement, which are not present in airborne radar.

For automotive radar, a number of researchers have carried
out reflectivity measurements in anechoic chambers obtained
with automotive-grade radars, or vector network analyzers [7],
[8]. Here, a vehicle has been placed on a rotating plate and
its 360◦ RCS profile has been obtained from the received
signal strength for a given rotation angle. Direct applicability
of such results to automotive scenarios is not immediate,
since the distance between radar and object is often chosen
to be very small (e.g., less than 25 m), which is debatable
for two reasons: First, the Fraunhofer criterion for far-field
with typical aperture sizes in automotive radar is only fulfilled
with 15 m onward. Second, long-range radar usually deploys
high-pass filtering to avoid overloading the analog-to-digital
(AD) converter for detections close to the sensor. Nevertheless,
these results retain their validity and the fact that comparable
results have been generated in different studies emphasizes
their integrity. As the RCS profile is computationally expensive
to calculate, simplified models have been derived. Based on
observations and measurements, so-called “scattering center
models” have been proposed [9], [10]. This theory assumes
the total reflectivity of complex geometries such as vehicles
is composed of individual scatterers. At the same time, there
are areas on the vehicle from which a stronger backscatter
is expected, such as the license plate, the wheel arches,
or the exterior mirrors. The challenge with such models is
the deduction of generalizability to different vehicle types and
sizes, as large databases are missing.
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In recent years, more radar datasets became publicly
available, such as View-of-Delft [11], Radar Scenes [12],
nuScenes [13], and others. They are designed for benchmark-
ing and development of object detection and classification
algorithms. It is difficult to extract reproducible scenarios
for detailed RCS investigations from such datasets. In most
scenes, parked (static) vehicles can be seen, or the rear of the
vehicles in front while following behind. Annotations are often
only available via lidar or bounding boxes, which typically do
not have the precision of dedicated global navigation satellite
system (GNSS) measurements.

We, therefore, design our study of vehicle backscatter such
that it is representative of real road traffic conditions and
at the same time generates a broad statement through many
repetitions of the experiment and the use of different vehicles.

The measurement data,1 and the evaluation source code2

are all open-source and publicly available.

B. Research Questions and Method Outline
We state the following research questions, which we see as

particularly relevant when studying the RCS characteristics
in real-world traffic conditions, also in the light of radar
simulation.

RQ1: What is the influence of the aspect angle of the
radar to the object? Vehicles are often seen by the radar
under different perspectives, for example, during lane changes.
Our work addresses this research question by obtaining mea-
surements of vehicles that follow a slalom-shaped trajectory.
Therefore, they are visible under different aspect angles while
conducting multiple repetitions to strengthen the underlying
database for evaluation of the experiments. Utilizing a slalom
course for studying reflectivity has been carried out in the
author’s previous work [14].

RQ2: What is the influence of the radar mounting height
on RCS? In today’s vehicles, radars are usually mounted at
different heights. In order to study the effect of mounting
height on the measured RCS, we use six identical radar
sensors, mounted on a sensor rack (cf. Fig. 2).

RQ3: What is the influence of vehicle body shape on RCS?
In everyday traffic, a wide variety of vehicles is encountered.
Variations in their individual RCS profile are expected, due to
differences in geometry, size, and material compounds. A total
number of 13 vehicles of different categories (e.g., compact
car, sedan, and truck) have been used in this study.

RQ4: Where is the strongest backscatter located depending
on aspect angle and body shape? The position of radar detec-
tions with the highest RCS per measurement cycle is expected
to depend on the aspect angle as well as the body shape of
the vehicle. By comparing different vehicles scattering centers
and scattering characteristics can be revealed.

II. EXPERIMENTAL SETUP

The overall experimental setup and calibration methods for
the measurement campaign as well as the quality criterion of
the driven trajectory are explained in this chapter.

1https://www.fzd-datasets.de/rcs/
2https://gitlab.com/tuda-fzd/fzd-datasets/rcs-measurement

Fig. 2. Mounted sensor rack with six radar sensors at the front of the
Ego vehicle. The rack has a lateral offset of 265 mm to the center.
In addition to the radars and GNSS, it is also carrying lidar sensors.
They are not considered in this work but the lidar data is also available
within the published dataset.

TABLE I
MOUNTING HEIGHTS OF THE RADAR SENSORS

A. Sensors, Measurement Setup, and Calibration
Our research vehicle is a 2018 Mercedes-Benz S450

retrofitted with multiple Continental ARS408 radar sensors
that are stacked on top of each other. Fig. 2 shows the
installed measurement rack of the six radar sensors at the
front of the vehicle. These radars are open-market adaptions
of Continentals fourth-generation long-range radars, repre-
senting state-of-the-art automotive-grade 77-GHz radar [15].
This setup enables investigating the influence of the mounting
height on the RCS profile of an OOI. The mounting heights
of the sensors, measured from the ground to the center of
the sensor, are specified in Table I. Due to the interference
mitigation techniques of the manufacturer, interference is only
recognizable in a raised signal to noise ratio (SNR) because of
the six mounted sensors. As there are six same sensors used,
we assume that the results focusing on RCS values are not
affected based on our measurement setup.

These positions include above-average sensor heights for
currently available vehicles, for example, the radar position in
the Mercedes-Benz GLS series [16].

For obtaining the vehicle positions and motion, both the
Ego vehicle and the OOI are equipped with the real-time
kinematic (RTK)-based GNSS device automotive dynamic
motion analyzer (ADMA).

Radar calibration was conducted both extrinsically and
intrinsically. For extrinsics, CCRs have been placed at pre-
cisely measured positions with respect to the radar for obtain-
ing the horizontal twist angles due to mounting. Intrinsic
calibration aims at verifying the RCS value obtained by the
radar. This is realized by placing a CCR with predefined RCS
at a known distance from the radar (e.g., 40 m) over minimal-
reflecting terrain. Both the radar and the CCR are mounted at a
height of 3 m to avoid disturbances due to ground reflections.

Calibration of the relative positions between the Ego and
OOI, both obtained with GNSS systems, is done by aligning

https://www.fzd-datasets.de/rcs/
https://gitlab.com/tuda-fzd/fzd-datasets/rcs-measurement
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them along their rear axles, indicating zero longitudinal offsets.
At standstill, the lateral offset can then be determined with
a measurement tape. The known values for longitudinal and
lateral offset are compared to the in the GNSS systems mea-
sured relative position data. These calibration values absorb
uncertainties during obtaining mounting positions and are
considered during the processing of the measurement data.

The radars report a set of detection points at a scan rate
of approximately 14 Hz. Each scan contains a range, radial
velocity by utilizing Doppler effect, azimuth, and RCS, and
the radars are able to transmit up to 250 detections per mea-
surement cycle. As large objects can cause multiple detections,
the total RCS of an object is found by the linear sum over
nd,max detections that are linked to the object, that is,

Q(σ ) = 10 log10

nd,max≤250∑
k=1

σk . (2)

The association of detections with an object is determined
by multistage filtering that relies on the relative position and
velocities of the OOI reported by the GNSS. The GNSS system
samples at 100 Hz. While the GNSS system is reporting a
precise time stamp, time referencing is made by time-stamping
the individual data packages upon receiving via controller area
network (CAN) bus. The radars are not synchronized in their
measurement cycles. In other words, the measurement cycles
of the radar sensors are independent of each other, that is,
it cannot be guaranteed that the radar scans are performed
simultaneously among all six radars.

B. Slalom Construction
The test setup consists of a sinusoidal slalom with ten

periods. We briefly describe the setup of the slalom course,
which is optimized for high repeatability for driving through
it, and minimal effort for construction on straight roads. For
each run, the OOI approaches the slalom setup driving straight
ahead, with an offset to the center line. It is followed by the
Ego vehicle which continues driving straight ahead on the
center line while the OOI follows the sinusoidal trajectory
of the slalom. The slalom parameters are designed to match
distances and aspect angles that are similar to the real-world
driving scenario of the OOI entering a curve, followed by the
Ego vehicle when assuming a German EKL3-type road [17].
The geometry of the slalom is defined by the amplitude ŷ
and the frequency fSla. ŷ is defined as 5 m to ensure a wide
spectrum of aspect angles between Ego vehicle and OOI. The
frequency is chosen as fSla = 0.014(1/m), which results in
a slalom period of approximately 71 m. In test runs with an
amplitude of 5 m, this frequency proved to be effortlessly
manageable by the driver. The given geometric parameters
result in a maximum yaw angle of SψOOI = 25◦ referred to the
slalom’s center line. To define the relative movement between
the Ego vehicle and the OOI, the corresponding speeds, vOOI
and vEgo, as well as the initial distance between the two
vehicles 1r are used. While driving through the slalom course,
the OOI is visible to the Ego vehicle under different aspect
angles: Its azimuth and yaw angles are changing periodically
and both are opposed in phase, that is, maximum yaw is

Fig. 3. Measurement setup of slalom with corresponding parameters
where SφOOI is denoted as the azimuth angle and rOOI denoted as the
range in the polar sensor coordinate system, SψOOI is denoted as the
yaw angle difference between the Ego vehicle and OOI as well as ŷ is
denoted as the slalom’s amplitude.

obtained at 0 azimuth, and vice versa. Fig. 3 illustrates the
geometrical quantities.

The Ego vehicle’s speed vEgo is set to 30 km/h. This
is the lowest possible speed that allows for the usage of
speed control systems in both vehicles, although not all OOIs
are equipped with equivalent systems. The target speed of
the OOI vooi is also set to 30 km/h. By using the lowest
speed possible, the duration of each experiment execution is
maximized and therefore also the number of measurement
samples. The sinusoidal trajectory and therefore a longer travel
path in comparison to the Ego produce the most representative
distance ranges with respect to the aspect angle. Lower speeds
are preferred to generate as many data samples as possible
during the slalom run. The usage of speed control systems
causes a better reproducibility of the slalom runs, however,
since they have to be manually set independent of each other,
they also cause a deviation of the initial distance between Ego
and OOI.

In order to guide the driver of the OOI along the ideal
trajectory, traffic cones are placed along the slalom. For
their placement, a sinusoidal function congruent to the ideal
trajectory is calculated and eight equidistant sampling points
per period are obtained. These sampling points include both
vertices as well as both inflection points of each period. Each
one of these characteristic positions is marked with two tall
traffic cones which the OOI passes in between. The spacing
between the two traffic cones is adjusted to and exceeds the
width of the OOI. This is due to the fact that the reference
point for the determination of the OOI’s position is set as
the center of the rear axle. Therefore, the front axle’s center
position can differ significantly from the ideal trajectory which
requests additional space requirements. The four remaining
sampling points are marked with flat cones over which the
OOI passes. Fig. 4 shows the fully constructed slalom course.
For each vehicle, ten slalom runs with five in each direction
are conducted.

C. Evaluation of Trajectory
To evaluate the uniformity of the trajectory, a quality

criterion based on the Hilbert transform is introduced. The
Hilbert transform phase shifts a sinusoidal signal, in this case,
either the trajectory of the OOI or ŷ over xOOI, by 90◦.
The result is an analytical signal z(xOOI), consisting of the
initial signal as a real part and the phase-shifted signal as
the imaginary part. This signal is referred to as z(x) in the
following paragraphs. To derive a quality criterion from this
mathematical transformation, the absolute of the analytical
signal is calculated. For an ideal trajectory, this would result
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Fig. 4. Slalom course marked with traffic cones and slalom-centered
coordinate system.

in a constant function with the same value as the amplitude of
the slalom. However, due to human errors and environmental
impacts, z(x) oscillates unevenly along xOOI. In the next step,
this function can be easily described by its mean value |z(x)|
and the according to variance s2(z(x)), which is referred to
as s2 henceforth. To consider deviation from the ideal mean
value and the variance, the final unitless quality criterion is
calculated as shown in the following equation with the optimal
value of 2:

kQ

=



s2
max − s2

s2
max − s2

id
+

|z(x)| − |z(x)|min

|z(x)|id − |z(x)|min
, |z(x)| ≤ 5 m

s2
max − s2

s2
max − s2

id
+

|z(x)|max − |z(x)|

|z(x)|max − |z(x)|id
, |z(x)| > 5 m.

(3)

Here, s2
max is set as 0.05 m2 which represents a subjectively

chosen threshold based on the rough evaluation of previous test
runs. Likewise, the thresholds for the mean value are defined
as |z(x)|max = 5.2 m and |z(x)|min = 4.8 m. Furthermore,
the ideal values are defined as s2

id = 0 and |z(x)|id = 5 m,
which reflect the ideal sinusoidal trajectory with an amplitude
of 5 m. The quality criterion is normalized in a way that
each summand equals 1 when the mean value, respectively,
the variance, equals the ideal value. As soon as one of the
two variables passes the minimum/maximum threshold value,
the corresponding summand becomes negative. In conclusion,
the ideal trajectory results in kQ = 2 and decreases steadily
with increasing variance s2 and increasing absolute difference
||z(x)| − 5|.

Out of the test runs of each vehicle, the runs of the highest
quality can be determined by calculating the corresponding
quality criteria. These runs are of the highest available repro-
ducibility. Fig. 5 shows the achieved precision of the driver’s
trajectory during all test runs. The red dashed lines represent
the predefined threshold values for the mean value and the
variance. On average, the achieved mean value lies below the
ideal of 5 m. This is most likely due to the fact that the driver
orients himself to the traffic cones on the inner side of
each vertex. Factors influencing the variance include different
vehicles, human factors, for example, seating positions as
well as fatigue and driver experience in handling various
vehicles.

Fig. 5. Achieved precision of driver trajectory, quantified by the mean
value of the Hilbert transformation’s absolute, and the corresponding
variance. The red dashed lines indicate the predefined thresholds for
mean value and variance.

Fig. 6. RCS of Toyota Auris observed while it is driving through the
slalom. A periodic pattern is visible after moving median smoothing.

III. RESULTS

Core results, that are available from our measurement
campaign, are outlined in this section and are structured
according to the research questions in Section I-B. Each plot
can be generated for different vehicles and sensors with the
MATLAB tool that is released alongside this article. We show
detailed measurement results for a Toyota Auris, representing
a medium-size vehicle, and extend our findings to the full
vehicle dataset.

A. Influence of Aspect Angle
We begin with a typical result of the RCS profile obtained

during one slalom run. It is shown in Fig. 6 and reveals a
periodical pattern, which is more distinct after smoothing with
a moving median filter. In the smoothed signal, we can obtain
a mean RCS value of approximately 18 dBm2 with peak
amplitudes of approximately 4 dBm2. In the raw signal, the
RCS shows sporadic peaks that span between 13 and 25 dBm2.
Qualitatively similar patterns can be found for all vehicles by
executing the “RCS over x” plot in the MATLAB program.

Fig. 7 shows the RCS again, but now plotted over azimuth
and yaw angle. Slalom driving renders as circles in this
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Fig. 7. RCS profile of Toyota Auris over azimuth φOOI and yaw ψOOI.

Fig. 8. Spectral analysis of RCS during the same slalom. Q̂(σ) denotes
the amplitude of the oscillating RCS pattern. Only minor differences in
measurements between sensors at the dc-component (zero-frequency)
and double harmonic frequency are visible.

representation. The RCS trends to its maximal value at close
to zero yaw, that is, at maximal azimuth and minor mitigation
is visible through the trial. The minimal values are found at
zero azimuth but maximum yaw, that is, as the OOI is crossing
through the boresight line during driving through the slalom.
From both figures, we can conduct a major influence of the
yaw angle on the RCS profile. This plot is generated with
the “RCS over yaw and azimuth” function in the MATLAB
program.

B. Influence of Mounting Height
To reveal governing frequencies visible in the harmonic

course, we obtain a spectral analysis of the signal via fast
Fourier transform (FFT) on the RCS over range, which was
shown in Fig. 6. A typical result is shown in Fig. 8, which
shows the single-sided amplitude spectrum over all radar
sensors. This plot is generated with the “FFT over x” plotting
function in the MATLAB program. The FFT reveals the
signal amplitudes at the dominant frequencies in the signal.
At zero frequency, the FFT gives the dc component, which
is the amplitude at zero frequency, as the quasi-mean value
of the periodic RCS signal. It shows an additional peak at
double the natural frequency of the slalom, which is around
0.028(1/m). This is due to the orientation and therefore
visibility of the OOIs’ left- and right-hand sides. The changes
in the respective magnitudes indicate the effect of the sensor
mounting height and vehicle body shapes. Noise components
will render minor spectral components outside these two
frequencies.

Fig. 9. eCDF plot of Toyota Auris’ RCS of all six radar sensors and the
three best runs in terms of the Hilbert criteria.

Fig. 10. eCDF plot of all OOI’s summed RCS of all radar sensors of the
best run in terms of the Hilbert criterion.

Fig. 11. RCS profiles of Mercedes-Benz Unimog, Toyota Auris, and VW
Caddy.

We can only notice a little spread in RCS between sensors,
which is below 3 dBm2 and therefore small compared to its
total dynamic range. It is to emphasize that these amplitudes
do not represent an absolute RCS value, but the amplitudes
of the oscillation of RCS during the slalom. The relation of
the amplitude at the harmonic frequency to the amplitude at
0 quantifies its dynamic range. The difference between the
two amplitude levels can be understood as the sensitivity of a
particular vehicle body to the aspect angle. The higher the
amplitude at the harmonic frequency, the higher the range
between minimal and maximal observed RCS during the
slalom.

So far, we have only discussed the amplitudes obtained by
the FFT-based spectral analysis. The RCS measurements are
characterized by considerable noise, which leads to significant
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Fig. 12. Spread of spectral amplitudes obtained by FFT over all studied cars and trials. Circles denote zero-frequency amplitude, and triangles
indicate amplitude at the double natural frequency. The figure shows all radar sensors and vehicles simultaneously for the best comparison.

outliers with particularly high or low RCS values. To analyze
the quantitative distribution, we compute the eCDF, showing
the distribution of samples and the frequency of their occur-
rence. Fig. 9 visualizes the eCDF of the six radar sensors and
three best runs regarding the Hilbert criterion of the Toyota
Auris. In general, all graphs show almost identical behavior
and are lying within a 2-dBm2 range. From this finding,
we conclude that the previously mentioned noise is present
in a similar manner in all six radar sensors as well as in
all runs. An explanation for the recognizable spread beside
the stochastic character of the RCS is the run quality, but
also different distances between the Ego and the OOI. The
distribution of the RCS is another indication that the influence
of the sensor mounting height on the reflectivity characteristics
of vehicles is lost in the signal bandwidth of the RCS itself.

C. Influence of Body Shape
For studying the behavior of different vehicle bodies, the

spectral FFT analysis is now extended to the full set of vehicles
and sensors. Therefore, their spread during multiple test repe-
titions becomes quantitatively specifiable. This gives objective
insights into how well the repeatability of the experiment, that
is, how well similar results can be obtained in a repeated trial.

We focus on the amplitudes at the dc component and
the doubled natural frequency. Fig. 12 shows the spectral
amplitudes obtained by FFT over all studied cars, trials, and
mounting heights. The preliminary finding from the Toyota
Auris, as presented above, can be well transferred to the other
vehicles. While each vehicle differs in amplitude, we see
a little spread across sensors and repetitions. Differences
between vehicle bodies become more notable when taking
the amplitudes at the doubled natural frequency into account.
Here, we see that large amplitudes at the dc component are
not necessarily followed by large amplitudes at the double
natural frequency. Of particular note are the Mercedes-Benz
Unimog and the BMW i3, which show strong dc component
amplitudes, but only minor amplitudes at the doubled natural
frequency. Contradicting examples are given by the VW
Multivan and VW Caddy. From this result, we further justify
minor influences of the sensor mounting position, which is less
than 3 dBm2 across all studied vehicles. The highest spread
is present at radar sensor 6, which is closest to the ground.
At the same time, variations between multiple trials remain at
the same level.

To view the RCS distributions in addition to the FFT
spectral analysis, the eCDF graphs of the different vehicles are
visualized in Fig. 10. The eCDFs shows significant differences
between all vehicles. No direct correlation between vehicle
size and RCS can be seen. This can be especially demonstrated
by comparing Honda Accord or VW Multivan and Toyota
Auris. Furthermore, the eCDF of the Mercedes-Benz Uni-
mog resembles a log-normal distribution despite its complex
structures on the sides. This is also evident for BMW i3,
Honda Accord, Opel Astra, Toyota Auris, and VW Käfer.
BMW 535, BMW Z3, Opel Corsa, VW Caddy, VW Crafter,
VW Golf, and VW Multivan exhibit a kind of kink in the
distribution function, which resembles a log-logistic distribu-
tion. Therefore, not only the quantitative value of RCS differs,
but also the distributions are different between all vehicles.
No direct correlation between body size, shape, and material
can be identified. Therefore, other radar sensors and mounting
positions are the focus of future work.

The FFT analysis and the eCDF do not give information
about the noise and sensitivity of the RCS at individual
yaw angles. To take these aspects into account, it is rec-
ommended to display the RCS in a polar plot. From the
findings in Fig. 9, we conclude that on the basis of the
Hilbert criterion, an evaluation of the trajectories regarding
their comparability is reasonable. Therefore, the different radar
sensors as well as the three best runs of the vehicles are
aggregated. The summed RCS values from each time step
are assigned to the yaw angle SψOOI, which is discretized
with 0.5◦. Subsequently, the median of the RCS is formed
for each discrete yaw angle and displayed in a polar plot.
Fig. 11 shows RCS profile for all radar sensors and the
three best runs for the Unimog, the Auris, and the Caddy.
Toyota Auris and VW Caddy show a qualitatively similar RCS
character, with the VW showing a significantly higher as well
as more brawny shaped pattern. The many add-on parts and the
complex structures of the Unimog result in an asymmetrical
RCS profile, which is clearly distinguishable from all other
vehicles.

Due to the fact that based on the experimental setup,
the projected area of the vehicle at SφOOI ̸= 0 is
higher in comparison to a turntable in an anechoic cham-
ber the RCS profile differs from a laboratory profile.
Nevertheless, the measured characteristics of the vehi-
cles can be used for validation purposes in sensor
simulation.
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Fig. 13. Location of detections with the highest RCS per measurement cycle around and inside the bounding box for each vehicle and each radar
sensor. For evaluation, we took the best run in terms of the Hilbert criterion.
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D. Strongest Scatter Location
For a deeper analysis, we consider the distribution

of the detections with the highest RCS over the bounding
box of the different vehicles. Fig. 13 shows the detection
location of the best run of each vehicle and each radar
sensor. Therefore, only the detection with the highest RCS
is visualized to gain insights into the main scattering parts
of each vehicle. The yaw angle difference SψOOI between
Ego and OOI is coded as color identifier. Additionally, the
bounding boxes of the different vehicles are represented in
the form of black rectangles. The detections outside of the
bounding box can be explained by timing effects due to
different measurement frequencies as well as the resolution
of the radar sensor itself. In general, the detections are at the
rear center of the vehicles, as already shown in [9]. Slight
differences between radar 1/6 and radar 2/3/4/5 are visible
for BMW 535, Honda Accord, Opel Corsa, Toyota Auris, and
VW Caddy. Special features in the distribution can be seen
in the BMW i3, which is equipped with a carbon body, the
Unimog, which has various add-on parts at the rear and side,
the Crafter, which shows detections on the wheel arches at
the front, and the Käfer, which has CCR-shaped side sills.
Therefore, we conclude that the position distribution of the
detections depends on the body shape as well as on the yaw
angle between the sensor and OOI.

IV. DERIVED FINDINGS FOR SENSOR SIMULATION

We summarize the core results of our research from various
points of view as follows. Here, we focus on statements
that are of immediate value to the sensor simulation research
community.

A. Analytical RCS Models
Sensor modeling must take into account the fact that even

a reference measurement can never be made with infinite
accuracy. Uncertainties remain, which are difficult to quantify
but remain visible as nondeterministic and stochastic behav-
ior. This becomes particularly clear in the deviations of the
RCS measurements between the tests. Our results stress the
stochastic nature of the RCS characteristics of vehicles. For
each vehicle geometry, we find differences at the microscopic
level that justify deviations in the RCS. Due to a large number
of possible geometries of today’s and future cars, we consider
it difficult to maintain vehicle-specific analytical RCS models.
In object-based sensor modeling, a generative model can be
derived from our data that returns an RCS value for a given
aspect angle. For other modeling approaches, our work gives
reference measurements that can be used for simulation model
falsification.

B. Spatial Distribution of Detections
We identified clear differences in the spatial distribution of

detections around the vehicles. The Volkswagen Käfer is of
particular note: Its body design at the bottom of the front door
forms a CCR-shape and leads to a concentration of detections
around this area.

These results, however, pose a challenge for traditional
scattering center models. They assume “fixed” areas of sig-
nificant scatter, while our results show that these areas differ
significantly between vehicle shapes [6]. This also poses a
challenge for object detection algorithms, relying on detection
clustering. The centerpoint of clusters varies between vehicles,
resulting in a systematic position offset between the true and
estimated position of the vehicle.

C. Sensor Model Validation
Our results and dataset can serve as a baseline for sensor

model validation. The RCS behavior obtained during reenact-
ing the slalom drive in the virtual world should match its eCDF
distribution. In “physical,” or “reflection-based” sensor simula-
tion, the detailing of 3-D models is of high importance. These
models must convey material descriptions and meshing must
be fine enough to preserve geometrical details. By comparing
the spatial distribution of the detections, the appropriateness
of 3-D models for radar simulation becomes judgeable.

Sensor models that process object information as input data
do benefit from our work by having access to a publicly
available dataset that allows model parameterization.

D. Transferring Results to Other Radar Sensors
The gathered RCS data and detection distribution are

only valid for Continental ARS408 sensors. However, when
gathering the same data with other radar sensors, the RCS
profiles presented in Fig. 11 are expected to look similar
in their qualitative form and the stochastic RCS behavior
will have a similar dynamic range. It is also expected that
the detection focal point of the spatial distribution will be
identical for the various vehicles. By using radar sensors with
higher resolutions, the position of the (strongest) detection
can be determined more precisely. Still, our results are well
aligned with previous research, such as [9], which utilizes the
SAR method. In future research, radar sensors with elevation
measurements are expected to lead to further insights into the
3-D location of detections.

V. CONCLUSION

The aim of the work was to investigate the aspect angle
dependence of the RCS. For this purpose, an experimental
setup was proposed in which the vehicle under investigation
drives a slalom while being observed by several radar sensors.

The design of our slalom aims at minimizing uncertainties
in radar perception introduced by human drivers. Hereby,
we could isolate the noise that is typically present in radar
measurements to the radar measurement principle. At the same
time, additional influences, such as unsteady driving through
a slalom course by human drivers, are isolated.

From the measurement results, we gained knowledge about
the stochastic behavior of the RCS and the local distribution
of the detections.

For further work, we recommend examining the SNR value
in addition to the RCS value. While this will show propor-
tionality to the RCS value, it has the advantage of taking into
account the performance of the radar. Thus, the SNR value
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is easier to determine than the RCS because, for example,
the antenna pattern and frequency filters have no influence.
When setting up the test again, we recommend considering
an additional radar, which is installed with a horizontal offset.
This can be used to draw conclusions about the transferability
between horizontal shoring positions. In our work, we have
shown that the vertical shoring position has a negligible part.
The evaluation methodology can be applied straightforwardly
to lidar sensors as well. In this way, similar investigations of
reflectivity can also be performed for lidar sensors.

Furthermore, by providing ground truth and vehicle meta-
data, our dataset also provides a scientific basis for defining
detection-level metrics of sensor data. This is the subject of
ongoing research for the evaluation of sensors and simulations
and also in the interest of industrial standardization processes.
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