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Efficient Deep Super-Resolution of Voxelized
Point Cloud in Geometry Compression

Kohei Matsuzaki and Satoshi Komorita

Abstract—Point cloud compression is an essential task for
practical applications using point clouds. Most of the previ-
ous approaches rely on octree compression which involves
voxelization in the coding itself. Distortions derived from
voxelization can be reduced without increasing the bitrate by
postprocessing. In this article, we propose a super-resolution
method for a decoded voxelized point cloud as a postprocess-
ing step in the geometry compression. The proposed method
increases the resolution of the voxelized point cloud by pre-
dicting the occupancy of higher resolution voxels than those
used to compress the original point cloud. For efficient predic-
tion, we propose a deep neural network for super-resolution
based on sparse convolution. It can be highly efficient even
for a large point cloud since the network applies convolution only to nonempty space. The proposed method predicts
the occupancies represented by continuous values for each point and estimates the binary occupancies through a
thresholding procedure. We design a dynamic threshold to ensure that at least one of all voxels is predicted to be
occupied in order to prevent the generation of regions with missing points. We also introduce an occupancy prediction
method to address the sparsity of high-resolution occupied voxels. Experiments on the outdoor and indoor datasets
demonstrate the effectiveness of the proposed method.

Index Terms— Deep super-resolution, point cloud compression, sparse convolution, voxelization.

I. INTRODUCTION

W ITH the widespread utilization of 3-D sensing devices,
point cloud compression has attracted a great deal of

attention. Point cloud is one of the most common 3-D data
formats used in many applications, such as augmented/virtual
reality, autonomous navigation, and geographic information
systems. Recent sensing technologies represented by light
detection and ranging (LiDAR) can acquire a large amount of
data in the order of more than one million points per second.
In the processing of such data, an efficient compression
method is essential to reduce storage and traffic requirements.

Point cloud compression has been actively studied in recent
years with the aim of enabling it to handle a large number
of point clouds. In compressing sparse point clouds, such
as those obtained from 3-D sensing devices, most of the
approaches rely on octree compression, which voxelizes the
point cloud based on voxel grids [1], [2], [3], [4], [5], [6], [7],
[8]. While many point cloud compression approaches perform
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voxelization before coding, the octree compression involves
voxelization in the coding itself. The octree representation is
of significant benefit for efficient encoding since the sparse
point cloud is a set of points occupying only a small portion
of 3-D space. It hierarchically represents the occupancy of
voxels by recursively dividing the voxel space encompassing
the point cloud into eight octants. Thus, the higher the level
in the hierarchy, the higher the voxel resolution, and the more
faithfully the shape can be preserved. On the other hand, there
is a tradeoff that the higher the level, the higher the bitrate.

A typical approach to balancing the tradeoff is to truncate
the octree at a user-specified level. The appropriate level can
be selected to achieve the fidelity required by the application
since the level corresponds to the voxel resolution used in the
voxelization. Alternatively, a level can be set that corresponds
to an acceptable bitrate. Another possible approach is to
correct the point cloud distortion derived from the voxelization
as a postprocessing step after encoding and decoding. The
distortion can be reduced without increasing the bitrate by
applying postprocessing to the decoded point cloud. This
reduces the level at which the required fidelity can be achieved,
resulting in a lower bitrate.

Point cloud correction has been studied for various purposes
such as shape completion [9], [10], [11], upsampling [12],
[13], [14], and noise reduction [15], [16]. They are applied to
point clouds acquired by sensing devices in order to improve
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fidelity to the shape of the target object. Furthermore, a point
cloud super-resolution method that increases the resolution
of point clouds acquired by low-resolution LiDAR sensors is
also being studied [17], [18]. However, these methods are not
always effective for a voxelized point cloud since they do not
take compression into account. Recently, a point coordinate
refinement method for correcting distortion has been proposed
as a postprocessing step for octree compression [7]. Although
it reduces point cloud distortion by predicting the offset vector
for correcting the coordinates, it is not designed to reconstruct
data lost in the voxelization.

In this article, we propose a super-resolution method for
voxelized point clouds to reduce distortions as a postprocess-
ing step in geometry compression. The proposed method
increases the resolution of the voxelized point cloud by pre-
dicting occupancy of higher resolution voxels than those used
to compress the original point cloud. This reduces distortion
derived from the voxelization without increasing the bitrate.
Processing large point clouds such as those acquired by
LiDAR sensors may be computationally expensive. There-
fore, we propose a deep super-resolution network for super-
resolution based on sparse convolution. It is highly efficient
even for large point clouds since convolution is applied only
to nonempty space. We also propose an occupancy prediction
method to address the sparsity of high-resolution occupied
voxels. The proposed method may be applied to both static
and dynamic point clouds.

The contributions of this article can be summarized as
follows.

1) We propose a super-resolution method to reduce distor-
tion of a voxelized point cloud in geometry compression
by predicting pointwise occupancies corresponding to
high-resolution voxels.

2) We construct a deep neural network for super-resolution
based on efficient sparse convolution. High-resolution
point clouds are reconstructed from the network output
by estimating binary occupancies.

3) Evaluation experiments showed the effectiveness of the
proposed method on reducing point cloud distortion as
a postprocessing step in geometry compression. The
proposed method achieves the state-of-the-art results in
both compression performance and efficiency.

The rest of this article is organized as follows. In Section II,
we review related work on point cloud compression, cor-
rection, and super-resolution. In Section III, we propose
a super-resolution method to reduce point cloud distortion
in geometry compression. In Section IV, we evaluate the
effectiveness of the proposed method on outdoor and indoor
datasets. Section V concludes this article.

II. RELATED WORK

A. Point Cloud Compression
It has been an important research topic in computer graphics

and signal processing due to the excellent representational
capabilities and high data capacity of the point cloud. The
point cloud consists of geometry information and attribute
information. The geometry information represents the position
of the point, and the attribute information represents the

associated attributes of the point, such as color values, reflec-
tion intensity, and normal vectors. Therefore, point cloud com-
pression is divided into geometry compression and attribute
compression [19]. In this article, we concentrate on geometry
compression.

Traditional point cloud compression approaches effectively
encode geometry information by extracting dependencies
between points using handcrafted techniques [2], [3], [4],
[20], [21], [22], [23], [24]. The Moving Picture Experts
Group (MPEG) has developed two compression standards
called geometry-based point cloud compression (G-PCC) and
video-based point cloud compression (V-PCC) [4]. V-PCC
encodes point clouds projected from 3-D space to 2-D plane
using a video codec [e.g., high efficiency video coding
(HEVC)], while G-PCC encodes point clouds directly in
3-D space using efficient data structures such as octree.
Although V-PCC is suitable for dense point clouds that
produce a continuous and smooth surface, it is not suitable
for sparse point clouds. In several works [23], [24], effective
compression was achieved with the help of video coding tech-
niques by projecting sparse point clouds onto range images.
However, these works are difficult to apply to other types
of point clouds, such as those from multiview reconstruction
since they are specialized for LiDAR point clouds.

In recent years, learning-based point cloud compression
has attracted much attention, inspired by the success of deep
learning techniques in image compression [25], [26] and video
compression [27], [28]. The point cloud autoencoder [29],
[30], [31], [32], [33], [34], [35], [36], [37], [38], [39] maps
the input point cloud to a latent representation by an encoder
network and reconstructs the point cloud by a decoder net-
work. Most of the conventional point cloud autoencoders
are based on voxelization, which introduces distortions [29],
[30], [31], [32], [33], [34], [35]. On the other hand, several
methods have been proposed to directly encode point clouds
without voxelization [36], [37], [38]. These methods may
suffer from huge memory usage and high computational costs
for large-scale point clouds since they predict the coordinates
of point clouds based on a fully connected network. Aiming at
efficient compression of dense point clouds, an autoencoder is
also proposed, which performs downsampling and upsampling
of points during encoding and decoding, respectively [39]. The
reconstruction error caused by each iteration accumulates and
large artifacts may occur since this method reconstructs the
point cloud by iterative upsampling.

The other learning-based approaches [5], [6], [7], [8] pro-
posed learning an entropy model using deep neural networks
in an octree and entropy compression schemes. The octree
structure has been widely used for point cloud compression
since it flexibly and efficiently models arbitrary point clouds,
including sparse point clouds. The learning-based approaches
design deep entropy models that encode context informa-
tion with the local structure of each point. They showed
better compression performance than octree-based G-PCC,
which uses a handcrafted entropy model. However, while
these learning-based approaches improve the performance of
entropy compression, the point cloud distortion caused by
octree compression is not reduced. In contrast, our goal is
to reduce the distortion in a postprocessing step.
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B. Point Cloud Correction
Point cloud correction has been studied to improve the

fidelity of the point cloud to the target shape. Shape comple-
tion [9], [10], [11] reconstructs the complete shape from the
point cloud representing the incomplete shape captured by the
sensing device. This approach has applicability for many appli-
cations in the field of recognition and reconstruction. However,
it is not suitable for reducing distortion since it reconstructs
a significantly different shape from the input point cloud.
Point cloud upsampling [12], [13], [14] generates a higher
density point cloud from the input point cloud. The approach
uniformly increases the number of points to reconstruct the
object surface. However, it is not always effective for reducing
the distortion of decoded point clouds in which decoded
resolution is lower than the input resolution since it is designed
to interpolate input points rather than to reconstruct detailed
shape. Noise reduction [15], [16] removes noise that occurred
during sensing and reconstructs a clean point cloud. This
approach aims to reconstruct a point cloud located on smooth
surfaces from the input point cloud containing measurement
noise. Therefore, it is difficult to apply this approach to sparse
point clouds that cannot exploit the underlying surface, such
as those acquired by a LiDAR sensor.

A recent work [7] has proposed a method of refining the
coordinates of a voxelized point cloud. It predicts pointwise
offset vectors to correct errors from the original point cloud
using a deep neural network called the coordinate refinement
module (CRM). It can reduce distortion without increasing the
bitrate. However, CRM cannot deal with the case where mul-
tiple original points exist inside the voxel used in voxelization
since it predicts only a single offset for each point. In other
words, it is not designed to reconstruct data lost in voxeliza-
tion. In contrast, we propose to explicitly reduce distortions
derived from artifacts associated with compression methods,
which is compressed by performing further voxelization such
as octree-based methods.

C. Point Cloud Super-Resolution
It takes an original point cloud with any spatial resolution as

input and reconstructs a point cloud with a higher resolution
than that of the input. It can be regarded as a specific type
of point cloud correction in geometry compression, which
involves voxelization.

An optimization-based approach [40], [41] super-resolves
the original point cloud based on optimization of an objective
function to promote piecewise smoothness of the underlying
surface. As this approach is aimed at densifying the point
cloud for rendering images on high-resolution displays, it does
not take care of the geometry distortions due to compression.

An example-based approach [42] searches for local volumes
based on similarity from downsampled versions of time-
adjacent high-resolution point clouds. The original point cloud
is super-resolved using an upsampled version of the searched
local volumes. Although this approach targets voxelized point
clouds in geometry compression, it cannot be applied without
the decoded high-resolution point clouds.

Super-resolution by neighborhood inheritance [43] pre-
dicts high-resolution voxel occupancy based on neighborhood

Fig. 1. Overview of the point cloud geometry compression framework.
The focus of this article is super-resolution, which is introduced as a
postprocessing step after encoding and decoding.

occupancy at the voxel level and a classification of voxel
division results. It reconstructs high-resolution points for each
voxelized point using prebuilt lookup tables. This approach
may only be applicable to dense point clouds since it is
restricted to searching very small neighborhoods in order to
save memory and computational effort.

LiDAR-SR [17] predicts the high-resolution point cloud
from the low-resolution point cloud. The resolution of these
point clouds depends on the number of vertical channels
of a LiDAR sensor. This approach converts the problem of
point cloud super-resolution into an image super-resolution
by projecting a LiDAR point cloud onto a range image. The
super-resolved range image is backprojected into 3-D space
and treated as the high-resolution point cloud. Fusion of
high-resolution range images with image-based segmentation
results has also been proposed to address depth discontinuities
between objects [18]. This approach does not always accu-
rately predict the range image when a voxelized point cloud
is input since it usually takes a raw point cloud as input.

Voxel super-resolution [44], [45] reconstructs a high-
resolution volume from a low-resolution volume. It may be
exploited for point cloud super-resolution purposes by trans-
forming the volume to a point cloud. However, this approach is
based on implicit representation of the 3-D shape and requires
watertight meshes to determine whether a point is inside the
mesh for training of the model. Therefore, this approach limits
the applicable point cloud.

Point cloud geometry prediction (PCGP) [46] super-resolves
voxelized point clouds based on occupancy predictions of
high-resolution voxels. This method divides the point cloud
into small local patches and feeds each patch into a deep
neural network. Therefore, the efficiency of processing may
decrease for large-scale point clouds as the number of patches
increases. Furthermore, occupancy prediction for sparse point
clouds remains a challenge since this method is designed for
dense point clouds.

III. PROPOSED METHOD

In this section, we propose a point cloud super-resolution
method as a postprocessing step in point cloud geometry
compression. Fig. 1 shows an overview of the geometry com-
pression framework assumed in this article. In this framework,
the original point cloud is voxelized, which corresponds to
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the voxelization that most point cloud compression methods
perform as a preprocessing before coding to reach lower
bitrates. Then, any geometry encoding is performed on the
voxelized point cloud. Here, geometry encoding that involves
voxelization in the encoding itself may be performed, such
as an octree-based method. In that case, further voxelization
is performed on the voxelized point cloud during encoding
to make its resolution equal to or less than the input to this
process. After entropy coding is performed, the bitstream is
output from the encoder. At the decoder, the point cloud
is decoded from the bitstream by the decoding processes
corresponding to the encoding processes. There is distortion
derived from voxelization between the original point cloud and
the decoded point cloud. In order to reduce this distortion,
we introduce a process of super-resolution of the decoded
point cloud. This process reconstructs the high-resolution point
cloud by predicting the occupancy of higher resolution voxels
than those used to voxelize the original point cloud. The degree
of resolution increase is set by the user and may not always
target the recovery of the resolution of the original point cloud.
Although other types of distortion can occur when geometry
coding is a lossy scheme, the proposed method concentrates
on reducing the distortion derived from voxelization. Finally,
the framework outputs a reconstructed point cloud.

A. Preliminaries
In the following, we briefly explain the voxelization of the

point cloud. Voxelization is a process in which the coordinates
of the point cloud are transformed into coordinates that repre-
sent the corners of the voxel. This is equivalent to quantization
using a quantization step δ that represents the voxel size.
Let P = { pi ∈ R

3}N
i=1 denote the original point cloud. The

quantization using δ is defined as follows:

qi =
⌊

s pi + t
δ

⌋
(1)

where q i ∈ R
3 is a quantized point, t ∈ R

3 is an offset to
make all coordinates nonnegative, and s ∈ R is a scale factor.
Devoxelization is a process of reconstructing a point in the
original coordinate system defined as follows:

p̃i = δqi − t
s

(2)

where p̃i ∈ R
3 is a reconstructed point. The reconstructed

point has distortions with respect to the original point since
this process does not recover the data lost in voxelization.
Although these processes are based on a floor function, some
variants based on other functions, such as ceil, round, and
truncation, are also available.

Some geometric encodings themselves involve voxelization.
We give an explanation with octree encoding, one of the
most popular schemes, as a specific example. In the octree
representation, the point cloud is first encompassed by a
bounding cube, and then, the cube is recursively divided into
eight octants. The octant is considered a voxel and its size
per side is halved as the octree level increases. Let L be the
edge length of the bounding cube, and the voxel size at the
lth level (l = 1, 2, . . .) is represented as δ(l) = L/2l . If an

Fig. 2. Illustration of a voxel for voxelization and its high-resolution voxels.
The corners of high-resolution voxels drawn as circles are candidate
positions where the point p̃sr

i is reconstructed from p̃i. The number in
the circle represents the index of the high-resolution voxels.

octree is truncated at the lth level by octree pruning, the point
cloud to be encoded is represented by voxels with size δ(l).
It corresponds to the voxelization of the original point cloud
using δ(l) as δ in (1). The original point cloud may already
be voxelized using δ. Even in that case, it is further voxelized
using δ(l), which is equal to or greater than δ when octree
pruning is performed. Points in the original coordinate system
are reconstructed using δ(l) as δ in (2).

Geometry coding with voxelization usually stores only the
code representing whether or not points exist inside a voxel.
Therefore, all points in the same voxel are merged into a single
point. An extension that stores side information representing
the number of points per voxel is possible. However, it is not
considered in this article since it increases the bitrate.

B. Reconstruction of High-Resolution Voxels
We consider reconstructing p̃sr

i from p̃i , where p̃sr
i repre-

sents super-resolved points. A volume consisting of m voxels
with high-resolution can be constructed by dividing the voxel
used for voxelization. Let yi ∈ {0, 1}m denote occupancies
of the high-resolution voxels corresponding to p̃i . Then, p̃sr

i
can be reconstructed by generating a point if the j th element
( j = 1, 2, . . . , m) of yi is occupied as follows:

p̃sr
i = p̃i + δsrφ( j) (3)

where δsr is the voxel size of a high-resolution voxel and φ(·)
is a transformation function from the index of p̃i to a spatial
index vector representing the relative position of the occupied
voxels. Multiple p̃sr

i may be reconstructed from single p̃i since
yi may contain multiple occupied elements.

Fig. 2 shows an example of a voxel and its high-resolution
voxels where m = 8. The black cube represents a voxel
with size δ. Any point inside this voxel is quantized as a
point p̃i . The gray cubes represent the voxels with size δsr

obtained by dividing the black voxel. The corners of these
voxels drawn as circles are candidate positions where the point
p̃sr

i is reconstructed. The number in the circle corresponds to
the index of yi , namely j . Here, it is assumed that a voxel
is occupied corresponding to j = 8. In the case where p̃sr

i is
reconstructed as the red circle, the vector δsrφ(8) representing
the relative position is visualized as the red arrow. Also, p̃sr

i
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Fig. 3. Network architecture of the proposed method. Given sparse tensors constructed from a voxelized point cloud, pointwise features are
extracted by a U-shaped network. The network consists of sparse convolution layers, sparse deconvolution layers, and skip connections. The
pointwise occupancies are predicted from the pointwise features with a fully connected layer.

could be reconstructed to the positions of the gray circles or
the black circle representing p̃i itself.

The proposed method predicts voxel occupancies for p̃i
from the decoded point cloud. Let xi ∈ R

m denote the pre-
dicted occupancies corresponding to the ground truth yi .
Then, the proposed method increases the resolution of the
decoded point cloud with xi . Finally, we obtain super-resolved
points p̂sr

i .

C. Network Architecture
We use a deep neural network to predict high-resolution

occupancies for each point from the decoded point cloud.
In large-scale point cloud processing, the network may suf-
fer from high memory consumption and expensive compu-
tation. To address the problem, we adopt the framework
of a sparse 3-D convolutional neural network [47] to con-
struct the network for super-resolution. While it is devel-
oped for perceptual tasks such as 3-D semantic segmentation,
we apply it to the super-resolution task on sparse point clouds.
We adopt this framework to build a backbone network for
efficient feature extraction from point clouds. To achieve
super-resolution, we propose a predictor to predict the occu-
pancies of high-resolution voxels from these features. For this
predictor, we introduce a novel dynamic threshold (DT) to
avoid the generation of empty regions.

Fig. 3 shows the network architecture of the proposed
method. The input to the network is sparse tensors constructed
from a voxelized point cloud P̃ = { p̃i ∈ R

3}n
i=1. The sparse

tensor is a data structure for storing pointwise coordinates
and features. The network extracts pointwise features by a
U-shaped network consisting of sparse convolution layers,
sparse deconvolution layers, and skip connections. In order to
achieve efficient processing, we adopt the U-shaped networks
based on the lightweight architecture proposed in [47] as a
feature extractor backbone, unlike the one in [46] introducing
inception-residual blocks [48]. Then, a predictor based on a
fully connected layer predicts the pointwise occupancies xi

from the features.

The convolution is performed using Conv blocks and
ResConv blocks shown at the bottom of Fig. 3. In the con-
volution, the sparse tensors are downsampled by four Conv
blocks with stride 2. The sparse convolution can achieve much
higher efficiency than the standard convolution for the point
cloud since it applies convolution only to nonempty space.

Deconvolution is performed in the opposite fashion to
convolution, concatenating features layer by layer with skip
connections. The sparse tensors are upsampled and the coordi-
nates of input are completely reconstructed. Therefore, a set of
pointwise features corresponding to each point in the voxelized
point cloud is extracted.

In inference, we estimate binary occupancies by thresh-
olding from the occupancies xi represented by continuous
values in the range of [0, 1]. We obtain m binary occupancies
for each point corresponding to high-resolution voxels. If all
occupancies are below a fixed threshold due to the selection
of an inappropriate threshold, all voxels may be estimated
as unoccupied. In such a case, empty regions are generated
since no points are reconstructed in their voxel spaces. A naive
solution for obtaining an appropriate threshold is to find the
threshold that maximizes the estimation accuracy for each
point at the encoder side and transmit it to the decoder side as
side information. However, this solution increases the bitrate
and requires additional processing at the encoder side. To avoid
such a case without increasing the bitrate, we use the DT
defined as follows:

β =
⎧⎨
⎩

max
j

(xi, j ), if max
j

(xi, j ) < α

α, otherwise
(4)

where α is the fixed threshold and β is the DT. It is guaranteed
that at least one voxel is occupied for each point by deciding
occupancy of β or less as occupied. This threshold can be
computed efficiently without requiring side information.

D. Multilevel Occupancy Prediction
The proposed method can predict the occupancies of higher

resolution voxels from the decoded point cloud by increasing
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Fig. 4. Illustration of the hierarchical predictor. The predictor first predicts
the voxel occupancies at one level higher (k = 1) than the one used for
voxelization. It then predicts voxel occupancies at further one level higher
(k = 2) for the voxels predicted as occupied.

the number of voxel divisions m. However, a larger m may
increase the sparsity of the high-resolution occupied voxels,
which may become difficult to predict. To address this diffi-
culty, we design a hierarchical predictor to predict occupancies
of recursively divided voxels. We first divide a voxel used
for voxelization into m voxels and predict their occupancies.
Then, we recursively divide the occupied voxels and predict
the occupancies of the divided voxels. We store these occu-
pancies hierarchically, such as the octree representation. Let
k ∈ N denote the number of level increases in the hierarchy,
corresponding to the number of recursive voxel divisions.

Fig. 4 shows this hierarchical predictor for k = 2. First,
it predicts occupancies x(1)

i ∈ R
m through fully connected

layers from a feature corresponding to the i th point. Here, the
superscript of xi represents the level. Next, binary occupancies
are estimated from x(1)

i . In the case where its j th element
is “1,” it is transformed into a spatial index vector φ( j)
that represents the relative position of the occupied voxels.
Then, it concatenates φ( j) with the feature and predicts
m-dimensional occupancies through another fully connected
layer. Depending on the number of “1” in x(1)

i , multiple
occupancies can be predicted. Unpredicted occupancies are
considered zero vectors. Finally, these are concatenated and
regarded as occupancies x(2)

i . The volume can be reconstructed
from x(1)

i and x(2)
i such as octree decoding. For larger k, the

predictor makes predictions in a similar hierarchical fashion.
When training the model, the spatial index vector φ( j) is

transformed from the ground truth, not from the estimation
result. This ensures that the hierarchical structure is always
correctly reconstructed during training. On the other hand, the
hierarchical structure may be incorrectly reconstructed during
testing since the estimation result is used.

E. Loss Function
The network loss function is the sum of the weighted

binary cross entropy between predicted occupancies and the
ground truth. While a binary cross entropy was considered in
a previous work [46] for dense point clouds, we introduce a
weight parameter to account for occupancy label imbalance in
sparse point clouds. A sigmoid function σ(·) is applied to the
predicted values to stabilize training. Thus, the loss function
is defined as follows:

L(k) = − 1

nm

n∑
i=1

m∑
j=1

{
λy(k)

i, j log
(
σ
(
x (k)

i, j

))

+ (
1 − y(k)

i, j

)
log

(
1 − σ

(
x (k)

i, j

))}
(5)

where λ is a weight parameter for adjusting the balance
between “0” and “1,” n is the number of points, and m is
the number of occupancies. Superscripts represent the level.

When using the hierarchical predictor described in
Section III-D, a model consisting of a single U-shaped network
and k fully connected layers is trained. In this case, the
weighted binary cross entropy at each level is accumulated
over k levels as follows:

L(k)
mul =

k∑
i=1

L(i). (6)

The ground truths corresponding to the unpredicted occupan-
cies are set to zero vectors.

IV. EXPERIMENTS

In this section, we experimentally demonstrate that the
proposed method reduces distortion derived from voxeliza-
tion in point cloud geometry compression. We first construct
point clouds voxelized in various resolutions by encoding and
decoding the original point clouds using a geometry compres-
sion method. Then, we super-resolve these decoded voxelized
point clouds by postprocessing to reduce the distortion without
increasing the bitrate. To construct the decoded voxelized point
clouds, we use G-PCC in the latest version (TMC13 v14.0) [4],
[49] with an octree coding configuration. It is suitable for
our experiments since it can naturally decode point clouds
voxelized at various resolutions by octree pruning. As the
proposed method is applicable to any decoded voxelized
point cloud, other geometry compression methods, such as
learning-based methods that perform downsampling on the
initial voxelized point clouds, may be used.

A. Experimental Setup
1) Datasets: We use the SemanticKITTI [50], Ford [51],

QNX [52], and ScanNet [53] datasets to evaluate the proposed
method in outdoor and indoor environments. Fig. 5 shows the
example point clouds from the datasets.

The SemanticKITTI dataset is a large-scale point cloud
dataset acquired by a LiDAR sensor in outdoor environments
such as urban areas, residential areas, and highways. The
LiDAR sensor is a Velodyne HDL-64E, which can acquire
point cloud data within a 360◦ circular area with a radius of
approximately 100 m with the sensor at the center. The dataset
consists of 43 552 point clouds collected from 22 sequences
(00-21) of LiDAR data acquired along different vehicle tra-
jectories in city areas. We use sequences from 00 to 10 except
08 as a training set, sequence 08 as a validating set, and
sequences from 11 to 21 as a testing set. These sets contain
19 130/4071/20 351 point clouds, respectively.

The Ford and QNX datasets are LiDAR point cloud
sequences acquired in outdoor environments used in
MPEG. The Ford dataset consists of three sequences
using the Velodyne HDL-64E LiDAR sensor, namely
“ford_01_q1mm,” “ford_02_q1mm,” and “ford_03_q1mm.”
Each sequence contains 1500 point clouds. We use the
first and second sequences for training, and the third
sequence is split into two and used for validating/testing.
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Fig. 5. Examples of point clouds from the datasets. The color of the
points corresponds to the vertical height. (a) SemanticKITTI. (b) Ford.
(c) QNX. (d) ScanNet.

The QNX dataset consists of four sequences using the
Velodyne VLP-16 LiDAR sensor, namely, “qnxadas-junction-
approach,” “qnxadas-junction-exit,” “qnxadas -motorway-
join,” and “qnxadas-navigating-bends,” and these sequences
contain 74/74/811/300 point clouds, respectively. We use the
first/second sequences for validating/testing and the others for
training.

The ScanNet dataset is a large-scale 3-D dataset acquired
by a handheld RGB-D sensor in indoor environments such
as offices, apartments, and kitchens. It contains 1513 mesh
data reconstructed from the RGB-D sequences acquired in
those environments. In our experiment, we spatially sampled
100k points with Poisson disk sampling [54] from each mesh
data. We also scaled the points to fit into a cube with a
side of 100 m to align with the scale of the SemanticKITTI
dataset. We split the data into 1045/156/312 point clouds for
training/validating/testing, respectively, according to the index
list defined in the dataset.

The number of points consisting of each point cloud in
the SemanticKITTI, Ford, QNX, and ScanNet datasets is
approximately 120k, 80k, 30k, and 100k, respectively. The
density of these point clouds is sparse since they are acquired
by scanning with LiDAR sensors in the former three datasets
and constructed by sampling in the ScanNet dataset. The
point clouds in the former three datasets representing the
outdoor environment contain objects such as roads, buildings,
and vegetation, while the point clouds in the ScanNet dataset
representing the indoor environment contain objects such as
floors, walls, and chairs.

2) Evaluation Metrics: We use bit per point (bpp) to measure
the compression ratio of the encoder. In our experiments, the
bpp represents the average number of bits per original point.
We use D1 PSNR [55] to evaluate the distortion between
the original point cloud and the reconstructed point cloud.
We use Bjøntegaard delta bitrate (BD-BR) and Bjøntegaard
delta PSNR (BD-PSNR) [56] to evaluate the distortion across
various bpp values compared to G-PCC. The G-PCC only

TABLE I
SUMMARY OF VOXELIZATION SETTINGS. λ REPRESENTS THE

WEIGHT PARAMETER IN THE LOSS FUNCTION

performs encoding and decoding of the original point cloud
and does not perform any postprocessing corrections. The
BD-BR is measured as an average bpp difference in percentage
over the whole range of PSNR. The BD-PSNR is measured
as an average PSNR difference in decibels over the whole
range of bpp. We also evaluate the prediction performance of
occupancy in voxel representations. Let P̃ and P̃sr denote the
voxelized point cloud with voxel sizes δ and δsr, respectively.
We assume that P̂sr is generated from P̃ by postprocessing.
We construct voxels V̂sr from P̂sr. At this time, its ground
truth is represented as Ṽsr. In order to evaluate the prediction
performance, we use intersection over union (IoU) that is
represented as follows:

IoU = �i 1l[Ṽsr(i)V̂sr(i) > 0]
�i 1l[Ṽsr(i) + V̂sr(i) > 0] (7)

where i is a voxel index and 1l is an indicator function. The
IoU is a measure of the degree of overlap between Ṽsr and
V̂sr. A higher IoU indicates a more precise prediction of the
high-resolution point cloud.

3) Implementation Details: We voxelize the point clouds
using voxel size 1 mm as preprocessing for coding. We set the
edge length of the bounding cube for constructing the octree to
L = 218 mm to ensure that it encompasses the original point
cloud. Then, we construct point clouds further voxelized at
six levels corresponding to voxel sizes from 1024 to 32 mm.
Table I summarizes the voxelization settings. In this table,
the first row shows the level l to truncate the octree. The
second row shows the voxel size δ corresponding to each
level. We encode and decode the original point cloud using
G-PCC at each level to construct the voxelized point cloud.
We perform the postprocessing on these point clouds. We set
the voxel division in the proposed method to halve the voxel
size along each axis, as in the octree representation, that is,
we set m = 8 and δsr = δ/2. We also construct bit strings
representing voxel occupancies from the point cloud voxelized
with δsr and assign them as the ground-truth label of the
point cloud voxelized with δ. Here, manual labeling is not
required. We use the ratio of the number of “0” and “1” in
these labels in the training set as the coefficient λ in (5). The
third and subsequent rows of Table I show the coefficients λ
used for each dataset. We implemented the proposed method
using PyTorch library [57]. To train our model, we used the
Adam optimizer [58] with a learning rate of 10−3. The cosine
annealing learning rate strategy is used to decay the learning
rate. We train each model for 100 epochs and select a model
that achieves the best IoU on the validating set. Training is
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Fig. 6. Quantitative comparison in D1 PSNR and IoU as a function of bitrate. (a) PSNR-bitrate on SemanticKITTI. (b) PSNR-bitrate on Ford. (c) PSNR-
bitrate on QNX. (d) PSNR-bitrate on ScanNet. (e) IoU-bitrate on SemanticKITTI. (f) IoU-bitrate on Ford. (g) IoU-bitrate on QNX. (h) IoU-bitrate on
ScanNet.

performed for each combination of voxel size and number of
level increases k. For example, if we set k to three values
(i.e., k = 1, 2, and 3), a total of 3×6 = 18 models are trained
for the six sizes listed in Table I. The fixed threshold in (4) is
set to α = 0.5. All experiments are conducted on a computer
equipped with a NVIDIA Quadro GV100 GPU, Intel Core
i9-9900X CPU (3.60 GHz), and 16 GB of RAM.

B. Comparison to Baseline Methods
1) Baseline Methods: We compare the proposed method

with the conventional point cloud correction methods, namely,
CRM [7], PCGP [46], and LiDAR-SR [17].

For CRM, we set the size of local voxel representation to
93 voxels as in [7] for all voxel sizes δ. In the construction of
the ground truth, we calculated the offset toward the original
point, rather than the point voxelized with δsr. When multiple
points exist in a voxel, an offset toward their center is set as
the ground truth.

PCGP first divides the point cloud into local patches
of 1283 voxels as in [46]. Then, the occupancies of
high-resolution voxels are predicted for each patch, and all
patches are aggregated to construct a super-resolved point
cloud. We used a threshold of 0.5 to estimate binary occu-
pancies from the predicted continuous occupancies.

For LiDAR-SR, we project the point cloud voxelized with
δ and δsr onto the range images. We modified the method to
predict the range image corresponding to δsr from the range
image corresponding to δ. Therefore, the resolution of both
the input and output range images to the neural network is set
to 64 × 1024. We evaluated the performance of LiDAR-SR

only on the SemanticKITTI dataset since it is designed for
point clouds acquired by a LiDAR sensor.

2) D1 PSNR: The top row of Fig. 6 summarizes the D1
PSNR values corresponding to the bitrate. In this figure, the
smaller the voxel size, the higher the bitrate. The proposed
method, PCGP, and LiDAR-SR are set to predict the point
cloud voxelized with a voxel size obtained by dividing the
voxel of G-PCC once (i.e., k = 1). Thus, the point clouds
predicted by these methods at a given bitrate have the same
resolution as the point clouds corresponding to one bitrate
higher in G-PCC.

At all bitrates, the proposed method improves D1 PSNR
compared to G-PCC. This indicates that our postprocessing
reduces the distortion resulting from the point cloud compres-
sion. Although CRM also outperforms G-PCC at all bitrates,
the improvement is slight. It is difficult for CRM to deal
with the case where multiple points exist in a voxel since it
corrects the coordinates with an offset for each point. PCGP
tends to predict high-resolution voxels as unoccupied since
the higher the level, the sparser the points in the local patches.
In the case where all high-resolution voxels are predicted to be
unoccupied, no points are reconstructed in those voxel spaces.
Therefore, sparser point clouds are reconstructed compared to
G-PCC and performance degrades as the voxel size decreases.
In some voxel sizes, the D1 PSNR cannot be measured since
there are no cases that are predicted to be occupied at all
points, with the result that the data points in the figures
are missing. LiDAR-SR significantly degrades the perfor-
mance compared to G-PCC. It reconstructs high-resolution
range images according to the encoder–decoder architecture,
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Fig. 7. Comparison of point clouds reconstructed by V-PCC with the original point clouds. The color of the points corresponds to the vertical height.

resulting in reconstruction errors. Range images generated
from voxelized point clouds tend to have more missing data
compared to those from raw point clouds acquired from sen-
sors, resulting in larger restoration errors. These reconstruction
errors cause greater distortion than those due to voxelization.

3) V-PCC Performance: We also provide a PSNR-bitrate
comparison to V-PCC [4], a compression method that encodes
images on which points are projected. We use the latest version
software (TMC2 v18.0) [59] and its parameters. As these are
originally designed for dense point clouds, the projection of
extensive and sparse point clouds used in the experiments
requires larger images, which requires a significantly larger
memory and computational effort for coding. For reasonable
computational efficiency with small images, we rescale the
point clouds by a factor of 0.01 before encoding and recon-
struct the scale after decoding.

V-PCC may achieve the best D1 PSNR at low bitrates, while
D1 PSNR hardly improves with increasing bitrate. As shown
in Fig. 7, V-PCC reconstructs coarse grids corresponding to
the pixel values since the points are encoded after being
projected onto the image. In this experiment, these grids are
reconstructed even with the highest bitrate setting, limiting the
improvement in D1 PSNR as a result. As shown in Fig. 5, the
point clouds used in this experiment are all sparse, which is
very different from the dense point clouds used in MPEG [4].
This accounts for the poor V-PCC performance.

4) IoU: The bottom row of Fig. 6 summarizes the IoU
values corresponding to the bitrate. The smaller the voxel
size, the higher the bitrate. Here, the IoU of G-PCC is
measured between the ground-truth voxels Ṽ and Ṽsr instead
of the predicted voxels. This is a reference value to show
the degree to which the IoU degrades as the voxel size
decreases.

As can be seen, the proposed method achieves the best
IoU at all bitrates. This shows the effectiveness of the recon-
struction of high-resolution voxels. IoU represents the occu-
pancy prediction accuracy for voxels with higher resolution
than that used for voxelization. The smaller the voxel size,
the more difficult it is to predict accurately since the point
cloud becomes more detailed. Therefore, the IoU tends to
be lower at higher bitrates. CRM has a significantly lower
IoU than the proposed method since it does not improve the
resolution of the point cloud. The IoU of PCGP decreases
as the bitrate increases. This is because the predicted value
of occupancy decreases as the sparsity of the point cloud
increases, and most voxels are estimated to be unoccupied.

Fig. 8. Examples of the prediction results of the proposed method on
the ScanNet dataset. The color of the points corresponds to the vertical
height.

LiDAR-SR cannot accurately predict voxel occupancy due to
the image reconstruction errors.

In ScanNet, the IoU is decreased more significantly for
smaller voxel size compared to other datasets. This is due
to the fact that we construct the point clouds from ScanNet
by spatial sampling. For these point clouds, it is more difficult
to predict the occupancy of the high-resolution voxels since
they have higher irregularities than the point clouds acquired
by the LiDAR sensor. However, the proposed method is able
to reduce the distortion even for these point clouds.

Fig. 8 shows the examples of the prediction results of the
proposed method on the ScanNet dataset. The left column
represents the input to the postprocessing, and the middle
column represents the ground truth, namely, the point cloud
voxelized with δsr. The right column represents the prediction
results of the proposed method, together with the IoU. The
example in the top row is a relatively dense point, making it
easy to predict and resulting in a high IoU. On the other hand,
the example in the bottom row is more difficult to predict due
to the large spacing of the sampled points, resulting in a low
IoU.

5) BD-BR and BD-PSNR: Table II shows BD-BR and
BD-PSNR for all methods. The proposed method reduces
the bitrate by 20.62%–38.41% and improves the D1 PSNR
by 2.25–3.42 dB on average, compared to G-PCC. In CRM,
these values are 6.48%–15.08% and 0.53–1.17 dB. It can be
confirmed that PCGP and LiDAR-SR degraded performance
in both metrics.
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TABLE II
PERFORMANCE COMPARISON IN BD-BR (%) AND BD-PSNR (dB) WITH G-PCC AS REFERENCE

TABLE III
POSTPROCESSING RUNTIME (SECONDS). (a) SEMANTICKITTI. (b) FORD. (c) QNX. (d) SCANNET

TABLE IV
NUMBER OF MODEL PARAMETERS

6) Runtime: Table III summarizes the runtime [seconds] of
the postprocessing step for each voxel size. The encode and
decode runtimes are not included in this table since this article
does not focus on them. Table IV shows a comparison of
the number of model parameters. The number of models is
the same among all methods since we train a model at each
voxel size. The proposed method achieves the fastest runtime
compared to the other methods in most cases. This is due to
the efficient convolutional operations using sparse convolution.
In general, the smaller the voxel size, the greater the number of
points to be processed. Thus, the runtime tends to increase as
the voxel size decreases. However, the runtime of LiDAR-SR
is almost independent of the voxel size since it projects all
points to a range image. While range image processing is
efficient, LiDAR-SR performs multiple feedforward passes
according to Monte Carlo dropout [60]. Although CRM has
fewer model parameters than the proposed method, the runtime
of CRM tends to be longer since it is based on standard
convolution. In PCGP, the smaller the voxel size, the larger
the number of local patches obtained by dividing the point
cloud. Therefore, smaller voxel sizes require longer runtimes.

7) Qualitative Evaluation: Fig. 9 visualizes the point cloud
after postprocessing with each method. The input to the
postprocessing step and its ground truth are decoded voxelized

point clouds with 1024 and 512 mm as voxel sizes,
respectively. Each point is colored according to the geometry
error, which is the distance to the nearest neighbor point
in the original point cloud. The color bar represents the
correspondence between the color and the error. Note that
there are errors between the ground truth and the original point
cloud since the ground truth is also a kind of decoded point
cloud.

For the input point cloud, large errors occur throughout
the shape due to the large voxel size. In contrast, the errors
are reduced in the ground truth with smaller voxel size. The
proposed method generates the most faithful point cloud on
all datasets. Although CRM refines the position of the points,
it does not reconstruct merged points through the voxelization.
PCGP sometimes predicts all high-resolution voxels as unoc-
cupied when the points are sparse, producing mostly empty
spaces. LiDAR-SR causes larger distortions than the input
point cloud due to reconstruction errors of the range image.

C. Impact of Increase in the Number of Levels
We explore the applicability of the proposed method to

multilevel occupancy prediction. Here, we evaluate two types
of methods: linear and hierarchical. The linear method predicts
all the occupancies of a volume from pointwise features
through a linear layer, that is, a voxel used for voxelization is
divided into mk voxels, and all of their mk occupancies are
predicted. The hierarchical method predicts the occupancies
of the local volume obtained by dividing a voxel in the
current level when it is occupied, as described in Section III-D.
In contrast to the linear method, it does not necessarily predict
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Fig. 9. Qualitative comparison visualizing geometry errors of the original point cloud. The color bar represents the correspondence between the color
and the error. The ground truth for the super-resolution is a point cloud voxelized at one level higher than the input point cloud. (a) SemanticKITTI.
(b) Ford. (c) QNX. (d) ScanNet.

the occupancy of all kth level voxels. We fix the voxel size
to voxelize the input point cloud to 1024 mm and perform
super-resolution with the number of level increases k = 1, 2,
and 3.

Fig. 10 shows the D1 PSNR and IoU as functions of the
number of level increases k, comparing these two methods.
These methods are identical in the case of k = 1 since it
represents single-level occupancy prediction. As can be seen,
both methods show improvement in the D1 PSNR when k > 1
compared to the case where k = 1. This suggests that the
proposed method may be applicable to multilevel occupancy
prediction. However, it can be observed that the performances

are hardly improved or slightly worse for k = 3 based on
the case of k = 2. This is due to the significant decrease
in IoU with increasing k, resulting in greater distortion. The
higher resolution of voxel than that for voxelization, the more
difficult it is to predict occupancies. We can also see that
the hierarchical method achieves better performance than the
linear method. It is considered that distortion can be reduced
by predicting the occupancies for each local volume rather
than the whole volume.

Fig. 11 shows a visual representation of the results of both
methods in the case of k = 2. The points are colored in
the same way as Fig. 9, and the areas of the red box are
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Fig. 10. Quantitative comparison of two types of multilevel occupancy predictors for each number of level increases k. (a) PSNR-k on SemanticKITTI.
(b) PSNR-k on Ford. (c) PSNR-k on QNX. (d) PSNR-k on ScanNet. (e) IoU-k on SemanticKITTI. (f) IoU-k on Ford. (g) IoU-k on QNX. (h) IoU-k on
ScanNet.

Fig. 11. Visualization of point clouds reconstructed by two types of multilevel occupancy predictors. The color bar represents the correspondence
between the color and the error. The ground truth for the super-resolution is a point cloud voxelized at two higher levels than the input point cloud.
The areas of the red box are enlarged to compare the detailed shapes.

enlarged. The input point cloud corresponds to k = 0. The
linear method tends to reconstruct dilated point clouds since
it predicts the occupancy of the whole volume. If most of
the occupancy in the volume is predicted to be occupied, the
detailed shape cannot be reconstructed. On the other hand,
the hierarchical method may be able to reconstruct detailed
shapes in some cases since it predicts occupancies for each
local volume. It can suppress major distortion across the whole
volume, even when accurate prediction is difficult. However,
it is generally challenging to reconstruct detailed shapes when
k is large. Therefore, large geometry errors are often observed
in both methods.

We also evaluate the effect of super-resolution on the point
clouds voxelized with each voxel size from 1024 to 32 mm,
with the number of level increases k = 1, 2, and 3. Here,
we always use the hierarchical method. Fig. 12 shows a PSNR
performance comparison over different k settings. A smaller
voxel size corresponds to a higher bitrate in this figure. In all
datasets, it can be observed that the performance is higher for
k = 2 and 3 than k = 1 when the voxel size is large. This

suggests the effectiveness of multilevel occupancy prediction.
On the other hand, as voxel size becomes smaller, their
performance becomes equal to or less than when k = 1. This is
because point clouds voxelized with smaller voxel have higher
sparsity, making it more difficult to predict the occupancies
corresponding to the detailed shape. For a similar reason, when
k = 3, there is little difference compared to k = 2. However,
we can confirm that all k settings achieve better performance
than the G-PCC.

D. Ablation Study
We verify the impact of the design choices made in the

proposed method by performing an ablation study. Table V
shows the performance of the proposed method that ablated the
DT in the threshold determination of (4) and the weight (WT)
in the loss function of (5). The performance metrics are
BD-BR and BD-PSNR. The symbols “✓” and “✗” indicate
whether or not to use the setting, respectively. Not using DT
means that a fixed threshold is always used. If WT is not used,
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Fig. 12. PSNR performance comparison for multilevel occupancy prediction. k represents the number of level increases from the voxelization level
of the point cloud. (a) SemanticKITTI. (b) Ford. (c) QNX. (d) ScanNet.

TABLE V
ABLATION STUDY. DT AND WT REPRESENT THE USE OF DT AND WEIGHT, RESPECTIVELY

the weight parameter is set to λ = 1. We set the number of
level increases to k = 1 in this experiment.

The first column that uses both settings represents the full
proposed method. By comparing with or without DT, it can
be seen that DT improves the performance significantly. If all
the predicted values of occupancy are below the threshold,
a region with missing points is generated. DT has the effect
of suppressing distortion by preventing the generation of such
regions. We can also see that the performance is restored
by DT even when WT is not used. On the other hand, the
performance is degraded the most if neither DT nor WT is
used. It can be considered that training of the model is more
difficult in the case without WT due to the imbalance between
“1” and “0” in the occupancies constructed from the point
cloud. In contrast, the best performance is obtained by using
both settings.

V. CONCLUSION

In this article, we proposed a point cloud super-resolution
method to reduce distortion caused by voxelization in geom-
etry compression. The proposed method improves the fidelity
of the point cloud by increasing the resolution of the vox-
elized point cloud as a postprocessing step after encoding
and decoding. This reduces the bitrate required to achieve the
same fidelity as without postprocessing. To achieve efficient
super-resolution for large point clouds such as those acquired
by LiDAR sensors, we predicted pointwise occupancies using
a deep neural network based on sparse convolution. The
network supports both single-level and multilevel occupancy
prediction. The proposed method estimates binary occupancies
from the output of this network while preventing the gener-
ation of regions with missing points using dynamic thresh-
olding. Evaluation experiments on the outdoor and indoor
datasets demonstrated that the proposed method is effective
and efficient.

One limitation of the proposed method is that it assumes
a voxel grid representation. From this, the super-resolved
point cloud also has distortion due to the discrete repre-
sentation of coordinates. Even if the original point cloud
is voxelized, distortion occurs when the resolution of the
super-resolved point cloud is lower than that of the original
point cloud. We would like to explore ways to further improve
the compression performance by removing this assumption.
Another limitation is that our model represents only trained
data. Performance may be degraded for data with a different
resolution from the trained data, such as point clouds voxelized
with different voxel sizes. While we found that our model
was able to represent actual data distributions, reconstructing
detailed shapes remains a challenge, especially in multilevel
occupancy prediction.

We describe several research directions that could improve
the performance of the proposed method. First, the use of
temporal information for dynamic point clouds is promising.
Although only spatial information was used in this article, the
proposed method may be extended using the previous frame in
a temporal sequence when it is available. Second, the applica-
tion of neural implicit representation is expected. While deep
neural networks based on sparse convolution play an important
role in improving efficiency, neural implicit representation has
the potential to provide more faithful 3-D shape reconstruc-
tion. Recent improvements [61] show that it is capable of rep-
resenting general shapes. Finally, the compensation of coding
artifacts is considered when using lossy geometry compression
schemes. The quality of the super-resolved point clouds may
be improved by performing the proposed method after com-
pensating for coding artifacts in the decoded point clouds.
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