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Abstract—Automatic food portion size estimation (FPSE)
with minimal user burden is a challenging task. Most of the
existing FPSE methods use fiducial markers and/or virtual
models as dimensional references. An alternative approach
is to estimate the dimensions of the eating containers prior
to estimating the portion size. In this article, we propose
a wearable sensor system (the automatic ingestion moni-
tor integrated with a ranging sensor) and a related method
for the estimation of dimensions of plates and bowls. The
contributions of this study are: 1) the model eliminates the
need for fiducial markers; 2) the camera system [automatic
ingestion monitor version 2 (AIM-2)] is not restricted in terms
of positioning relative to the food item; 3) our model accounts
for radial lens distortion caused due to lens aberrations; 4)
a ranging sensor directly gives the distance between the
sensor and the eating surface; 5) the model is not restricted
to circular plates; and 6) the proposed system implements a
passive method that can be used for assessment of container
dimensions with minimum user interaction. The error rates
(mean ± std. dev) for dimension estimation were 2.01% ± 4.10% for plate widths/diameters, 2.75% ± 38.11% for bowl
heights, and 4.58% ± 6.78% for bowl diameters.

Index Terms— Dietary assessment, food imaging, food portion, food volume, portion size estimation, wearable
sensors, wearable technology.

I. INTRODUCTION

RELIABLE and accurate portion size estimation is chal-
lenging but essential for dietary assessment. Image-based

dietary assessment has been one of the fastest growing
areas of research in this milieu. Image-based assessment
can be split into manual assessment and automatic assess-
ment. Manual assessment can be done using digital food
records [2] or by image-based 24-h recall/self-reporting that
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involve food atlases [3], [4], [5], [6], [7]. The image-
based food records involve capturing meal images that are
reviewed later by the participant or by a professional (nutri-
tionist/clinician/researcher) to estimate the portion size. Dig-
ital food images are a useful tool for the quantification of
food items and in portion size estimation [8], [9], [10].
Images of food leftovers are also captured in some studies,
which improved the portion size accuracy [11]. Recall or
self-reporting methods use food atlases. Food atlases are
reference guides that are taken to present various portions
representative of the range of portion sizes usually consumed.
Either during or after data collection, participants are asked
to report the food quantity consumed by selecting a particular
image, a fraction/multiple of an image, or a combination of
images [12].

The abovementioned manual methods are cumbersome,
subject to memory (and therefore prone to error), and are
not accurate compared to the much recent automatic assess-
ment methods. A previous review [13] identified some of
the existing image-based food portion size estimation (FPSE)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5400-3379
https://orcid.org/0000-0003-0271-9935
https://orcid.org/0000-0001-7792-4234


5392 IEEE SENSORS JOURNAL, VOL. 23, NO. 5, 1 MARCH 2023

methods that are automatic. It was seen that food portion size
can be estimated automatically using food images captured
during the meal [14], [15], [16], [17], [18]. However, auto-
matic FPSE from food images is a challenging task since
the two-dimensional (2-D) image lacks the three-dimensional
(3-D) real-world information. There is a lack of reference to
measure/gauge the size/volume of the food items. To tackle
this problem, the dimensional reference is obtained by using
a visual cue that must be present in a food picture. A few
methods used virtual objects or objects that already exist in
a typical food image to aid in FPSE. Some of the popular
approaches included geometric models [19], VR-based refer-
encing [20], circular object referencing [17], [21], and thumb-
based referencing [22]. Shang et al. [23] used a structured
light-based 3-D reconstruction approach to estimate food vol-
ume. Jia et al. [17] used the “plate method” for FPSE where
the circular plates present in the image are used to determine
location, orientation, and volume of the food items. The study,
however, only considers circular plates.

A fiducial marker of known dimensions placed in the images
can also be used as a point of reference [17], [22], [24], [25].
The type of reference used determines the complexity of setup.
Some methods require the users to carry around the reference
(checkerboards, blocks, and cards) and some require special
dining setups, which increases user burden.

Another classification in image-based FPSE can be done
based on the mode of image capture. Food image capture
can either be active or passive. Active methods rely on the
participant to capture the food image by a camera (such as
a smartphone camera), typically, before and after an eating
episode. The images are then processed using computer vision
models to segment foods, recognize foods, estimate portion
size/volume, and compute energy content [26], [27], [28].
Active methods provide detailed information such as meal
timing, location, and duration of the eating episodes. However,
these methods require the active participation of the users,
which can be a burden. Some of the active methods that
predict portion sizes require fiducial markers in the food image
to assist manual review/computer algorithms [26], [29]. The
placement of these markers combined with the active nature
of image capture increases the user burden considerably.

One study presented a new active method for food volume
estimation without using a fiducial marker. The method utilizes
a special picture-taking strategy on a smartphone [1]. A math-
ematical model that uses the height and orientation of the
smartphone was used to determine the real-world coordinates
of the plane of the eating surface in the capture image.
Bucher et al. [30] presented and tested a new virtual reality
method for food volume estimation using the International
Food Unit. This method, however, requires the user to place
the smartphone on the eating surface while image capture
and also needs additional user interaction in using the virtual
International Food Unit.

Food images can also be acquired by a “passive” method
using wearable devices that capture images continuously (both
food and nonfood) without the active participation of the
user [31], [32]. The passive methods minimize the burden of
active capture using a wearable camera. However, FPSE meth-

Fig. 1. Rotational axes of the AIM sensor. Also depicted is the camera
offset of 21◦ with respect to the axis of the eyeglass/AIM device.

ods that require fiducial markers cannot be easily integrated
with the passive image capture since the user is not actively
taking images and do not know when to place these markers.

The automatic ingestion monitor [33] is a wearable sensor
system [automatic ingestion monitor version 2 (AIM-2)] that
is mounted on a user’s eyeglass. The sensor consists of a
combination of sensors for accurate detection of food intake
and triggering of a wearable camera (passive). In this study,
we integrate a time-of-flight (ToF) ranging sensor with AIM-2
and propose a novel method to determine container dimensions
(bowls/plates). The method does not require fiducial markers.
Once the size of the vessels is known, portion size can be
estimated using the “plate method.” In this study, our objective
is to measure the dimensions of plates and bowls.

The major contributions of the proposed work are: 1) the
model eliminates the need for fiducial markers; 2) the camera
system (AIM-2) is not restricted in terms of positioning
relative to the food item; 3) our model accounts for radial lens
distortion in caused due to lens aberrations; 4) a ranging (ToF)
sensor directly gives the distance between the sensor and the
eating surface; 5) the model is not restricted to circular plates;
and 6) a passive method that can be used for assessment of
container dimensions with minimum user interaction.

II. METHODS

A. Equipment
In this study, a novel wearable sensor system (AIM-2 with a

ToF ranging sensor) was used [33]. AIM-2 consists of a sensor
module, which houses a miniature 5-Mpixel camera with 120◦

wide-angle gaze-aligned lens, a low-power 3-D accelerometer
(ADXL362 from Analog Devices, Norwood, MA, USA), and a
ToF ranging sensor (VL53L0X from STMicroelectronics). The
sensor system is enclosed in a custom-designed 3-D printed
enclosure. The ToF sensor is aligned with the camera axis.

The camera continuously captured images at a rate of
one image per 10-s interval continuously throughout the day.
Data from the accelerometer and ToF sensor were sampled
at 128 Hz. All collected sensor signals and captured images
were stored on an SD card and processed off-line in MATLAB
(MathWorks Inc., Natick, MA, USA) for algorithm devel-
opment and validation. The AIM enclosure is such that the
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Fig. 2. ToF distance and pitch angle as a function of time (y-axis:
hh:mm:ss) for a sample meal where the AIM-2 was used.

Fig. 3. Model of the AIM imaging system.

camera and the ToF sensor are at an angle of 21◦ with respect
to the accelerometer axis, as shown in Fig. 1. We will be
using this offset (+21◦) while calculating the pitch of the
camera. The raw sensor data from the accelerometer were
preprocessed before extracting the pitch angle. A high-pass
filter with a cutoff frequency of 0.1 Hz was applied to remove
the dc component from the accelerometer signal.

The sensor pitch was calculated as in [33] and the device
pitch is obtained by adding the offset (21◦) to the sensor pitch.
The distance readings are more straightforward, the raw values
depicting the actual distances. Next, using the timestamp of
an image, the respective pitch and distance readings were
extracted. Fig. 2 shows the ToF distance readings and pitch
plotted as a function of time for a sample meal.

B. Geometric Model
The objective is to project the points in an image in the

real-world coordinates. In this study, our primary concern is
to measure the dimensions of the plate and bowls.

Refer to Fig. 3. Let P be a point in the world, Cw be a world
coordinate system, and (XY Z)t be the coordinates of P in Cw.
Define the camera coordinate system, Cc, to have its W -axis
parallel with the optical axis of the camera lens, its U -axis
parallel with the u-axis of Ci (image coordinate plane), and
origin located at the perspective center. Let (U V W )t be the
coordinates of P in Cc. The coordinates (U V W )t are related

to (XY Z)t by a rigid body coordinate transformation U
V
W

 = R

 X
Y
Z

 + T (1)

where R is a 3 × 3 rotation matrix and T is a 3 × 1 translation
vector. R is dependent on three angles of rotation, namely,
pitch (ω), roll (8), and yaw (9). The three angles for the
AIM device are shown in Fig. 1.

The principal point is the intersection of the imaging plane
with the optical axis. Let fc be the focal length of the lens of
the imaging system. Define the 2-D image coordinate system,
Ci , to be in the image plane with its origin located at the
principal point, u-axis in the fast scan direction (horizontal
rows of pixels on the sensor), and v-axis in the slow scan
(vertical rows of pixels on the sensor) direction of the camera
sensor. Fast scan indicates the pixel direction in which the
sensor scans at a higher rate. Let p be the projection of P
onto the image plane and let (ū, v̄)t be the coordinates of p in
Ci . The focal length (Table. I) of (ū, v̄)t is given by(

ū
v̄

)
=

fc

W

(
U
V

)
. (2)

Next, radial lens distortion is incorporated into the model
in the following way. Let (uv)t be the actual observed image
point after being subject to lens distortion. Then, (u v)t is
related to (ū v̄)t by(

u
v

)
=

(
ū
v̄

) [
1 + Kc

(
ū2

+ v̄2
)]

(3)

where Kc is a coefficient, which controls the amount of radial
distortion.

Finally, it is necessary to model the image sampling per-
formed by the camera sensor [charged coupled device (CCD)].
A camera sensor consists of a 2-D array of photosensors.
Each photosensor converts incoming light into a digital signal
by means of an analog-to-digital converter. To obtain color
information, one “sensor pixel” is divided into a grid of
photosensors, and different color filters are placed in front
of these multiple photosensors. Each of these photosensors
receives light through only one of the three filters: blue, red,
and green. Combining these measurements gives one color
triple: (red intensity, green intensity, and blue intensity). This
is known as the Bayer filter. Therefore, the digital image
coordinates are not the same as the pixel coordinates.

Let C p be the pixel coordinate system associated with the
digital image. The pixel coordinates are related to the image
coordinates by(

x
y

)
=

(
sx

c Kc
0 s y

c

) (
u
v

)
+

(
cx

c
cy

c

)
(4)

where sx
c and s y

c are scale factors (pixel/mm), cx
c and cy

c are
the pixel coordinates of the principal point, and Kc is the
distortion coefficient (pixel/mm)(

x
y

)
= f (XY Z) . (5)
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Fig. 4. Projection of camera coordinates on to the world coordinates.
Also, depict the calculation of pitch angle of the camera.

We are interested in the inverse function of (5) for the
purposes of dimension estimation, i.e., X

Y
Z

 = f −1 (xy) . (6)

With the known AIM sensor orientation, namely, the pitch
angle of the sensor, provided by the inertial measurement unit,
a right angle between the surface of the lens and the optical
axis, and the projection relationship in (5), it can be shown
that the inverse of function f in (6) exists for the tabletop,
i.e.,  X

Y
0

 = f −1 (xy) . (7)

Note that Z = 0 in (7) represents the plane equation of the
tabletop.

Also, we assume that the roll (8) and yaw (9) of the sensor
are zero. Therefore, the rotation matrix R is given by

R =

 1 0 0
0 cosω −sinω

0 sinω cosω

 . (8)

From (4), the world coordinates of the tabletop are related to
the pixel coordinates by(

u
v

)
=

(
1/sx

c 0
−K c 1/s y

c

)
+

(
x − cx

c
y − cy

c

)
. (9)

To calculate the translational and rotation matrices, we make
use of the sensor pitch (ω) and distance readings from the
AIM. The distance is obtained by the ToF sensor, and the
sensor pitch is obtained by the accelerometer on the AIM
device, as shown in Fig. 4. The camera on the AIM has an
offset of 21◦

h = dtof × tan(ω) (10)

where d tof is the distance from the ToF sensor, which is the
distance between the AIM and the eating surface. As in [1],
we obtain the following equation:

W =
h · sin (θ)

cos (θ) −
v·sin(θ)

fc

. (11)

Fig. 5. Projection H’ of height H on the y-axis. Calculating h’ for
obtaining the plane equation for Z = H.

Fig. 6. Left: test bench with the AIM attached to the tripod. Right:
protractor used to measure the pitch angle of the sensor system.

Fig. 7. Test dataset: plates and bowls of varying sizes.

From (9), we obtain(
U
V

)
=

W
fc

(
u
v

)
. (12)

Finally, we obtain the equation X
Y
0

 = R−1

 U
V
W

 − T

 (13)

where T = [0; −h; 0].
Equation (13) gives us the plane of the eating surface (Z =

0).
The study mainly focuses on obtaining the dimensions of

two types of vessels, namely, plates and bowls. We assume
plates to be flat and part of the plane Z = 0. The heights/depths
of the plates are assumed to be negligible and approximated
to zero. We measure the dimensions of the plate on this plane.

However, in the case of bowls, first, the height of the bowl
is measured along the y-axis, as shown in Fig. 5. The height is
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TABLE I
PARAMETERS OF THE AIM CAMERA

just a projection on the y-axis and the true height is calculated
as in (14). Here, the assumption is that the bowl sides are flat
and not curved

H = tan (ω) × H ′. (14)

Once the height of the bowl (H) is calculated, the equation of
the plane Z = H is obtained instead of Z = 0. Fig. 5 shows
the changes in the parameters for obtaining the adjusted plane
equation

h′
= h − (H × sec (ω)) (15)

where h is calculated as in (10).
Once h′ is obtained, this value is plugged into (11) followed

by (12) and (13).
We then measure the dimensions of the mouth of the bowls

similar to the dimensions of the plates. We assume bowl of
the mouth to be a part of the plane Z = H . The radius of the
mouth of the bowl is then measured on this plane along the
x- and y-axes.

C. Data
The AIM sensor system was mounted on a test bench

to collect data. The test bench consisted of a tripod and a
protractor for angle measurement (see Fig. 6). The AIM device
was placed on a tripod in front of a table at three pitch angles
(40◦, 55◦, and 70◦) with respect to the parallel to the ground,
at three different heights from the table surface (20, 35, and
50 cm). The angles were measured using the protractor fixed
to the side of the sensor aligned with the camera (as shown
in Fig. 6). The protractor was also calibrated to test for errors
in the pitch angle measurement. The calibration was done in
increments of 10◦ from 0◦ to 70◦. The error in measurement
was (mean ± std. dev) −2.43◦

± 1.36◦. The roll and yaw of the
cameras were approximately set to be 0 for experimentation.
Also, the roll and yaw for the AIM are assumed to be 0 when
a person is eating.

Nine sets of data collected at a combination of three heights
and three pitch angles were used for testing (see Fig. 7). A set
of eight objects, three circular plates (diameter: small 18 cm,
medium 22 cm, and large 26 cm), two square plates (side:
small 18 cm and medium 23 cm), and three circular bowls,
were used as objects of interest.

As a final step, four research assistants used the proposed
methodology to estimate the bowl/container sizes of 3 (two
circular bowls and one hollow rectangular box) shown in
Fig. 8. The AIM device was worn by a user and a minimum of

Fig. 8. Validation images in a real-case scenario where AIM-2 was worn
by a user on the eyeglass.

Fig. 9. Correcting distortion due to lens aberrations [see (3)].

Fig. 10. Projection of the image on the plane equation Z = 0 (all units
are in mm).

three images were taken for each case without any restrictions
on the position/tilt of the head.

The images and the sensor signals captured by the AIM at
each setup were extracted and used as input to the model. The
ground-truth dimensions were measured using a tape measure.

III. RESULTS

Fig. 9 represents a sample result of the lens corrections after
(3).

Using the world coordinates of the plane Z = 0 and the
projected image on the plane (see Fig. 10), the dimensions of
plates were measured (see Fig. 11). Any object belonging to
this plane can be measured using this projection.

Table II presents the results for the dimension estimation of
plates using the proposed model. The error percentage in the
dimension estimation of plates was (mean ± std. dev) 2.01%
± 4.10%.
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TABLE II
ERROR IN DIMENSIONS FOR PLATES

In the case of bowls, the heights of the bowls are estimated,
as shown in Fig. 12. Once the height is estimated, (14) and
(15) are made use of to estimate the bowl width measured at
the top of the bowl (at Z = H).

Table III presents the results for the estimation of heights of
bowls. The error percentage in the height estimation of bowls

was (mean ± std. dev) 2.75% ± 38.11%. Table IV presents
the results for the estimation of diameters of bowls. The error
percentage in the diameter estimation of bowls was (mean ±

std. dev) 4.58% ± 6.78%. Tables V and VI present the results
from the real scenarios that were used for validation. The error
percentage in the diameter/length and height estimation was
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TABLE III
ERROR IN HEIGHT ESTIMATION IN BOWLS

Fig. 11. Sample measurements of plate dimensions (all units are in
mm).

(mean ± std. dev) −7.89% ± 4.71% and 4.70% ± 11.56%,
respectively.

IV. DISCUSSION

This study proposes a passive and automatic method for
estimation of plate and bowl dimensions that involve the
AIM-2 device integrated with a ToF sensor. The motivation
is to use these dimensions for FPSE as in the “plate method”
suggested in [17]. A geometric camera model is used to obtain
real-world coordinates of the surface on which the objects
of interest are present. In [1], a similar model is proposed,
however, that method requires the use of a smartphone with
the active participation of the user. Also, the smartphone is
needed to be placed on the eating surface at a specific position.

Fig. 12. Sample measurements of bowl dimensions.

We propose a method that does not have this requirement.
We make use of a ToF ranging sensor, which can directly
measure the distance between the camera and the table. The
method also accounts for any lens aberrations that can cause
distortions such as barrel distortion in the captured images.
A major contribution of this work is the elimination of fiducial
markers that have been extensively used in previous methods
for FPSE. The direct measurement from the range sensor
will provide the necessary dimension reference in 2-D-to-3-D
model conversion.

The method makes several assumptions prior to estimation:
the camera axis and the range sensor axis are parallel to each
other, the roll and yaw angles of the sensor are 0, the eating
surface = 0, and the walls of the bowls are flat.



5398 IEEE SENSORS JOURNAL, VOL. 23, NO. 5, 1 MARCH 2023

TABLE IV
ERROR IN DIAMETER ESTIMATION IN BOWLS

TABLE V
ERROR IN DIAMETER ESTIMATION IN CONTAINERS

The proposed method was evaluated on a test bench using
a calibrated protractor for positioning. Three heights and three
angles were considered for testing the proposed model based
on the natural behavior of participants in previous AIM-based
studies. The tilt angles and the distances between the camera
and the eating surface were in the selected range of pitch
angles and heights.

For the measurement of bowl heights, the inner walls of the
bowls were used. The rationale for using the inner walls of
the bowls is that the AIM is a passive device that captures
continuous images from including the start and end of meal

images, and that way the images will include an empty bowl
at the end of the meal. Even if the bowl is not empty, we can
measure the difference between the start and end of the meal
and eventually calculate the difference in the food level. This
is a major advantage of having a passive camera since there
are enough images covering the entire meal. It was noticed
that the error rates were higher for steep angles.

The results of estimation of dimensions for plates were
acceptable with good error rates. It was noticed that the
dimensions were overestimated for steep angles (70◦). The
estimations were most accurate for 55◦ compared to the other
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TABLE VI
ERROR IN HEIGHT ESTIMATION IN CONTAINERS

two orientations. This is a promising trend since the corre-
sponding AIM pitch angles normally occur when a person is
bending forward to grab a bite of the food in front. In addition,
since the AIM captures images continuously every 10 s, there
will be multiple images captured at several angles due to the
forward bending of the user. The angle that typically had the
lowest error rates could then be picked from the range of
angles available to estimate the dimensions of the objects in
the scene. This reference can then also be used for images
from different orientations.

We also noticed that the error rates were lower for heights of
20 and 35 cm compared to 50 cm for the same pitch angles in
the case of plate diameter estimations. This could be because
the plates are more central in the images as the camera is
closer, reducing the field of view (the area covered by the
camera). However, for the height and diameter estimations of
bowls, a height 35 cm was more accurate compared to the
20- and 50-cm cases for narrow pitch angles. The 35 cm height
might be ideal for the methodology used here since the walls
of the bowls are clearer to the user to mark. The best results
were obtained for the heights of 20 and 35 cm at 55◦ pitch
angles for plates and bowls, respectively.

One limitation of the study is that the bowl walls are
assumed to be flat and not curved. This could be a source of
error in dimension measurement and portion size estimation.
The method also assumes that the plates are part of the plane
Z = 0. The method does not account for the thickness of the
plates or the curvature of plates. However, unlike other studies
which use plates as a reference, this method is not restricted
to circular plates or bowls. Any shape of plates or bowls can
be included.

Finally, the proposed method was validated by wearing the
AIM and collecting data for three cases and four research
assistants estimated the diameters/length and heights for the
same. The results suggested that except for a couple of outliers
(RA3: diameter and RA2: height for white box), the estimates
were reasonably accurate. Also, it should be noted that one
of the cases was a hollow rectangular box. This indicates
that the method could be employed for similar shaped bowls
and possibly for a larger variety of bowl shapes. However,
in some situations where the walls of the bowls are not flat,
our assumption of the walls being flat might induce errors in
estimating the height of the container accurately.

Future work could include estimating food portion sizes
from the dimensions of the bowls and plates. Another possible
work is to use this method to estimate the dimensions of
regular-shaped foods followed by food volume. Also, the
proposed method was only tested on a test bench that was
stationary. Since the AIM device is primarily designed to be

mounted on the eyeglass, it is necessary to test the proposed
method by mounting the sensor system on a human.

V. CONCLUSION

In this article, we propose a wearable sensor system-based
(the automatic ingestion monitor integrated with a ToF ranging
sensor) method for the estimation of dimensions of plates
and bowls. The contributions of this study are: 1) the model
eliminates the need for fiducial markers; 2) the camera system
(AIM-2) is not restricted in terms of positioning, unlike in [29]
where the smartphone is required to be placed on the eating
surface; 3) our model accounts for radial lens distortion in
caused due to lens aberrations; 4) a distance (ToF) sensor
directly gives the distance between the sensor and the eating
surface; 5) the model is not restricted to circular plates; and 6)
a passive method that can be used either for automatic or man-
ual assessment of container dimensions with minimum user
interaction. The error rates (mean ± std. dev) for dimension
estimation were 2.01% ± 4.10% for plate widths/diameters,
2.75% ± 38.11% for bowl heights, and 4.58% ± 6.78% for
bowl diameters.
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