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Abstract—As today’s agriculture industry is facing numer-
ous challenges, including climate changes, encroachment of
the urban environment, and lack of qualified farmers, there is
a need for new practices to ensure sustainable agriculture and
food supply.Consequently, there is an emphasis on upgrading
farming practices by shifting toward smart farming (SF)—
utilizing advanced information and communication technolo-
gies to improve the quantity and quality of the crop with
minimal labor interference. SF has gained lots of interest in
recent years utilizing a variety of technological innovations
in the field, which imposes a challenge on farmers and tech-
nology integrators to identify suitable technologies and best
practices for a particular application. This article provides a
survey of the most recent SF scientific literature to identify common practices toward technology integration, challenges,
and solutions. The survey was conducted on 588 papers published on the IEEE database following Cochrane methods to
ensure appropriate analysis and interpretation of results. The papers’ contributions were analyzed to identify necessary
technologies that constitute SF, and consequently, research themes were identified. The identified themes are sensors,
communication, big data, actuators and machines, and data analysis. Besides presenting an in-depth analysis of each
identified theme, this article discusses integrating more than one technology in systems to achieve independency. The
most common SF systems are remote monitoring, autonomous, and intelligent decision-making systems.

Index Terms— Actuators, automation, data analysis, deep learning (DL), Internet of Things (IoT), irrigation systems, low-
power wide area network (LPWAN), machine learning (ML), microcontrollers, remote monitoring, robotics, smart farming
(SF), wireless sensor networks (WSNs).

I. INTRODUCTION

ACCORDING to the Food and Agriculture Organization of
the United Nations, “the world’s population is expected

to grow to almost ten billion by 2050, which requires a 60%
increase in global food production” [1]. Meanwhile, food
security is threatened by the increase in pests and diseases,
lack of qualified labor, and climate changes [2], [3]. The rise
in food demand and the challenges faced on the production
side motivated the shift from traditional agriculture to smart
farming (SF). SF refers to incorporating technologies in the
field to either decrease human involvement or increase the
quality and quantity of production yield [4].

SF and its literature have experienced an explosion in devel-
opment that includes integrating cutting-edge technologies,
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such as Internet-of-Things (IoT) devices, advanced actuation
systems, and data analytics techniques. The increased volume
of research literature has made it difficult for individuals to
assess the vast quantity of work to identify suitable technolo-
gies and best practices for a particular technology. To this
extent, there have been previous efforts to provide an overview
of different technologies in SF, such as IoT [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
data analysis and machine learning (ML) techniques [14],
[18], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32], sensor networks [12], [17], [33], [34], [35],
[36], [37], [38], and intelligent actuation systems [39], [40],
[41], [42], [43], [44]. As those papers are technology-oriented,
they focus exclusively on providing a technical overview of
the domain and/or tracking the most recent advancements
in a field, giving little to no awareness to nonspecialists
on technology integration guidelines. Other general survey
papers focused on identifying trends and patterns of research
on SF [45], [46], [47] or highlighting the role of different
technologies in the agricultural industry in a particular region
[48], [49].

A limitation of previous literature reviews is that they target
researchers and technology developers rather than farmers and
practitioners. The contribution of this article is to provide
guidance to SF practitioners by surveying the most recent
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scientific literature and analyzing the technology integrated
into SF. This article examines various integration options for
each technology and highlights the key challenges faced during
technology integration and the proposed solutions.

The remainder of this article is organized as follows.
Section II presents the procedure followed to collect, orga-
nize, and analyze the literature. Section III shows an in-depth
analysis of all technology integrated into SF literature, along
with their key challenges and solutions. Section IV provide a
discussion of systems that integrate multiple technologies.

II. METHODS

This study was designed in accordance with the Cochrane
reporting methodology for systematic review guidelines. The
Cochrane protocol was adopted as it guarantees highly struc-
tured and transparent research outcomes [50]. The methodol-
ogy entailed identifying the research papers included in the
survey, preparing the documents for in-depth analysis through
an initial assessment, and then evaluating and analyzing the
literature.

A search statement that fits a prespecified eligibil-
ity/inclusion criterion was applied to the IEEE database to find
all relevant research papers. The inclusion criteria attempt to
collate all documents that contribute to studying or applying
new technology in the field of SF. To meet this criterion,
a two-word search statement was used. The search statement
comprised one word from each of the following sets: [smart,
precession, intelligent, advanced] and [greenhouse, farming,
agriculture]. Truncation symbols were used to ensure that
plural forms and variant spellings were included in the results.
The “all fields” option was selected in the search engine to
ensure inclusiveness. In addition, the publication years were
specified to be between 2015 and 2021. The choice of this
particular period is justified by considering that SF is a new
phenomenon, and the older literature could be misleading in
describing the current state of the art and research.

The search statement was applied to the IEEE database
to collect papers to be surveyed. The IEEE database was
chosen for the quality and credibility of its scientific publi-
cations, as reflected by the 2020 Journal Citation Report [51].
In addition, the IEEE database provides access to a compre-
hensive source of bibliographic citations covering the scope
of technologies in different fields, including smart agriculture.
At this stage, 2300 papers were obtained. The selection of the
IEEE as the only database was to balance time restraints and
thoroughness. Using IEEE solely is justifiable as it is the most
extensive database for advancing technologies that guarantee
to identify sufficient eligible studies and ensure that there is
no bias.

After an initial data set had been collected, a primary
analysis has been performed to: 1) exclude irrelevant papers
based on an exclusion criterion and 2) identify research
themes. The exclusion criterion was set to ensure that any out-
of-scope paper should be eliminated. The exclusion criterion
was based on papers’ contributions, and it included papers
that are not related to farming and papers that tackle SF from
a nontechnology perspective. Papers that are not related to
farming included, but were not limited to, documents about

Fig. 1. Taxonomy of the SF literature.

wind and solar farms, smart cities, animal welfare monitor-
ing, and greenhouse gas emissions. Other papers that tackle
SF from an out-of-scope perspective discuss issues such as
designing platforms that provide advice to farmers, connecting
farmers with other food industry stakeholders (customers and
retailers), and performing social studies related to SF. The
exclusion criteria were manually applied to filter papers out.
The irrelevant papers were filtered manually as adding the
“NOT” option in the search criteria would have eliminated
relevant papers. After filtering the irrelevant papers, the team
was left with 588 papers.

To provide an integral view of the research activity in the
field of SF, the primary analysis included assessing the papers
to identify the technology they incorporate. After reviewing
all documents, the most analyzed SF literature has provided
research insight into one of the following themes: sensors,
big data, communication, actuators and machines, and data
analysis. Big data refer to techniques adopted to handle
issues arising from the difficulties in storing, processing, and
analyzing the enormous volume of data. After papers have
been reviewed and tagged with them based on the technology
that they incorporate, an exhaustive analysis was performed.
All included studies were analyzed to draw a conclusion on all
identified research themes in an impartial and objective way.
Fig. 1 provides an insight into the structure of each of the
themes found that will be analyzed holistically in this study.

While some of the literature researches implanting a single
technology in the field, others show to integrate more than one
technology to form a system. Fig. 2 shows the breakdown of
literature in SF and their contribution to different themes and
systems. Remote monitoring, automation, and decision support
are examples of systems present in SF. Any of those systems
would include at least two technologies. As seen in Fig. 2, the
most dominant technology is sensors since they are the basis
of any SF system. The numbers in Fig. 2 show that some
papers do not fit in any of the identified themes, while others
fall into two or more categories.

III. ANALYSIS: ENABLING TECHNOLOGIES

A. Sensors
Sensors are integrated into SF to gather data for various rea-

sons, including, but not limited to, environmental monitoring,
crop quality monitoring, and fertilizers’ control. The deploy-
ment of sensors typically takes the form of sensor nodes and
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Fig. 2. Heatmap of the SF literature.

groups of synchronized sensors that collect data and send it
to a destination through wireless communication. A sensor
node typically consists of sensors, a battery, a controller, and
a transceiver. A group of connected sensor nodes is referred to
as a wireless sensor network (WSN). This section focuses on
sensors and sensor node topologies, including key challenges
and solutions related to deploying sensors in SF.

1) Sensor Modules: Few papers discuss novel sensing tech-
niques [52], [53], [54], [55], [56], [57], [58], [59] or sensors’
fabrication [60], [61]. The majority of literature uses com-
mercial off-the-shelf sensor modules. Table I lists examples
of sensors for environmental and soil-related measurements.
The sensors listed in Table I have different measuring ranges,
accuracies, and prices. Practitioners need to choose sensors
that work best for their applications. An algorithm that
optimizes sensor selection for a given application has been
proposed [62].

2) Sensor Nodes’ Placement and Interconnection in a WSN:
Sensors placed in an agricultural field can be either stationary
or remote. Remote sensors can be accomplished in the air
through the use of a flying drone [63], [64], [65], [67] or on
the ground via a patrolled vehicle [68], [67], [68], [69], [70],
[71], [72], [73], [74], [75], [76], [77], [78], [79], [80], [81],
[82], [83]. The choice between stationary and remote sensor
networks comes with a tradeoff between flexibility and cost as
stationary uses a fixed sensing grid, which limits reconfigura-
bility but lower implementation and use cost. A mobile system
can adapt to changing uses but has higher implementation and
use costs.

To guarantee the best coverage area for stationary sensors,
a design process, which ensures that sensors are optimally
placed, has been utilized. Typical design considerations for
static sensors include choosing the sensor locations infield
and setting a sensor network architecture. The two approaches
for placing sensors are equal-distanced sensor placement
[84], [85], [86], [87] and the trial-and-error method [84].
While the former is more common, the latter results in more
accurate measurements but a longer design process [84].

TABLE I
COMMERCIAL OF THE SHELF SENSOR MODULES

USED IN THE SF LITERATURE

A computational model that ensures strategic deployment of
the equal-distanced sensor was developed in [55].

Compared to stationary sensors, remote sensors can pro-
vide a more accurate representation of the field conditions—
i.e., better ability to detect microclimates—with fewer sensors.
However, battery life is an important issue that limits the
flight time of drones and other mobile platforms. Also, remote
sensing needs a navigation system. This can be autonomous,
such as unmanned aerial vehicles (UAVs) [68], or may require
an operator [88]. Autonomous navigation systems are com-
putationally extensive and would require additional spatial
measurements.

Sensor network architecture is concerned with connections
between sensors and other components to ensure optimal
network configuration. Plane and hierarchal architecture are
two common architectures implemented in the SF literature.
A plane architecture is where all nodes have the same status,
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abilities, and roles. On the other hand, a hierarchal structure
involves having more superior nodes responsible for collecting
and forwarding data. A plane structure is more straightforward
and less affected by an individual node’s failure. However, it is
impractical in a larger network as it will demand extensive
energy [104]. A two-level node hierarchal structure is more
common [85], [105], [106] where the first level (slave nodes)
senses and sends the data to a more advanced node (referred
to as a sink or a master node) that sends data to an external
source and coordinates the slave nodes. A group of slave nodes
managed by a master is referred to as a cluster, and the master
is the cluster head. Clustering sensors to form nodes can be
done by grouping like sensors together and powering them
with different sources according to their different needs [107]
or making each node heterogeneous to ensure similar power
demand among nodes [108]. The first is easier to design and
requires less human work for battery replacements; however, it
might be more expensive. Methods for calculating the sensor
nodes’ energy demand are presented in [108] and [109].

3) Challenges: A technical concern when deploying a WSN
is energy. In a WSN, the energy is constrained to the capacity
of the battery powering them. The entire sensor node fails once
the battery is depleted and not recharged or replaced [110],
[111]. Hence, minimizing the power consumption of the sensor
nodes is critical. It is also possible to harvest ambient energy
to power the sensor node. To reduce the power consumption
of the sensor node, research utilizes methods that switch the
nodes [107], [112], [113] or their transceivers (most power-
hungry block) [85], [114] OFF when not used. This is also
known as putting nodes in the sleep mode. The sleep time can
occur at prescheduled fixed intervals [107] or event-based such
as to report changing weather conditions [85] (i.e., a rainy,
cloudy day would require more awake time than a typical
summer day).

The fixed-interval sleep mode saves energy but risks missing
data instances when the node is OFF. Also, the setup time
taken by the transceiver once it wakes up leaves the node
more vulnerable to transition delays. Another power-saving
method is to continuously reconfigure the data routing paths
(reassigning master and slave nodes) [108], [115], [116].
The operating principle of those methods is to develop an
algorithm that keeps changing the master node, since it is the
most energy-intensive, to give all nodes a longer lifetime and
guarantee that all nodes will be depleted together.

Reducing the quantity of data that need to be transmitted
is important for minimizing power [117]. Spatial data com-
pression (nearby nodes talk to check repeated patterns in the
data) has been used to lower the amount of transmitted data
[117]. Although data compression requires some additional
computations at the node level, it was shown that the com-
putation power is much less than the power for long-distance
communication [117]. Power saving has also been achieved
using a low-power microcontroller (e.g., MSP430FR5969 and
ESP8266EX) that offers increased performance at a lower
energy budget [102], [118], [119].

Power consumption and battery life shape a burden in
remote sensing platforms. That is, since using the tradi-
tional battery charging stations has an impact on mobility,

alternatively, replacing the battery when depleted requires
additional manual work and higher initial investment as one
would need spare batteries. To this extent, wireless power
transfer has been investigated to overcome this burden [73],
[120], [121]. Solar energy harvesting has also been deployed
in the literature to solve the limited power available to sensor
nodes [102], [118], [122], [123]. An additional power con-
verter accompanies the integration of solar energy to regulate
the power supply and the battery charging. BQ25570 IC is
an example of a commercialized power regulator used [102],
[124]. Another energy harvesting technique that overcomes
the limitations of solar, being weather dependent, is using the
radio frequency (RF) signal to provide energy to the sensor
node [125].

A second challenge faced is the risk of losing data due
to power loss or failure of components. To mitigate this
risk, IdealVolting, a technique used to explore the possibility
of operating below the minimum power specifications with-
out compromising the measurement [126], has been studied.
Moreover, the literature investigates using ML to predict the
data to interpolate missing points [98], [127], [128]

B. Communication
The advances in the communication field and the IoT archi-

tectures have resulted in many protocols that can be utilized in
SF, leaving flexibility for users’ selections depending on their
needs and constraints. Generally, the pattern followed is using
two communication pathways.

1) Machine-to-Gateway (M2G): Communication back and
forth between sensors or actuators nodes and microcontrollers.

2) Machine-to-Cloud Communication (M2C): Passing data
through the transmission control protocol/internet protocol
(TCP/IP) network to a final destination.

The choice of data transmission platform is subject to
many constraints, including available bandwidth, the required
transmission rate, latency, data volume, and reliability. This
section discusses the used protocols and challenges faced when
designing a communication network.

1) M2G Communication Protocols: Various protocols have
been utilized to establish M2G communication, including:
1) standard protocols, such as Zigbee [77], [129], [130], [131],
[132], [133], [134], [135], Bluetooth [136], [137], 138], Wi-Fi
[89], [90], [139], [140], [141], cellular networks [110], [129],
[130], [131], [133], [142], and RF identification (RFID) [95],
[121], [143], [144], [145], [146] and 2) low-power wide area
networks (LPWANs), such as LORA [147], [148], [149],
[150], [151], [152], [153], [154], [155], NB-IoT [156], [157],
and Sigfox [99], [158], [159].

RFID is an energy-efficient communication technique, but
it has a limited coverage area. Zigbee is based on an IEEE
standard and can be connected easily through an Xbee module.
The advantage of Zigbee is its low cost and low power
consumption. However, Zigbee is limited in terms of data
rate and coverage area. Wi-Fi and Bluetooth are alternatives
that offer improved data rates. Bluetooth connection can be
established by attaching the HC-05 module to the Arduino
[128], [130], while Wi-Fi can be through the ESP8266 [132],
[133], [134] module or directly through the Raspberry Pi with
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a built-in Wi-Fi module. The main limitation of Wi-Fi and
Bluetooth is their narrow coverage area, which is overcome in
cellular networks that offer high-speed communication and a
wide coverage range. The SF literature has captured the most
recent advancements in the cellular network to increase the
transmission data rate as in [110], which utilizes the critical
techniques in 5G to accommodate more sensor nodes and
prolong the lifetime of the WSNs. However, the use of cellular
networks consumes more energy.

LPWAN is a set of emerging network protocols capable
of transmitting data over a long distance (couple of kilo-
meters) with relatively lower power to overcome standard
network limitations. The most common LPWAN protocol,
in SF, is LoRaWan, an open-access protocol that uses LoRa
technology. To set up an LoRaWan network, one can use
a microcontroller that supports an LoRa module, such as
Arduino Uno that works with the LoRa/GPS shield [160] or
the STM32F103 that is compatible with the Lora module Ra01
[161]. Setting up the LoRa network requires calibration of the
sender and receiver antenna gain [160]. NB-IoT is another
LPWAN technology that offers more coverage area than LoRa
[156], and it can be integrated through the SIM7020, which
can be connected to a Raspberry Pi [157]. Sigfox has also
been utilized in SF through the Sigfox ship, SFM11R2D [158],
or the Sigfox Shield for Arduino (UNASHIELD-V2S) [159].
The main drawback of LPWAN is that it has a relatively low
data rate in comparison to other traditional protocols. The low
data rate makes utilizing LPWAN impractical for high density
of sensors. A solution to mitigate this drawback is to utilize
a multichannel gateway [152]. Another drawback of LPWAN
is the risk of data collision when two nodes are sending data
simultaneously. This challenge has been addressed in [161]
by allocating independent time slots for transmission for each
node. The solutions proposed to overcome LPWAN limitations
increase power consumption; hence, optimization is needed
between power consumption, coverage area, and data rate.

2) M2C Communication Protocols: On the other hand, the
most common method to establish M2C communication in
SF is to connect the microcontroller to the local wireless
network connected to the Internet. Alternatively, some papers
use the hypertext transfer protocol (HTTP) [89], [162], the
message queue telemetry transport (MQTT) [97], [163], [164],
or the constrained application protocol (CoAP) [165], TCP/IP
protocols that are used to establish M2C communication,
known as IoT protocols.

3) Challenges: The limited resources assigned to the
devices’ communication create challenges in deploying com-
munication networks. In other words, the challenge associated
with designing a communication network is the desire to
achieve a firm, reliable, and fast data delivery while optimizing
factors such as power consumption, cost, and coverage area.
Unfortunately, the literature did not state one solution that fits
all. Hence, SF integrators should explore existing solutions
and choose according to their application requirements. This
section demonstrates an overview of the commonly used
communication protocols, there are many other factors to be
considered. For instance, the performance can drastically if
deployed indoor or outdoor, urban, or rural, and many other

factors. Detailed comparisons are available in [158], [166],
[167], [168], and [169].

C. Actuators and Machines
In agriculture, robotics has been applied to various fields of

agriculture. The SF literature that focuses on robotics revolves
around two issues. The first is designing new robots that
perform tasks in the field. The second is to improve the
performance of existing irrigation machines.

1) Robots: The literature used robots for multiple pur-
poses, including spraying or removing pesticides [170], [171],
[172], [173], irrigation [174], [175], picking crops [171],
[176], [177], sewing seeds [178], [179], [180], plowing soil
[181], [182], and harvesting [162], [183]. Robots’ design
and development considerations include controlling robots,
and their parts’ movement [162], [184], [185], selecting and
integrating motors [180], [186], and the mechanical design of
the body/chaise [174], [181], [186], [187] are discussed design
issues. The most common method to track the movement’s
motion is utilizing an ultrasonic sensor [171], [174], [181],
[182]. As for the motors, dc [175], [176], [181], [188] and
servo [172], [181], [182], [189] motors are the most common
motors used. In addition to the robots’ design considera-
tions, achieving long-term autonomy is a significant challenge.
Although advanced control methods exist in different appli-
cations, the nature of agricultural fields (vast and numerous
arrangements of crops) makes it challenging. To address the
challenge of robots’ motion, adaptive motion control strategies
have been proposed [73], [190]. Those strategies showed
significant improvement over methods that require detailed
field information.

2) Irrigation System: As irrigation is the basis of agricul-
ture, the literature has explored methods to achieve efficient
automatic irrigation. The most straightforward practice for
automating the irrigation system is using pipes controlled via
a solenoid valve [103], [191], [192], [193]. A solenoid valve
is an electromechanical device that can be switched by a
relay placed on solenoid power cables. Using a solenoid valve
solely might not be adequate for applications that need applied
pressure for water transfer. Hence, water pumps have been
used for irrigation in SF [119], [194], [195]. Pumps allow
more flexibility in the system design; however, they demand
more energy. To overcome limited energy, solar-powered irri-
gation systems [196], [197], [198], [199], [200] or passive
irrigation systems have been studied. Passive systems use
pressure-generated columns derived from the water potential
to actuate the valve [201] or utilize the siphon concept [202].
While those systems do not demand any power, they are
adequate for limited-field architectures. Hence, there is a
tradeoff between design flexibility and power consumption.

3) Challenges: The challenge faced while designing an SF
irrigation system is the limited amount of water available
in some fields. The research explored methods to minimize
water consumption, including reusing wastewater (recycling)
[196], [202], [203] to overcome this challenge. Another water
conservation approach is to adopt water management schemes
to minimize unnecessary watering of the crops [101], [200].
Also, using drip irrigation reduces the amount of water used
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as it is proven to be the most water-efficient irrigation method
[168], [196], [199], [200].

D. Managing Big Data
The enormous volumes of data captured by sensors in SF

motivate addressing big data management in the literature.
Managing big data is a discipline concerned with using tech-
niques, tools, and platforms to address storage, preprocessing,
processing, and security challenges. This section discusses the
challenge of handling big data and presents the techniques
adopted to mitigate those challenges.

The most significant challenge when dealing with big data
is the extensive processing power and memory needed for its
storage and processing. To deal with the limited processing
and storing capabilities, most literature chooses to send data
to a central cloud designed to manage a huge amount of data.
Thing speak [89], [134], [137], [203], [204], [205], [206],
Ubidots [94], Blynk [207], [208], OneNet [209], Amazon web
services [100], and GoogleColab [210], [211] are examples of
free IoT cloud services. The advantage of using those cloud
services is the ease of integration. In addition, most clouds
are accompanied by a dashboard that provides real-time data
visualization and can easily be configured to user interfaces
(web services or mobile applications). However, sending data
to the cloud is accompanied by costs inherited from the data
transfer and latency due to the time taken to send signals.

To reduce the cost inherited with the transfer, Gia et al.
[155], Alonso et al. [212], and Ribeiro et al. [213] proposed
methods of filtering data at the edge, sending only useful data
to the cloud. Alternatively, computational and data storage
procedures can be brought closer to the sensor or actuator
node by utilizing existing devices’ capacity (known as edge
or fog computing) [206], [214], [215], [216], [217]. Unlike
cloud computing, a single node having infinite capabilities,
edge and fog computing deploy multiple distributed nodes
with limited computational abilities and require resource man-
agement to ensure proper deployment. To address this issue,
resource management techniques optimize the use of resources
at the edge and guarantee fulfilling the application needs
[212], [215].

Another challenge faced is the deterioration of data quality
due to their exposure to cybersecurity attacks or accusa-
tion and transmission faults, leaving missing and inconsistent
data. To handle this problem, papers implemented blockchain
technology to ensure data privacy and authenticity [218],
[219], [220]. Darkweb technology has also been used to
boost the performance of blockchains as it avoids exposure
to malicious denial of service attacks [221]. Another method
used to enhance the security of the data is implementing
access control systems to ensure that only authorized users
can control the data [222], [223]. The later problem has
been solved by utilizing techniques to identify uncertainties
or noise in the data and mitigate them. Algorithms based on
the Boltzmann ML [224], the Kalman filter [225], and the
longest common subsequence (LCSS) [226] have been utilized
for data processing. Enhancing the quality of data has also
been achieved through interpolation models based on fuzzy

and neural network (NN) technology [128] and the anomaly
detection algorithm based on matching old and new data [227].

E. Data Analysis
1) Machine Learning Techniques: As SF advances, ML tech-

niques are widely adopted due to their potential to achieve
reliable solutions to complex problems. Those techniques
provide useful insight into the massive data generated by
sensors through analyzing patterns and identifying trends. This
section presents applications of data-driven decision-making
in SF.

ML is the process of using data to acquire a model that
represents the SF system and predicts its outcome. Broadly,
ML in SF can be classified into regression and classifica-
tion. Regression algorithms are used to find the relationship
between continuous variables, while classification algorithms
are concerned with determining class membership. The func-
tionality, complexity, and data required for those algorithms
vary significantly.

Simple regression algorithms—including linear, extreme
gradient boosting (XGBoost), and stacked regressors—have
been utilized to estimate the crop yield [228], [229], [230].
Decision tree, K-nearest neighbors (KNNs), random forest,
naïve Bayes classifier, and support vector machine (SVM) are
simple classifiers used to predict the most suitable crop for a
region [210], [231], [232], [233], [234], [235], [236]. The sim-
plicity of those algorithms enables presenting the relationship
between data without demanding extensive computation power
and, hence, can be employed at the edge. On the other hand,
those models are incapable of doing more complex functions;
hence, they have limited applications.

With the development of more advanced computing
approaches, deep learning (DL) became the mainstream
approach. DL utilizes NN models, the network of simple
information processing units (known as neurons), to model
complex relationships and extract features from huge datasets.
The connection between neurons has a weight associated with
them, which assigns a weighted sum to inputs of the neuron,
and then, the resulted sum is passed through an activation
function that determines the neuron’s final output value.

NN has been used in SF for different purposes including
soil or atmospheric parameter forecasting [98, 237, 238],
optimal Environmental Conditions prediction [239], and arti-
ficial neural networks (ANN) based controller to optimize
irrigation [240]. The desire of achieving tasks is to produce
accurate results using NN, while minimizing the training time
made the literature use tailored architectures, such as recurrent
NNs (RNNs) and convolutional neural networks (CNNs). RNN
has a memory buffer that stores the output of hidden layers
and feeds it back to itself along with the upcoming input. This
buffer makes RNN more suitable for processing sequential
data. The ability to take the sequential information into con-
sideration made RNN suitable for forecasting crop yield [241].
CNNs are tailored for image recognition tasks as neurons in an
early layer of the network would extract local visual features,
and neurons in later layers would combine these features
to form higher order features. CNNs proved high accuracy
in feature extraction in different SF applications, including
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Fig. 3. Breakdown of SF systems.

detecting and diagnosing diseases, and weed-infected areas
[242], [243], [244], [245], [246], [247], [248], [249], [250],
determining the plants’ quantity [92], [234], and detecting
animals’ intrusion [251].

2) Challenges: One of the challenges faced when applying
ML in SF is the ability to find sufficient data to train the
model. Finding a large data set that contains all possible usual
conditions (anomalies) is a prerequisite for the success of
the ML. To overcome this limitation, the literature utilized
different sources, including weather repositories [217], [252]
and image databases [246], [253], besides data collected in the
field to train the ML model. However, an online task-oriented
dataset might not be available. Another approach is to use data
augmentation techniques to create new instances of data from
the existing ones [248].

Another challenge faced is the noise in datasets, which
might be misleading if used to train the ML model. Noisy
data have been removed by experts in [254]. Alternatively,
Kalman filtering to smooth the data [255] has been used. The
high computation power and long training time of NNs shape
a burden. To overcome this, papers integrate transfer learning,
a technique that adjusts a model trained for a different task
instead of training from scratch [211], [244], [253], [256],
[257]. Transfer learning proved to obtain effective results at
reduced cost using the pretrained model.

IV. TECHNOLOGY INTEGRATION INTO SYSTEMS

Numerous papers focused on integrating two or more of the
aforementioned technologies to create an independent system.
Among those systems, remote monitoring and autonomous,
and discoing-making are the most common. Fig. 3 shows the
enabling technologies used in forming each system.

A. Remote Monitoring Systems
Remote monitoring systems (RMSs) collect data from the

physical layer (sensors and actuators) and send it to users
through a visualization service (e.g., mobile app) and/or store
data on a database server for further analysis. RMS provides
the opportunity for farmers to observe the state of their farm,
while he is away at any moment. Setting up an RMS requires
the interconnection of a sensor network, a communication
network, and a monitoring platform.

Due to the varying farmers’ capabilities and demands, the
RMS architecture did not converge. Its complexity ranges from
a single sensing node that delivers data locally to multiple
node systems that include an Internet connection to send data

to a back-end IoT system. The former system operates on
an internal application running on the same server, which
has been achieved through deploying the global system for
mobile communications (GSM) network and sending short
message/messaging service (SMS) to users [189], [258], [259]
or through a mobile application that receives data via Blue-
tooth [136]. The advantage of a local system is that it does it
require an Internet connection from the farmer. This is vital
in the case of an emergent message being delivered, such
as fire. Having no Internet connection is also preferred in
some developing countries where Internet availability is not
guaranteed. However, the GSM network that can send a limited
amount of data makes it impractical for applications requir-
ing the exchange of huge data amounts. The latter system,
which is more common, utilizes the IoT concept (exchanging
data through the Internet), which can be done by directly
connecting the sensors to the TCP/IP network or through a
middle layer, as shown in the communication techniques in
Section III-A. The gateway can be any device composed of a
CPU and equipped with a transceiver compatible with the used
communication protocol. Raspberry Pi is the most common
gateway. A sample of different IoT solutions is shown in
Table II.

B. Autonomous Systems
Autonomous systems have recently drawn researchers’

attention because of the advantages that it brings to the
farm, including eliminating the need for manual work and
saving a significant amount of water [94], [261]. The most
common autonomous system discussed in the SF literature
is the irrigation system. Other autonomous systems include
controlling the temperature using cooling fans [135], [194],
[262], heating fans [135], skylight opening [263], wet curtains
[264], or bare tube heating systems [265], controlling light
intensity using shutters [194] or artificial lights [135], [262],
[266], [267], [268], and controlling humidity using water fans
[269] or fogging system [268]. Also, systems that automate
additives such as adding nutrient solutions [270], [271] or
pesticides [272] in water or injecting carbon dioxide in the
air [273] have been considered in the literature. The design
process of the above autonomous systems involves developing
control logic and hardware to operate the actuators along
with elements discussed in Sections III-A–III-C: connectivity
of sensors, local data transmission, and actuators. The link
between the system components requires synchronization to
ensure flawless operation.

Control logic is an algorithm that generates instructions
to switch actuators, usually through acquiring and analyzing
sensors’ data. Time-based [274], [275], farmer-based [91],
[270], [276], limit-based, and model-based are the classes of
control logic implemented in the SF literature. Time- and
farmer-based methods do not use sensors’ readings as they
control the actuators according to scheduled time slots or
instructions from farmers. Limit-based is the most common
with a predefined threshold. The output of the limit-based can
either be binary (ON/OFF) [204], [226], [277], [278], [279],
[280], [281] or, more flexibly, fuzzy [194], [266], [282], [283],
[284], [285], [286], [287], [288], [289], [290], [291]. Model-
based algorithms take actions in accordance with a reference
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TABLE II
DIFFERENT ARRANGEMENTS FOR RMS

model, which can be based on scientific equations [101], [292],
[293] or on previous data (i.e., ML models) [163], [239], [268],
[294], [295], [296]. The fuzzy-based algorithm is preferred
over other control algorithms as it enables multiple control
variables without using more complicated mathematical or
database models. Achieving the desired status of the actuators
generated by the control logic has been done in the SF
literature through two different hardware arrangements. One
is by adding a hardware interface between the microcontroller
and actuators. The second is using designated controllers that
directly connect to the actuators. Relays [96], [142], [207],
[233], [267], [271], [279], [292], [297], [298], [299], [300],
[301], [302], transistors [303], and motor drivers [205], [261]
are examples of blocks that operate in conjunction with the
microcontroller. An alternative arrangement is replacing the
microcontroller and the additional hardware with a program-
mable logic controller (PLC) [272], [286], [304]. PLCs can
be programed to complete the entire automation process as
their input can be connected to sensors, and their output can
be connected to the actuators. PLCs are simpler to set up and
program than combining a microcontroller with a hardware
interface. However, they are more expensive and enable less
freedom for the onboard control logic.

C. Intelligent Decision-Making Systems
Making decisions through sensors embedded in the field,

data analysis techniques, and methods of handling big data has
reshaped agricultural practices. Intelligent decision-making
systems are included in all SF stages, starting from preplan-
tation to postplantation activities. Predicting which crop suits
the given environmental conditions and estimating expected
crop yield are examples of preplantation decision-making.
Decision-making during the plantation process includes identi-
fying plant diseases, recognizing pests, and providing optimal
nutrients and irrigation needs. Postplantation decision-making
is concerned with counting and classifying crops. The high
computation power and long training time of NNs shape a
burden. To overcome this, papers integrate transfer learning,
a technique that adjusts a model trained for a different task
instead of training from scratch [211], [244], [253], [256],
[257]. Transfer learning proved to obtain effective results at
reduced cost using the pretrained model.

Table III summarizes all decision-making systems utilized
in the literature. Table III shows that the most common
decision-making system is the disease detection systems.
Intelligent disease detection systems also provide the benefit
of early detection and diagnosis, which can minimize losses.
Weed detection and finding plants’ needs are the literature’s
second and third most common decision-making systems.
All those systems rely on plant pictures to extract features
(e.g., color, size, morphology, and texture) and then classify
them. The most common ML technique used is CNNs, as it
has proved to produce accurate results for feature extraction
and object classification. The high accuracy of CNN comes
at the cost of demanding higher processing power and more
extensive data volumes that are not always affordable. To over-
come the limitations of CNN, many papers integrate transfer
learning, a technique that adjusts a model trained for a different
task instead of training a model from scratch or other ML
techniques with CNN.

The high computation power and long training time of NNs
shape a burden. To overcome this, papers integrate transfer
learning, a technique that adjusts a model trained for a different
task instead of training from scratch [211], [244], [253], [256],
[257]. Transfer learning proved to obtain effective results at
reduced cost using the pretrained model.

Table III also lists various sources of data in SF. The
selection of the data source is a significant concern as it is
a prerequisite for the success of the ML approach. Finding
the appropriate data source is challenging because most ML
algorithms need to be trained on a large dataset to optimize
many parameters. In addition, supervised ML methods require
the labeling of the data set, which requires a large amount of
the experts’ work. Given those challenges, four sources of data
were used in SF literature: 1) installed sensors; 2) weather
stations collecting meteorological data; 3) online databases;
and 4) agricultural reference material.

V. DISCUSSION

The main observation of surveying papers on SF is that
none of the solutions is satisfactory for all SF applications.
Hence, practitioners need to choose the one that fits their needs
and obliges them to their constraints. For instance, sensor
integrators need to consider the cost, power consumption, and
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TABLE III
INTELLIGENT DECISION-MAKING SYSTEMS IN SF

design complexity while choosing the sensor types, quantity,
and placement methods. As for the communication network,
there is a tradeoff between power consumption, coverage area,

and data rate. On the actuation side, having flexibility in
designing the irrigation system comes at the cost of demanding
high power to operate. Finally, on the data side, there is
a tradeoff between the functionalities provided by the data
analysis technique, the computation power, and the amount of
data demanded.

To this end, although many papers discuss using commercial
off-the-shelf software and hardware platforms to provide the
needed functionality, none of them performs a technoeconomic
analysis. The SF literature lacks an analysis of technology
integration’s effect on crop yield and returns on investment.
In addition, the SF literature should have more discussion on
the scalability and robustness of the proposed technologies.
This can be done by expanding this work from a theoreti-
cal/experimental concept to an applicable industrial model and
evaluating its effectiveness.

VI. CONCLUSION

The field of agriculture is heavily shifting toward utilizing
technological solutions to enhance agriculture productivity, SF.
This article presented a comprehensive survey of the state-
of-the-art research performed in the field of SF. To this end,
this article identified the most influential technologies affect-
ing farming practices and structures. Analysis of technology
integration is presented highlighting their advancements, chal-
lenges, and solutions. The discussion in this article provides a
better understanding of the essential dimensions of innovative
technologies for integrators.
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