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Thermal IR Detection With
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Niklas Luhmann , and Silvan Schmid

Abstract—Nanoelectromechanical (NEMS) resonators are
promising uncooled thermal infrared (IR) detectors to over-
come existing sensitivity limits. Here, we investigated NEMS
trampoline resonators made of silicon nitride (SiN) as thermal
IR detectors. Trampolines have an enhanced responsivity of
more than two orders of magnitude compared to state-of-
the-art SiN drums. The characterized NEMS trampoline IR
detectors yield a sensitivity in terms of noise equivalentpower
(NEP) of 7 pW/

√
Hz and a thermal response time as low as

4 ms. The detector area features an impedance-matchedmetal
thin-film absorber with a spectrally flat absorption of 50% over
the entire mid-IR spectral range from 1 to 25 µm.

Index Terms— Low-pressure chemical vapor deposition (LPCVD) silicon nitride (SiN), nanoelectromechanical (NEMS),
thermal infrared (IR) detector, trampoline resonator.

I. INTRODUCTION

THERMAL detectors are essential devices for infrared
(IR) spectroscopy and thermal imaging [1], [2], [3]. Due

to the flat and broadband spectral response, these detectors
are mostly used when measurements have to be performed
over a wide spectral range from near-IR all the way to
the far-IR regime. However, state-of-the-art uncooled thermal
detectors’ sensitivity is still several orders of magnitude below
the fundamental detection limit, which is given by power
fluctuations of thermal radiation from the detector and its
background [1], [4].

Thermal detectors absorb the low-energy IR photons and
measure the resulting photothermal heating. The temperature
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increase is usually measured electrically, for example, via
a thermoelectric voltage, resistance change, or pyroelectric
current. These electrical temperature sensing schemes are typ-
ically limited by thermal noise (Johnson noise) [1]. A mechan-
ical IR-sensing concept was introduced in the late 1960s
by Cary Instruments as a promising thermal detector that
is not intrinsically limited by the thermal noise limit [5].
The principle of this concept is a macroscopic tensioned
foil resonator that acts as the thermal-sensing element. Such
macroscopic IR detectors have, to the best of our knowledge,
never been successfully implemented at the time. It was only
in 2011 when the successful fabrication and characterization
of such a nanometer thin tensioned metal and silicon nitride
(SiN) foil resonator elements for temperature sensing was first
demonstrated [6]. Later in 2013, nanomechanical photothermal
detector concepts based on tensioned SiN strings [7], [8] have
been introduced. Recently, this concept has been developed
further to be used as an IR detector based on a SiN drum
featuring a broadband IR absorber thin film [9] and without
a dedicated absorber [10], [11]. It has been shown that
these drum resonators can reach an intrinsic sensitivity in the
fW-regime [12]. It has further been shown that these structures
enter the radiative heat-transfer regime for lateral drum sizes
>1 mm [13], [14], [15].

Nanomechanical SiN resonators present a promising
approach to creating thermal IR detectors that can reach
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Fig. 1. (a) Schematic of the measurement setup. (b) Detailed schematic of the magnetomotive transduction scheme. (c) Microscope image of a
trampoline resonator sample with gold electrodes (type T455). (d) Depiction of various trampoline resonator types used in this study. All resonators
have a frame size of 1 × 1 mm and various detection areas reaching from the smallest T45 (45 × 45 μm) to the largest detection area at T455
(455 × 455 μm), and a drum resonator M with a size of 1000 × 1000 μm.

the long-anticipated photon noise limit. The same detector
concept has been presented with graphene trampolines in the
visible regime of the electromagnetic spectrum [16]. Other
micro- and nanoelectromechanical (MEMS and NEMS) ther-
mal detector concepts include piezoelectric resonators [17],
[18], [19], torsional paddle resonators [20], [21], and polymer
resonators [22].

Here, we investigated thermal IR detectors based on NEMS
SiN trampoline resonators, which already proved exceptional
properties in other fields [23], [24], [25], [26], [27]. Compared
to drums, trampolines have enhanced thermal responsivity due
to better thermal isolation of the central detection area [27].

We study and compare the performance of such trampoline-
shaped IR detectors with various designs by means of
their responsivity (R), noise-equivalent power (NEP), specific
detectivity (D∗), and response time (τR).

II. METHODS

A. Experimental Setup
The experimental setup and the specific SiN trampo-

lines with various detector area sizes that were studied
are depicted in Fig. 1. The experimental setup comprises
a broadband thermal IR light source (ArcLight IR form
Arcoptix) with a spectral range from 1 to 25μm, an opti-
cal chopper (MC2000B and MC1F2 from Thorlabs, Inc.),
two parabolic gold mirrors with a variable iris (pinhole)
for intensity reduction, and a vacuum detector chamber. The
chamber features a sample mount with two permanent magnets
and a proportional–integral–derivative (PID)-controlled Peltier
element to maintain a constant detector temperature of 20◦C.

Before the characterization of our detector, the incident
power of the IR radiation was measured with a reference
detector (UM9B-BL-L-D0 from Gentec-Eo). The IR light was
passing a fiber with a diameter of 900 μm. Using two parabolic
mirrors with equal focal lengths, the optimal IR beam diameter
on the detector corresponds to the fiber diameter, resulting
in an average power after the zinc selenide (ZnSe) window
of P = 7 μW.

The NEMS trampoline detectors in this work are transduced
by a magnetomotive scheme [28], [29], [30]. The necessary

magnetic field is created by permanent magnets producing
a field strength of B ≈ 0.6 T. Two gold traces on the SiN
trampolines are employed for separated actuation and readout
of the nanomechanical motion. The trampoline’s out-of-plane
motion induces a voltage along the readout gold trace, which
is connected to a differential low-noise voltage preamplifier
(SR560 from Stanford Research Systems). A lock-in amplifier
with a phase-locked loop module (HF2LI from Zurich Instru-
ments) is used to create an oscillator based on the NEMS
trampoline resonator, which was operated at the fundamental
vibrational mode.

B. Sample Fabrication
The trampoline resonators, shown in Fig. 1(c), are made

of a low-stress silicon-rich SiN thin film with a thickness
of 50 nm that was fabricated by low-pressure chemical vapor
deposition. The 5-μm wide trampoline tethers are supported
by a silicon frame with a thickness of 380 μm. All chips
are 5 × 5 mm large with a frame size of 1 × 1 mm. The
1-μm-wide gold electrodes with a thickness of 190and 10nm
chromium adhesion layer beneath were added by thermal
evaporation (Balzers BAK-550).

The fabrication process is outlined in Fig. 2. The fabrication
of the SiN trampolines (a) starts with the deposition of gold
(Au) electrodes on the SiN layer. For this purpose, a silicon
(Si) wafer with double-sided SiN layers (b) is spin-coated with
photoresist (c) on one side and structured in a photolithography
step (d). The gold electrodes are then deposited via thermal
evaporation (e). The excess gold and the photoresist are
removed with a standard lift-off process (f). A new photoresist
layer is spin-coated on the top and bottom of the wafer (g) to
structure the top for the trampoline and protect the bottom (h).
The SiN trampoline shape is structured by reactive ion etching
(i) and has to be released from the Si. Therefore, a square
window is patterned in the backside resist (j), and SiN is
removed through reactive ion etching (k). As one of the final
steps, the Si is etched in KOH to release the SiN trampoline (l).

In the final step [Fig. 2(m)], a platinum (Pt) thin film
is deposited via thermal evaporation on the backside. This
ultrathin Pt film acts as an impedance-matched absorber with
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Fig. 2. Sample fabrication steps for SiN trampoline resonators with gold electrodes. (a) Schematic of a trampoline with a color-coded legend for the
different materials. (b)–(m) Dashed line indicates the cross section used to explain the fabrication steps.

Fig. 3. (a) Measured transmittance and reflectance spectra for a 50-nm
SiN drum with a 5-nm platinum thin film and (b) corresponding absorption
spectrum.

a flat spectral response for a wavelength range from 1 to
25 μm, as shown in Fig. 3. This absorber is made of a Pt thin
film with a thickness of 5 nm. Such an impedance-matched
absorber provides optimal absorption of 50% over the whole
spectral range from 1 to 25 μm [31], [32], [33], which was
confirmed by spectral measurements via Fourier-transform
IR spectroscopy (Bruker Tensor 27) equipped with a trans-
mittance and reflectance unit (Bruker A510/Q-T). Fig. 3(a)
shows the obtained transmittance T and reflectance R spectra
from which the absorption α readily can be calculated as
α = 1−R − T , as shown in Fig. 3(b).

III. RESULTS AND DISCUSSION

The detection mechanism is based on photothermal detuning
of the resonators’ resonance frequency. The incident light
causes a change in the temperature of the resonator and
a thermal expansion leading to a reduction of the tensile
stress [7], [8], [9], [34]. Hence, the responsivity of such an
NEMS detector with a detector area A is given by the relative
frequency change δ f = � f/ f0 per power of IR light irradiated
over the detector area

R = δ f

Pabs
. (1)

The absorbed power Pabs is the integrated power over the
area of the Gaussian beam profile. Fig. 4(a) shows a typical
frequency measurement where the IR light has been turned
on and off, at a measured fundamental frequency f0 =
24.5 kHz. From such time-resolved response measurements,
the responsivity of each NEMS detector was derived, as shown
in Fig. 4(b). The measured responsivities steadily increase
for smaller trampoline detector sizes. Since the frame size is
fixed for all detectors to a size of 1 mm, the tether length

Fig. 4. IR characterization measurements for responsivity. (a) PLL mea-
sured resonance frequency for a chopped IR light at 5 Hz exemplary for
a trampoline T45. (b) Relative responsivity obtained for different detector
sizes of trampolines. Each data point corresponds to a measurement of
an individual sample of the denoted size depicted in Fig. 1(d).

of the trampolines linearly scales with the detector area. The
tethers become longer for a smaller detector area, which
causes improved thermal isolation. The observed enhanced
responsivity of trampolines with small detector areas can hence
be attributed to the increased tether length. The responsivity in
the conductive heat-transfer regime of the trampolines can be
approximated by two crossing strings of length L [30], [34]

R = − αE L

32κσhw
(2)

with the thermal expansion coefficient α, Young’s modu-
lus E , thermal conductivity κ , tensile stress σ , and string
cross-section area h ×w. R is proportional to L resulting in a
linear decrease of R with detector area, as it is clearly observ-
able in Fig. 4(b), in particular, for the smallest trampolines.
The measured maximum responsivity of R = 11 000 W−1

is more than one order of magnitude below the values
obtained with plain SiN drums and external interferometric
readout [12]. According to (2), the reason is the Au electrodes
that pass over the drum and significantly increase the thermal
conductivity. An external interferometer is not a practical
readout method, hence here we use an integrated electronic
readout that comes with a tradeoff in responsivity.
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Fig. 5. Finite-element simulations of the temperature profile across SiN
trampolines for Pabs = §1 mw considering conductive heat transfer only.
(a) Temperature profile for different sizes of trampolines for an IR spot
size of 10 μm. (b) Temperature profile for the very center part of a T455
trampoline for different IR spot sizes.

Fig. 5(a) shows temperature profiles for different trampoline
types at constant absorbed power. The results were obtained
by finite-element method simulations. The simulations show
that the improvement in responsivity with a smaller detection
area can be explained by the correspondingly enhanced tem-
perature profile. As Fig. 5(a) shows, the resonator temperature
is inversely related to the detection area.

The effect of different IR spot sizes on the temperature
profile is shown in Fig. 5(b) for a T455 trampoline. A small
spot size causes only an insignificant local temperature peak,
which does not affect the overall temperature profile. This
shows that the spot size does not have a significant effect
on the responsivity, as long as it is smaller than the detection
area.

Next, the sensitivity is determined in terms of the NEP. The
NEP of a NEMS detector directly scales with the frequency
resolution, which was determined through the respective Allan
deviation σAD for a given integration time τ

NEP = σAD · √
τ

R
. (3)

The Allan deviation was calculated from frequency recordings
over 1 min of each NEMS resonator. An example of the
Allan deviation for a T45 sample is shown in Fig. 6(a). The
marker in Fig. 6(a) indicates the integration time τ = 40 ms
that has been selected to calculate the resulting NEP. At this
integration time, the slope of the measured Allan deviation
curve is proportional to 1/

√
τ , resulting in a minimal NEP (3).

Fig. 6(b) presents the measured NEPs of all NEMS tram-
poline resonators. The NEP improves for trampolines with
small detection areas, according to the enhanced responsivity
of these structures due to the longer tethers. Compared to
the drum resonators (M), the NEP of the trampolines was
improved by up to two orders of magnitude. The smallest
trampolines showed an NEP of 7 pW/

√
Hz.

Fig. 6(c) presents the obtained specific detectivity D∗ =√
A/NEP, which normalizes the sensitivity of a detector with

its detection area A. D∗ is typically used to compare quantum
detectors for which noise power is directly proportional to
detector size. Noise in thermal detectors does not necessarily
follow this trend [35]. However, the trampolines’ responsivity
is inversely proportional to the detector size as discussed
above. Hence, the measured specific detectivity values are

Fig. 6. (a) Measured Allan deviation and marked value used for the
sensitivity, exemplary for a trampoline T45. The dashed line represents
a slope proportional to �/

√
τ . (b) NEP and (c) corresponding specific

detectivity obtained for various sample sizes, where each data point
corresponds to a measured value of an individual sample.

constant to a good approximation, in particular, for the smallest
trampolines with the longest tethers.

Fig. 7 shows the measured response times, which were
obtained from the 90/10 method [36] by calculating the rise
time from step transition and relating it to a first-order low-
pass filter model. The trampolines with the smallest detector
size show an improved behavior toward faster response times.
The response time of a thermal detector τR = C/G is
given by the ratio of heat capacity C to heat conductance
G. When reducing the detector size, both the heat capacity
and conductance decrease. Because C scales with the detector
area and G with the tether length, the response times get
faster for trampolines with smaller detector sizes. The smallest
trampolines performed best with response times of 4 ms.

Fig. 8 shows a finite-element method simulation of the
in-plane stress along the diagonal of a trampoline structure
T230, with an initial stress of 150 MPa. It shows an increase
in tensile stress in the tethers that hold the detection area
which is inherent to the trampoline design. The maximum
stress in the tethers of σ = 185 MPa is more than one order
of magnitude below the yield strength of SiN (σyield ≈
6 GPa [37]). We have not observed any failure of fatigue of
SiN trampoline resonators since we have been fabricating these
over the last three years [26], [27]. At operation in the linear
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Fig. 7. Comparison of the thermal response time analysis between
different trampolines and the drum resonator.

Fig. 8. Stress profile calculated with the finite-element method for a
trampoline structure T230 with an initial stress of 150 MPa.

regime with maximal amplitudes of 10 nm no material fatigue
has been observed.

IV. CONCLUSION

We demonstrate trampoline structures made of SiN as
enhanced NEMS-based IR detectors. Compared to other
SiN [9], [11], [38] or piezoelectric [17], [18] nanomechanical
resonators as IR detectors with sensitivities in the range of
hundreds of pW/

√
Hz, we could improve the NEP by two

orders of magnitude with a minimum measured value of
7 pW/

√
Hz. Furthermore, we could also improve the response

time by a factor of 3 compared to SiN drum detectors [9].
The smaller the detector area, the longer become the tethers,
which results in enhanced sensitivity. This clearly shows the
potential of NEMS-based thermal detectors. However, one of
the challenges is still to convert the improved IR detection
methods into application-oriented sensors with the same per-
formance. We have taken a step in this direction with this
work by designing NEMS SiN trampoline detectors with a
broadband absorber and integrated electronic readout.

Larger detector areas can readily be obtained in a future
design by increasing the frame dimensions. With the current
NEP, a detector area of A = 1×1 mm would result in the the-
oretical photon noise limit of D∗ ≈ 2 × 1010 cm

√
Hz/W [1].

Finally, the responsivity can be improved by using a transduc-
tion principle that does not require metal leads that pass over
the trampoline structure and hence is less deteriorating to the
responsivity. Such NEMS resonators are promising thermal
IR detector schemes with the potential to reach the ultimate
photon noise sensitivity limit.
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