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Abstract—Management of crowd information in public
transportation (PT) systems is crucial, both to foster
sustainable mobility, by increasing the user’s comfort and
satisfaction during normal operation, as well as to cope with
emergency situations, such as pandemic crises, as recently
experienced with coronavirus disease (COVID-19) limitations.
This article presents a taxonomy and review of sensing
technologies based on the Internet of Things (IoT) for
real-time crowd analysis,which can be adopted in the different
segments of the PT system (buses/trams/trains, railway/metro
stations, and bus/tram stops). To discuss such technologies
in a clear systematic perspective, we introduce a reference
architecture for crowd management, which employs modern
information and communication technologies (ICTs) in order
to: 1) monitor and predict crowding events; 2) implement
crowd-aware policies for real-time and adaptive operation
control in intelligent transportation systems (ITSs); and 3)
inform in real time the users of the crowding status of
the PT system, by means of electronic displays installed
inside vehicles or at bus/tram stops/stations and/or by mobile
transport applications. It is envisioned that the innovative
crowd management functionalities enabled by ICT/IoT sens-
ing technologies can be incrementally implemented as an
add-on to state-of-the-art ITS platforms, which are already
in use by major PT companies operating in urban areas.
Moreover, it is argued that, in this new framework, additional services can be delivered to the passengers, such as
online ticketing, vehicle access control and reservation in severely crowded situations, and evolved crowd-aware route
planning.
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intelligent transportation system (ITS), Internet of Things (IoT), public transportation (PT) systems, sensing technologies,
smart cities, sustainable mobility.

Manuscript received 17 September 2022; revised 21 October 2022;
accepted 14 November 2022. Date of publication 23 November 2022;
date of current version 29 December 2022. The associate editor
coordinating the review of this article and approving it for publication
was Dr. Prosanta Gope. (Corresponding author: Francesco Verde.)

Donatella Darsena is with the Department of Engineering, University
of Naples Parthenope, 80143 Naples, Italy, and also with the National
Inter-University Consortium for Telecommunications (CNIT), 56124 Pisa,
Italy (e-mail: darsena@uniparthenope.it).

Giacinto Gelli and Francesco Verde are with the Department
of Electrical Engineering and Information Technology, University of
Naples Federico II, 80125 Naples, Italy, and also with the National
Inter-University Consortium for Telecommunications (CNIT), Pisa, Italy
(e-mail: gelli@unina.it; f.verde@unina.it).

Ivan Iudice is with the Italian Aerospace Research Centre (CIRA),
81043 Capua, Italy (e-mail: i.iudice@cira.it).

Digital Object Identifier 10.1109/JSEN.2022.3223297

I. INTRODUCTION

S INCE 2002, the European Commission has promoted
across Europe and beyond a campaign supporting the

use of public transportation (PT) systems as “a safe,
efficient, affordable, and low-emission mobility solution for
everyone” [1]. To cope particularly with PT limitations
in urban areas, a key role is expected to be played by
intelligent transportation systems (ITSs) [2], which leverage
information and communication technologies (ICTs) to enable
the automated collection of transportation data, used to
make transport safer, more efficient, more reliable, and more
sustainable.

Two different classes of spatiotemporal data are available in
state-of-the-art ITSs for PT: 1) vehicle data, such as location
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and speed, which are obtained (usually in real time) by means
of automated vehicle location (AVL) [3] systems, mainly based
on satellite localization techniques and 2) passenger data, such
as the number of passengers boarding a bus/train or entering
a station, which can be obtained by means of automatic
passenger counting (APC) [4] or automatic fare collection
(AFC) systems [5]. Such data are commonly used as inputs
for optimization and planning strategies for PT systems, which
are surveyed in [6] at four different levels: strategic, tactical,
operational, and real time. In particular, it is observed in [6]
that lack of passenger arrival information, especially in real
time, is a limiting factor for accurate studies. In many ITSs,
indeed, real-time location data are available only for vehicles,
which are used both to provide trip information to passengers
and for medium-to-long-term management and monitoring of
the service.

With the advent of Internet of Things (IoT) technologies,
fine-grained and real-time passenger data collection is
becoming a feasible task, especially in smart cities [7]. Indeed,
the pervasive use of mobile and portable devices, equipped
with different sensors, allows one to gather huge quantities
of data in urban scenarios [8], [9], [10], [11], which can be
used for different applications and tasks [12]. In particular, the
fifth generation (5G) of cellular networks is potentially able
to support massive IoT connections [13], where billions of
smart devices are connected to the Internet and can be easily
located and tracked; these features will be further extended by
forthcoming sixth-generation (6G) networks [14].

Recently, some researchers have argued that the quality
of service (QoS) perceived by PT users, as well as their
travel satisfaction/quality of experience (QoE), is seriously
affected by crowding [15], [16], [17]. To cope with this
issue, it is required to acquire in real-time reliable and
capillary information about the crowding status of PT rail or
road vehicles (e.g., buses, trams, and trains) and the related
access infrastructures (e.g., bus/tram stops and metro/railway
stations). Indeed, it is stated in [18] that “the availability of
real-time passenger demand data can significantly improve the
performance of control models in the case of overcrowding.”

Motivated by the previous needs, new modeling, planning,
and management strategies that collect real-time crowding
data and use them to improve QoS/QoE in PT systems are
appearing in the literature [17], [19], [20], [21], [22], and
will be referred in the following as crowd management [23],
[24]. Crowd management systems are composed [24] by
crowd analysis/monitoring and crowd control components:
the former includes a network of physical sensors aimed at
detecting crowds and estimating their parameters, whereas
the latter includes prediction, decision-making, and control
strategies aimed at managing the crowd events. Crowd
management should not be confused with crowdsourc-
ing/crowdsensing [25]. In PT systems, crowdsourcing (also
referred to as “sensing by the crowd” approach) is based
on reporting activities by which passengers provide their
suggestions and feedback, as well as announce problems
to a PT company or, even, provide a resource or create a
product, e.g., peer-to-peer services. Relying on crowdsourced
data, PT companies work together with passengers to solve

a problem or jointly plan public transit by finding and
developing solutions aligned with PT user preferences. Crowd
management is instead based on the different principle of
“sensing the crowd,” according to which environmental data
collected through networks of IoT sensor devices and/or
user terminals are shared with PT companies, which analyze
such data for forecasting, choosing among several possible
alternative options, as well as ensuring robust and safe
operation of PT systems.

The problem of crowd management in PT systems has
emerged dramatically during coronavirus disease (COVID-19)
pandemic, which has first spurred our interest to this topic (see
Section II for a discussion). During the acute outbreak phase,
overcrowding of buses and trains needed to be strictly avoided
to protect people from contagion, which required emergency
measures, such as, e.g., limiting to 50% the service capacity.
These measures are generally not sustainable in the long term
since they shift a significant portion of passengers to private
transportation. Moreover, the problem of overcrowding in PT
systems must be tackled in a smarter and more structural way
since many experts predict that, in the future, recurrent waves
of pandemic outbreaks could become the norm rather than the
exception.

Although state-of-the-art AVL/APC/AFC systems collect a
large amount of data about vehicles and passengers in ITS
systems, often they are not suitable to perform real-time crowd
monitoring and control. However, many ICT/IoT sensing
technologies for crowd monitoring are already available or will
be available soon in smart cities [7]. A recent special issue of
this journal [26] reports the cutting-edge advances and ICT
technologies pertaining to the seamless integration of sensors
with the transportation infrastructure. The main focus of the
contributions in [26] is on sensing technologies for private
transportation systems, oriented to autonomous driving [27],
[28], intelligent fault detection [29], [30], electric charging
optimization [31], road condition monitoring [32], [33],
precise fleet management [34], and speed detection and
accident avoidance [35], [36]: in the same issue, less
attention is dedicated to the integration of sensing technologies
within PT systems. Moreover, sensing techniques for crowd
monitoring are not specifically discussed.

A. Contribution
In this article, we argue that, although many sensing

technologies for crowd monitoring are already available, the
diffusion of crowd management techniques in modern PT
systems is hindered by the lack of a structured framework
and reference architecture. Motivated by this observation,
we pursue three main goals in this article: 1) to present a
survey and taxonomy of crowd monitoring technologies for
PT systems based on ICT/IoT technologies; 2) to discuss their
adoption into a reference architecture, aimed at integrating
state-of-the-art ITSs (already available in many PT systems in
urban areas) with the new crowd management functionalities;
and 3) to highlight a series of challenges opened up by the
proposed reference architecture that needs to be investigated,
by also indicating what could be the best way to address
them. Although some reviews regarding techniques for crowd
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TABLE I
COMPARISON AMONG SURVEYS RELATED TO CROWD MANAGEMENT IN PT SYSTEMS

monitoring inside PT vehicles exist (see [4], [37]), to the
best of our knowledge, this is the first review addressing
sensing technologies for crowd management in all the different
segments of the PT systems. In this respect, Table I enlists
all the related surveys in crowd management in PT systems,
by comparing them with this review article at hand.

In our vision, the crowd management functionalities are
built upon a distributed IoT subsystem, composed by a
capillary network of heterogeneous active/passive sensors,
aimed at monitoring passenger crowding inside buses, trams,
and trains, at bus/tram stops, and in railway/metro stations.
By means of a communication infrastructure, the acquired
measures are transmitted in real time to a smart subsystem,
which performs crowd control functionalities. Crowding
information can also be reported (in aggregated or anonymized
form, for privacy concerns) to PT users, by means of displays
installed inside vehicles or at stations/bus stops, or through
mobile transport apps (e.g., Moovit or proprietary operator
applications).

In the proposed reference architecture, real-time knowledge
of crowding data can be used by PT operators for fast
or even proactive adaptation of some service features
(e.g., vehicle holding, stop skipping, overtaking, limited
boarding, speed changing, and short turning), in order to
cope with spatially and/or temporally localized crowding
situations, which cannot be tackled by conventional (statistical)
tools used in transportation system design, such as, e.g.,
origin–destination (O–D) flow analysis. The new crowd

management functionalities essentially achieve two scopes:
1) to improve the QoS/QoE of passengers, thereby fostering
PT system usage and 2) to allow for safe PT usage
during exceptional events like a pandemic outbreak, such as
COVID-19.

B. Article’s Organization
Section II highlights the adverse impact of COVID-19

pandemic outbreak on sustainable mobility and PT systems.
In Section III, the main aspects of crowd management in PT
systems are discussed. In Section IV, a crowd management
reference architecture is proposed. A taxonomy and review
of the sensing solutions for crowd management and their
application in different PT scenarios is presented in Section V.
Innovations and advantages provided by the adoption of the
new crowd management functionalities are highlighted in
Section VI. The main challenges and gaps related to the
introduction of crowd monitoring management in ITS systems
are discussed in Section VII. Finally, conclusions are drawn
in Section VIII.

II. SUSTAINABLE MOBILITY IN THE COVID-19 ERA

During the last years, the transport sector and mobility—
in particular PT systems in urban areas—have been seriously
affected by the COVID-19 pandemic. A survey [44] carried
out in China in 2020 estimated that, as a consequence of the
outbreak, the use of private cars will be roughly doubled,
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increasing from 34% to 66%, whereas the use of public
transport (buses/metros) will be more than halved, dropping
down from 56% to 24%. Furthermore, due to the lack of
trust in PT systems, more than 70% of the surveyed people
not owning a car declared their intention to buy a new one,
with negative consequences on the environment (landscape
and air pollution) in urban areas. Other recent studies (see,
e.g., [45], [46]) have highlighted that the COVID-19 pandemic
has seriously discouraged the use of PT systems.

To counteract the shift to private car usage during the
COVID-19 pandemic, national governments have implemented
different strategies. A widespread measure [47] has been
to favor the use of individual sustainable mobility and
micromobility means, such as bikes, electrical scooters, and
segways, by deploying the related infrastructures (bike lanes)
or empowering vehicle sharing services, which can shift to this
transport mode a certain percentage of short- and medium-
distance trips.

However, due to the large number of passengers carried
by PT systems in urban areas, it is of utmost importance to
adopt measures aimed at safe and reliable PT usage in such
a scenario. During the acute phase of the outbreak, severe
anti-COVID-19 measures were adopted [48] to minimize
the contagion risk, such as back-door boarding, cashless
operations, frequent sanitization of vehicles and stations,
enforcing social distances, limiting the service capacity, and
requiring the passengers to wear face masks. Other anti-
COVID-19 measures were applied [48], [49] to PT system
operations, such as modifying timetables, frequencies, paths,
and leveraging modal integration. Unlike other countries,
the Land Transport Authority (LTA) of Singapore has made
adjustments to train frequencies to reduce crowding on
commuters’ lines, increasing the peak-period frequency for
trains from once every 5 min to once every 3 min [50]. Some
of these measures, such as increasing PT service frequency or
introducing extraordinary trips to compensate for the reduced
vehicle capacity, are seen by PT companies as effective, but
not sustainable in the long term, due to the limited number of
drivers and vehicles and the increased operational costs [51].

Generally speaking, the COVID-19 pandemic has pushed
toward a critical rethinking of many economical, social, and
cultural habits, not only those related to sustainable mobility.
A plethora of innovative solutions have been proposed to cope
with this new challenge, many of them employing ICT/IoT
technologies. In [52], the use of new technologies, such as
IoT, unmanned aerial vehicles (UAVs), artificial intelligence
(AI), blockchain, and 5G, has been considered for managing
the impact of COVID-19 in health applications. In [53]
and [54], a review of technologies for social distancing has
been provided, with emphasis on wireless technologies for
positioning, including crowd detection and people density
estimation.

As far as sustainable mobility is concerned, a review
of the PT planning literature can be found in [49] from
the perspective of the changes in demand patterns and
limited capacity requirements associated with the COVID-19
pandemic crisis. It is evidenced that, besides reducing the
service capacity to adhere to physical distancing measures,

PT service providers worldwide have resorted to limiting
service span in order to reduce operational costs as a
consequence of the reduction in catchment area, by canceling
certain services or closing some stations. Moreover, it is
pointed out the importance to develop and deploy methods
that are able to maintain the functionality of PT systems
while minimizing the public health risks; it is suggested
that some changes in service provision can be made at the
tactical planning phase, by modifying timetables and/or service
frequencies.

Some recent studies have explored the possibility to rely
on ICT to organize and facilitate human mobility during
the pandemic. Asad et al. [55] proposed to use a machine-
learning-(ML)-based approach to trace daily train travelers in
different age cohorts of 16–59 years (i.e., the less vulnerable
age group) and over 60 (i.e., the more vulnerable age group)
in order to recommend certain times and routes for safe
traveling. In this work, many ICT technologies, such as
Wi-Fi, radio frequency identification (RFID), Bluetooth, and
ultrawideband (UWB), are employed. Using a dataset of the
London underground and overground network, different ML
algorithms are compared in [55] to properly classify different
age group travelers, showing that the support vector machine
(SVM) approach performs better to predict the mobility of
travelers and achieves high accuracy (more than 80%).

In [56], a comprehensive review on human mobility
research using big data is carried out: big data collected
since the pervasive use of ICT/IoT can help, indeed,
to discover the relationships between human mobility and
resource use, thus entailing great opportunities for smart
city development. Rahman et al. [57], instead, pursued the
objective of identifying data sources and ML approaches to
properly estimate the impact of COVID-19 on human mobility
reduction. In particular, the consequences of the pandemic
on mobility patterns of urban populations are investigated
in [57], by quantifying even the impact of mobility reduction
on improving air quality in urban areas.

III. CROWD MANAGEMENT IN PT SYSTEMS

The main architecture of a crowd management system for
PT applications is schematically shown in Fig. 1. A certain
number of physical sensors S1, S2, . . . , Sn are used to
collect all the relevant information regarding crowd events.
After a suitable preprocessing of the collected information
(e.g., dimensionality reduction, normalization, interpolation,
denoising, and so forth), the output data are processed
by the data fusion (DF) system. DF can conceptually
be divided into three layers [58]: sensor fusion, feature-
based DF, and decision fusion. Sensor fusion includes
data classification, object refinement (e.g., spatiotemporal
information alignment, correlation, clustering, grouping, state
estimation, error elimination, and reduction), positioning, and
recognition. The output of the sensor function layer has
a consistent data structure. Data feature fusion helps to
reduce the requirements of application services for system
storage resources and computing performance, and it can
provide additional complete and in-depth features. Decision-
level fusion is aimed at detecting crowds and estimating their
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Fig. 1. Main architecture of the crowd analysis/monitoring and crowd
control mechanisms.

parameters in real time. Prediction of crowd events and their
manage is obtained by elaborating not only the output data
of the decision-fusion layer but also other information arising
from the Internet and historical databases. Control actions are
finally implemented through a certain number of actuators
A1, A2, . . . , Am .

A general introduction to crowd management in transporta-
tion systems is provided in [24], where some limitations of
state-of-the-art ITSs are highlighted, and the potentials of the
new approach are discussed, together with a brief introduction
to crowd analysis/monitoring techniques. In [16], different
aspects of passenger crowding in PT systems are discussed,
related to demand, supply, and operations, including effects
on route and bus choice, as well as passengers’ wellbeing.
Table II subsumes some relevant works on crowd management
discussed in the following, focusing in particular to those
reporting numerical performance achievements in realistic
scenarios.

The benefits of real-time crowding information (RTCI)
dissemination on passenger travel choices have been discussed
and assessed by simulations in [17], [59], and [60].
In particular, it is shown in [59] and [60] that providing
RTCI at bus stops might help reduce the deleterious “bus
bunching” effect [61]. In [17], a complete framework for RTCI
modeling in PT systems is introduced, which incorporates
RTCI in a dynamic path choice model: the new methodology
is tested on a simplified model of the urban PT system of
Kraków, Poland, showing that RTCI dissemination contributes
to a more efficient distribution of passenger loads in the PT
network, improving travel comfort and reducing waiting time
by about 30%.

A field application of crowd management strategies to
PT systems is considered in [19] and [21]. The proposed

solution, tested in the municipal bus infrastructure of Madrid,
Spain, estimates the current number of passengers in a bus
by exploiting the properties of the existing Wi-Fi connections
(see Section V-H) and incorporates such information in a bus
navigation system, which is capable of giving crowd-aware
route recommendations. Well before the COVID-19 outbreak,
the LTA in Singapore has been collecting AFC data [62]
to help identify commuter hotspots, which enables them to
better manage bus fleets and commuter demand, achieving
remarkable service improvements, such as 92% reduction
in the number of bus services with crowding issues and
3–7-min reduction in the average waiting time on popular bus
services [63]. It is worth noting that recently, also Google
started acquiring and disseminating crowding information to
the users [64], [65], [66].

A. Crowd Prediction
Estimating and predicting (in space and/or time) some

features of a human “crowd” in indoor and outdoor locations
is an active research topic, with many applications, including
surveillance and security, situation awareness, emergencies,
and crowd management [38]. In transport applications, the
feature of interest is the number of components of the crowd
and/or its density.

Crowd prediction algorithms for transport applications can
be classified based on the prediction horizon into short-term
(less than 60 min) and long-term ones [69]. Moreover, they
can be classified, based on the prediction methodology, into
model-based methods or data-driven ones.

Model-based methods include time-series analysis, regres-
sion modeling, hidden Markov models [73], and Kalman
filtering models [74]. Due to highly nonlinear and random
nature of crowds, data-driven approaches have recently gained
significant attention, including ML and deep-learning (DL)
techniques. Several works consider ML-based approaches for
crowd management (see, e.g., [39], [75]). Yuan et al. [40]
provided a thorough survey on ML techniques for ITSs.

Although ML-based approaches can achieve good results
in crowd flow prediction, several reasons pushed researchers
to adopt DL-based methods, such as, above all, the ability
to automatically extract relevant patterns from unstructured
and heterogeneous data. Differently from ML ones, indeed,
DL approaches do not require manually extracted or
handcrafted features but can automatically extract the relevant
features from the raw data collected by the sensors, process
them, and make the subsequent decision. In [41], the
reference structure of a crowd counting technique based on
a convolutional neural network (CNN) is reported, whereas
in [42], crowd counting techniques are classified, according to
the network property, into basic, scale-aware models, context-
aware models, and multitask models. In some cases, simulation
tools to predict traffic flow, such as BusMezzo [76] or
SUMO [77], have been considered as well.

Although crowd/traffic prediction and mobility forecasting
are considered in several papers, mostly devoted to road con-
gestion management in urban transportation, their application
to PT systems is a relatively new topic: some recent studies are
[67], [68], [70], [74], and [78]. In [70], a predictive model for
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TABLE II
REPRESENTATIVE PERFORMANCES OF CROWD MANAGEMENT SOLUTIONS FOR PT SYSTEMS

bus crowding is proposed and tested on an AVL/APC dataset
taken from the Pittsburgh-area bus using ML techniques.
In [67], a data-driven approach is considered to perform
car-specific, metro, and train crowding prediction, aimed at
providing accurate in-vehicle or station RTCI.

Real-time crowd estimation in [67] is based on load sensors
(see Section V-B), which are used, together with historical
data, to perform crowd prediction, whose accuracy is tested
with data gathered on a metro line in Stockholm, Sweden.
It is shown that real-time load data significantly improve the
prediction accuracy (from between 70% and 90% to between
80% and 95%). In [68], a framework for personalized (i.e.,
user-specific) crowd prediction is proposed, which considers
not only loading data but also other parameters that affect
user comfort, such as seat availability, expected travel time
standing, and excess perceived travel time (compared to
uncrowded conditions). In [79], a system providing real-
time short-term crowd predictions on trains and platforms is
proposed, which uses both real-time AFC and O–D historical
data.

B. Crowd Control
Crowd information can be incorporated in PT design,

optimization, and control at different levels. Besides some
approaches showing the benefits of RTCI dissemination
to the passengers [17], [59], [60], [67], operator-based
crowd control in PT systems is still at an early stage of
development. Crowding data can be used at the strategic and
tactical planning level in several fields, such as increased
services, vehicle capacities, networks expansion, headway,

and timetable optimization (see, e.g., [71], [80] for solutions
applied to the metro/subway scenario). In [81], a sequential
heuristic method is introduced for rescheduling the timetables
of demand-responsive public transport modes in near-real time.
The approach was tested on data of Stockholm bus service,
with reference to a figure of merit called excess waiting
time (EWT). Due to the schedule changes, the operational
performance of bus services demonstrated a remarkable
service-wide EWT improvement (e.g., the service-wide EWT
is reduced from 1.13 to 0.75 min for line 1).

In [69], a timetable optimization method aimed at reducing
the passenger waiting time (PWT) in metro scenarios is
proposed, employing a genetic algorithm (GA) integrated with
the interior-point algorithm (IPA). The proposed method is
tested by simulation on data of the Bejing Metro, showing
that the PWT under the optimized timetable is reduced at best
by 17.18% in off-peak hour and by 3.22% in peak hour in
comparison with the standard timetable. Moreover, the method
reduces the peak number of passengers on platforms by 44.5%
during off-peak hours and by 9.5% during peak hours.

In many studies, the effects of crowding are represented
by an additional in-vehicle travel time multiplier, so-called
crowding penalty [16], which is typically estimated from
historical data. A recent discussion of crowd-related studies in
PT railway systems is provided in [72], which also proposes
a control model for joint optimization of train scheduling
and passenger routes considering in-vehicle crowding based
on O–D data. Real-time crowd control techniques are less
explored, mainly due to the lack of availability of fine-grained
crowding data. Common measures to cope with service
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Fig. 2. Crowd management reference architecture for ITS.

irregularities in scheduled PT systems are vehicle holding, stop
skipping, overtaking, limited boarding, speed changing, and
short turning [43], [82]. All these strategies can further benefit
from the availability of RTCI, both inside vehicles, and at the
access infrastructure (e.g., bus/tram stops and railway/metro
stations).

IV. REFERENCE ARCHITECTURE

FOR CROWD MANAGEMENT

From the previous discussion, it is apparent that the
integration of ICT/IoT sensing technologies into PT systems
for crowd management is fragmentary and their potentials are
not fully exploited to date. To bring together these technologies
in a systematic and common scenario, we introduce a crowd
management reference architecture for ITS, whose scope
is to integrate/augment the ITS system already available
in an urban PT system with the new crowd management
functionalities, aimed at smart and proactive control and
reduction of passenger crowding.

The key idea is to integrate heterogeneous sensing and
communication technologies, in dependence on the operation
scenario and the ICT infrastructure available in the urban area
where the system must be implemented. To achieve such a goal
in practice, strong interdisciplinary design skills are needed,
including transportation engineering, telecommunications,
computer science, electronics, data analysis, and AI.

In our vision, the reference architecture encompasses
(Fig. 2) three subsystems:

1) the sensing and actuator subsystem (SASS);
2) the communication subsystem (CSS);
3) the monitoring, prediction and control subsystem

(MPCSS).
The architecture involves new data flows (marked as green

arrows in Fig. 2) for crowd management, in addition to
existing data exchanges (red arrows) commonly used in state-
of-the-art ITS systems for PT services. The core and most
innovative part of the system is the SASS, with particular
reference to sensors for crowd monitoring. In Section V,
we provide a taxonomy and discussion of the different sensing
technologies than can be utilized to this aim. The actuator
component mainly encompasses two crowd-related flows of
information: 1) toward the users, carried out by audio speakers,

variable-message panels, or displays, which are typically
already present in the PT system, or can be readily installed at
the bus/tram stops as well as in railway/metro stations, and also
inside vehicles; 2) toward the PT operators (drivers and staff),
e.g., by means of evolved driver displays that communicate to
the drivers’ decisions regarding PT adjustments (e.g., holding,
stop skipping, or even route changing) to be carried out
in real time. It is worthwhile to note that, with the advent
of autonomous-vehicle PT systems [83] (based on driverless
buses or metro trains), the actuators can directly modify the
vehicle behavior, without the need for human intervention.

As regards the CSS, its characteristics are strongly
dependent on the communications infrastructure available in
the urban area. In general, this subsystem might encompass
public wireless networks (such as cellular networks) and/or
private wired and/or wireless networks owned by the operator,
such as, e.g., Global System for Mobile Railway (GSM-R) or
long-term evolution for railway (LTE-R). To cope with this
heterogeneity, it is envisioned that, at the protocol-level stack,
the CSS can be readily interfaced with the other subsystems
by means of standard or open interfaces and/or using simple
adaptation layers.

The MPCSS performs data collection and real-time crowd
prediction, possibly employing AI and ML/DL techniques.
Based on such predictions, modifications to the transport
services can be implemented in real time (e.g., vehicle holding,
stop skipping, overtaking, limited boarding, speed changing,
and short turning) as well as at the strategical/tactical planning
level (e.g., optimization of timetables and routes). The related
control data are sent to service operators (drivers, supervisors,
and so on), whereas service information, including RTCI,
is sent to the passengers by means of displays and/or mobile
transport apps. This information could be notified by the same
applications to all the users of the PT, so as to discourage
the access to overcrowded stations and/or bus/tram stops
and propose alternative travel solutions. The MPCSS can be
strongly integrated (and typically colocated) with the ITS
control system of the PT service operator.

V. SENSING TECHNOLOGIES FOR

CROWD MANAGEMENT

From the transportation perspective, our taxonomy of
sensing technologies for PT systems considers (see also Fig. 2)
the following scenarios:

1) train and bus/tram vehicles (indoor scenarios);
2) railway/metro stations (indoor/outdoor scenarios);
3) bus/tram stops (mainly outdoor scenarios).
The sensing solutions to be adopted in these scenarios

belong to the crowd analysis/monitoring [84] family. Detecting
and estimating some features of a “crowd” in indoor and
outdoor locations is an active research topic, with many
applications, including surveillance and security, situational
awareness, and emergencies (for a recent review, see [85] and
references therein). In PT applications, the feature of interest is
the number of components of the crowd (i.e., crowd counting)
and/or its density (i.e., crowd density estimation); moreover,
tracking of individuals in a crowd could be needed to build
O–D matrices, useful for long-term planning. A review of
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crowd analysis techniques for urban applications, including
transportation systems, is provided in [10], where approaches
based on different data sources, including information fusion
techniques, are discussed and compared.

Sensing technologies for crowd analysis can be classi-
fied [86] as visual-based (VB) solutions, based on still or
moving images/videos mainly acquired by optical, thermal,
or laser cameras, or nonvisual-based (NVB) ones, which do
not rely on images to estimate crowd parameters but resort
to other physical quantities or features that can be related
to crowd parameters, such as, e.g., those of radio signals,
temperature, or sound.

To perform the crowd analysis, VB techniques resort
to sophisticated image processing, pattern recognition,
or computer-vision techniques [84], [87], [88]. Indeed, due
to recent advances in AI, traditional camera sensors are
becoming “smart” and can detect, recognize, and even identify
persons. VB technologies perform passive sensing, relying
on a network of dedicated sensors, without requiring active
cooperation/participation of the users. However, VB data
are subject to stringent protection regulations enforced by
international data privacy laws, such as, e.g., general data
protection regulation (GDPR) [89] in the European Union.

Among NVB technologies (see [90] for a recent review),
sensing solutions based on mobile RF devices represent an
interesting approach, due to the diffusion of smartphones and
other portable/wearable devices, such as, e.g., pedometers,
smart watches, or biometrical sensors. This approach to
sensing is known as mobile sensing [91], opportunistic
sensing [92], or participatory sensing [93]. Data collected
by means of such device-aided NVB systems can be used
not only to count people in a crowd but also to gather
additional information about individuals (e.g., planned routes,
O–D flows, and passengers using off-peak hours group
ticket). However, a problem inherent to device-aided systems
is that they usually require user cooperation/participation.
Another important aspect of NVB systems is that they
potentially collect sensitive data pertaining to individuals,
such as, e.g., daily movements as well as home and work
locations. To motivate participation, it is sometimes needed to
introduce incentive or reward mechanisms, or apply radical
modifications to the procedures to access the PT service,
such as an authentication phase to use the service. Although
this issue could enhance the aforementioned privacy concerns,
it could also be useful as a means to increase the overall safety
of the PT systems during a pandemic outbreak, by reducing
the risk that infected people can access the system.

When device-aided NVB techniques cannot be used for
crowd characterization, due to, e.g., lack of user cooperation
and/or security/privacy issues, RF-based non-device aided
or device-free approaches can be pursued, which operate
by analyzing the propagation channel variations of wireless
signals induced by the people present in a given spatial
area. In limited cases, NVB sensing techniques relying on
physical properties different from those of RF signals (such as
audio or ultrasound signals) can also be employed. From the
user’s point of view, information collected through device-free
solutions is less critical, as it may not affect users’ privacy.

The main sensing technologies for crowd management in PT
systems are summarized in Table III and will be discussed in
the forthcoming Subsections from V-A to V-H. Table III also
provides a preliminary classification of sensing technologies
based on their degree of privacy. We defer to Section VII for
a more detailed discussion about privacy issues.

A. Infrared Sensors
Impulse-radio (IR) sensors are commonly used in traditional

APC systems for counting the number of passengers boarding
or alighting a vehicle (usually a bus or a tram). Commercially
available solutions employ a couple of IR sensors (acting
as a transmitter/receiver) forming a “light barrier” aimed at
detecting the passage of people at the input–output gates of
the vehicle. Alternatively, a single pyrolectric IR (PIR) sensor
can be used, which detects the IR radiation emitted by the
human body in the wavelength range 2–14 µm. To enhance
reliability, the combined installation of IR/PIR sensors can
also be conceived. Although IR sensors are very frequently
used in PT systems, with counting accuracy generally well
above 90% [94], their performances worsen when multiple
people board through the same door simultaneously [95],
[96]. Moreover, installation could be expensive since, typically,
more than one barrier per door is needed to detect the
passenger flow.

B. Pressure/Load Sensors
Another solution commonly employed in traditional APC

systems counts the number of passengers boarding or alighting
buses or trams by means of pressure-sensitive switches
(“treadle mats”) placed on the vehicle steps, which are
activated under the effect of the passenger weight. These
solutions are simple, accurate (above 95%), and rugged,
ensuring long operational life: installation of multiple treadle
mats over different steps allows one to discriminate between
infeed/outfeed motion [4]. An innovative pressure sensor is
the Velostat/Linqstat one, which is a carbon-impregnated
conductive polymeric foil that can be used as a low-power
inexpensive pressure sensor. Such a sensor has been adopted
in [97] to implement a system aimed at monitoring seat
occupancy in a bus.

Another application of pressure/load sensors, placed on
the ground or the suspensions, is in weigh-in-motion (WIM)
systems, which estimate the number of passengers by the
loading of the vehicle detected before and after the stops.
Since most of the modern trains are equipped with electronic
weighing sensors providing information to the braking system,
a WIM solution exploiting such sensors has been proposed and
implemented in the Copenaghen metro system [98]. In [99],
two algorithms for passenger counting are proposed, which
estimate the passenger load based on the pressure variations
of vehicle air ride suspensions, which are commonly employed
in almost all modern transit buses. WIM systems represent a
convenient solution to measure crowdedness inside vehicles,
even though it can be difficult to infer the actual number of
passengers boarding or alighting [4].
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TABLE III
TAXONOMY OF SENSING TECHNOLOGIES FOR CROWD MANAGEMENT IN PT SYSTEMS

C. Optical Cameras
Optical cameras are widely used in private and public

spaces for surveillance and security, such as in closed circuit
television (CCTV) systems, and are routinely installed inside
PT vehicles and stations to this aim. Since often they can
support crowd monitoring functions with firmware/software
upgrades, optical cameras are among the most versatile
and used techniques for crowd analysis [87], [100]. Most
works on crowd counting and detection based on optical
cameras rely on computer-vision technologies [95], [101],
[102], in which crowds are detected using specific features,
e.g., facial recognition or motion tracking, extracted from
images/videos. Moreover, the majority of recent works employ
AI or ML/DL algorithms [103].

Camera-based solutions can be applied in all transportation
scenarios, both indoor and outdoor ones. Video cameras
mounted inside road or rail vehicles can be used to estimate
the number of passengers and their flow (i.e., whether they
are boarding or alighting) [95], [104], [105], [106]. An image-
processing technique based on a modified Hough transform is
proposed in [104], aimed at detecting the contour features of
heads and estimating accordingly the number of passengers
and their flow in a bus. Many recent approaches are based

on CNNs, such as the passenger counting system proposed
in [107], which also exploits the spatiotemporal properties
of video sequences acquired on a PT bus in China, or the
solution proposed in [108], where crowd density inside a
bus is detected and classified in five different levels (from
very low to very high), to be displayed by LCD screens
installed at the bus stops. A deeply recursive CNN-based
solution is proposed in [109] and tested on a dataset of
images taken at the bus rapid transit (BRT) in Beijing, China.
A neural-network-based crowd density estimation algorithm is
described in [110], targeted at underground station platforms,
which has been experimentally tested on a sequence of CCTV
images acquired at a metro station in Hong Kong. Finally,
VB techniques for counting people at bus stops are proposed
in [111] and [112], based on computer-vision techniques,
which process measurements of foreground areas corrected by
suitable perspective transformations.

In summary, crowd analysis based on optical sensors is
versatile and powerful but has several limitations: camera
sensors, indeed, are expensive, and each camera can only
cover a small area, resulting in high deployment costs in
complex and/or large environments. In some scenarios, optical
camera-based systems do not allow to estimate the number of
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people with sufficient accuracy, due to possible obstructions,
clutter, and poor light/weather conditions. Moreover, crowd
analysis techniques based on images require a high computing
power. Finally, the management of optical camera-based
systems might be cumbersome, due to privacy-related
restrictions.

D. Thermal Cameras
Thermal cameras can detect people in low-light environ-

ments, complete darkness, or other challenging conditions,
such as smoke-filled and dusty environments [113]. Thermal
imaging cameras are currently used in some countries to
prevent accidents and infrastructure damage in PT systems,
detecting, for example, people walking on the tracks or
fire events. This technology, however, can be employed also
to monitor crowding situations both in indoor and outdoor
scenarios.

Some people counters based on thermal cameras are
proposed in [114], [115], and [116]. Different from optical
cameras, people counters based on thermal cameras are less
sensitive to the level of ambient lighting or background color
contrasts, but their performance can be adversely affected
by heat sources and weather conditions. In addition, real-
time image processing can be computationally intensive. The
high costs of instrumentation still limit the widespread use of
thermography for crowd monitoring.

Recently, hybrid approaches, combining thermal and optical
imaging sensors, and intelligent processing (based on DL and
CNNs), have been implemented to improve the accuracy and
real-time processing of camera-based systems [117], [118].
In [119], a people counting algorithm is developed, which
uses low-resolution thermal images and employs small-size
CNNs, being able to run on a limited-memory and low-power
platform.

E. Light Detection and Ranging
Another option to detect and track persons is represented

by light detection and ranging (LiDAR) sensors, especially in
environments where there are several interacting people [120].
A LiDAR sensor is a distance-measuring system that works
by illuminating the target with a laser beam and sensing the
reflected laser light. There are different implementations of
LiDAR sensors based on their coverage area and wavelengths.

Compared to traditional VB approaches, LiDAR is less sen-
sitive to varying lighting conditions and requires, in general,
lower data-processing times. Due to these features, LiDAR-
based counting systems are suitable for all transportation
scenarios, both indoor and outdoor.

A real-time 2-D LiDAR monitoring system for people
counting is proposed in [121], which turns out to be useful
in monitoring wide areas and dense groups of persons. The
solution proposed in [122], instead, employs two LiDAR
sensors set at different heights, aimed at detecting people’s
heads and knees, to improve the tracking performance.
To increase the system accuracy, other solutions use 3-D
LiDARs: in [123], for example, a technique for people
counting is presented, which works well even if two or

three persons pass at the same time. However, an important
limitation of 3-D LiDAR is represented by its computational
cost, which can be even higher than optical camera-based
solutions.

F. Acoustic/Ultrasound Sensors
Acoustic sensor-based approaches perform people counting

by relying on audio signals transmitted by smartphones or
produced by speaking people [90]. A crowd counting solution
based on audio tones is presented in [124], leveraging the
microphones and speaker phones available in most mobile
phones. Effectiveness is proven through several experiments
at bus stops or aboard, which show, however, that counting
latency can significantly grow as the number of devices
increases; as a consequence, this technique may be appropriate
only for low-density scenarios.

Despite their simplicity, the applicability of purely
acoustic-based solutions in crowd counting is largely limited
by their high sensitivity to the environmental noise level.
For this reason, hybrid solutions, employing not only
acoustic sensors, have been proposed. In [125], for example,
a multimodal sensor network is built, which exploits sound
intensity in conjunction with additional information sources,
such as carbon-dioxide level and RF link strength, in order
to increase the estimation accuracy. Another hybrid solution
is presented in [126], which proposes an opportunistic
collaborative sensing system, based on acoustic and motion
sensors integrated in smartphones.

A different option to count people is represented by
acoustic-based solutions using ultrasound sensors, which
perform well for indoor spaces and small crowds [90]. When
the reverberation of the transmitted waves is received, the
number of people can be estimated by exploiting information
from the receive time or the signal decay. Based on this
approach, an ultrasonic sensing technique for estimating the
number of people is presented in [127], which exhibits
satisfactory performance when the occupancy of the space
does not reach its maximum.

G. Device-Free RF Sensing
Device-free crowd analysis based on RF signals is an

emerging technique, which does not require installation of
expensive cameras nor does it suffer from privacy-related
concerns. It exploits the impact of the monitored crowd
on RF communications to infer information regarding the
size and/or density of the crowd, either using traditional
radar methodologies (range and Doppler analysis) [128],
[129], [130], mainly with IR-UWB signals [96], [131],
or by analyzing features extracted by channel quality
measurements, such as received signal strength indicator
(RSSI) [132], [133], [134] or channel state information
(CSI) [135], [136], [137].

People counting using RF signals can be used in dimly
lit places and in smoky and dusty environments: hence,
it represents an interesting solution for metro/subway stations
and/or at bus/tram stops. In [96], a people counting algorithm
using a couple of IR-UWB radar sensors is proposed, which
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was tested in a subway platform in Seoul, South Korea,
showing accuracy values higher than 90%. A solution to count
the people in a queue, based on RSSI measurements carried
out by Bluetooth low-energy (BLE)1 devices, is described
in [138]: the system is completely passive and estimates the
number of persons in the queue by analyzing the mean and
variance of the RSSI values between a BLE beacon and a
receiver covering a certain area.

In general, RSSI-based approaches for crowd analysis
exhibit good performances in small monitored environments,
where the propagation channel variations are dominated by
the attenuation caused by the people actually present in
the environment. On the other hand, in a rich scattering
environment, crowd analysis approaches based on CSI provide
more reliable people counting but are considerably more
complex. Belonging to this class, in [136] and [139],
the received LTE and Wi-Fi downlink control signals
are processed, respectively, to extract the changes of the
propagation channel induced by the presence of different
number of people: the related counting algorithms exhibit
variable levels of accuracy in different scenarios.

Finally, more sophisticated microwave SAR tomography
techniques [56], [140] can also be used, which provide specific
RF images from which more detailed crowd information
can be extracted, by using complex image classification
algorithms (i.e., count, distribution, and mobility). Modeling
issues induced by the intrinsic near-field scenario (e.g., typical
for bus/tram stops) could be overcome using specialized
algorithms [141].

In summary, excluding SAR-based techniques, device-
free RF sensing is a moderate-complexity crowd analysis
technique with low installation costs. Moreover, RF signals
can penetrate obstacles to a certain extent and are not affected
by weather/illumination. A moderate accuracy (around 80%
for RSSI-based techniques, up to 90% and larger for CSI-
based ones) can be expected in simple scenarios, but it is
questionable whether this approach can be scalable to large
crowds, especially in complex propagation scenarios [90].
Moreover, counting algorithms based on this approach usually
require a site-specific training phase, which complicates
practical installation and maintenance.

H. Device-Aided RF Sensing
In device-aided approaches for crowd analysis, users are

expected to carry RF devices, which must be switched
ON to enable people counting. Since modern smartphones
are ubiquitous and, moreover, are equipped with several
sensors and multiple RF interfaces, device-aided solutions are
commonly used to gather different types of information for
many different purposes and applications (see [90] for a recent
review).

1) RFID and NFC: RFID-based solutions require that the
passengers carry passive RFID tags, whose presence can
be detected by a reader. Oberli et al. [142] proposed
an APC system for bus vehicles employing commercial

1BLE is a low energy consumption version of Bluetooth standard, which
assures better communication performances with limited power consumption.

EPC Gen2 tags, which are recognized by a reader located
in correspondence of the bus gate. A similar short-
range communication system is near-field communication
(NFC) [143] technology, which is currently supported by
many modern smartphones and tablets. When a device with
NFC functionalities appears in the reader’s working range,
which can be placed at the station gates or at any other fixed
access point, it “wakes up” and sends a signal containing
encoded data. Finally, it should be observed that RFID and
NFC technologies are used in traditional and emerging AFC
systems for electronic ticketing, such as MIFARE contactless
cards or mobile-based payment systems [144], which can also
be employed for passenger counting. For these applications,
privacy is characterized by the ability of unauthorized users to
trace RFID and NFC devices using their responses to readers’
interrogations. Since RFID and NFC devices are typically not
tamper-resistant, an adversary can capture them and expose
their secret parameters.

2) Bluetooth: Bluetooth is a consolidated short-range RF
technology, supported by almost all smartphones on the
market: crowd monitoring algorithms using Bluetooth have
been proposed in several papers (see, e.g., [145] and references
therein). An algorithm based on off-the-shelf Bluetooth
hardware for counting bus passengers has been proposed
in [146] and tested in the city of Funchal, Portugal. The
system consists of a Bluetooth scanner mounted on the bus
ceiling, which periodically scans for discoverable Bluetooth
devices in its range and is aimed at discovering O–D relations
by postprocessing data and correlating them with information
related to bus location and tickets issued by fare machines.

Bluetooth can also represent an efficient solution for crowd
counting at bus/tram stops. A crowd analysis solution based
on BLE is proposed in [147], where a large population carries
BLE proximity tags, acting as beacons, whose presence is
sensed by smartphone carried by few volunteers. A reciprocal
solution can be used at bus stops, where BLE beacons are
installed at the bus stations and are detected by passenger
smartphones in close proximity to the stops.2

Compared to Wi-Fi-based sensing (discussed later), Blue-
tooth devices are cheaper, less power-hungry, and are charac-
terized by increased flexibility and simplified installation.

3) Wi-Fi: Many crowd analysis solutions exploit the
characteristics of the IEEE 802.11 (Wi-Fi) protocol, which
is widely used by passengers during their trips. The technique
adopted in [19] and [21] estimates the current number of
passengers in a bus by counting the number of probe requests,
i.e., medium access control (MAC) addresses, sent by Wi-Fi-
equipped devices in the vehicle. A similar approach is followed
in [149], where a derandomization mechanism is introduced to
counteract software randomization of MAC addresses, recently
introduced in many operating systems.

One of the problems inherent to the use of Wi-Fi-based
techniques for crowd counting inside vehicles is the ability
to distinguish between people outside the vehicle and actual
passengers. This issue was tackled in [19] and [21] by filtering

2This solution relies on the same technology introduced by Google and
Apple in the most recent versions of their smartphone operating systems and
is used by many national contact-tracing apps (e.g., Immuni for Italy [148]).
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the probes with a sliding window, aimed at removing MAC
addresses that were not detected over a longer period of
time. In addition, in [149], the received power is also used
to discriminate devices that are likely to be outside the bus.
The system in [19] and [21] was able to detect only around
20% of the passengers in a real setting since several users
may have turned off the Wi-Fi interface. Underestimation of
the number of passengers is a common problem for these
techniques, which can be compensated by proper calibration
of the procedure in each scenario of interest.

The main advantage of Wi-Fi-based techniques is that they
allow to track passengers also when they alight the bus,
allowing to estimate O–D flows. Wi-Fi-based counting can
also be employed in metro/railway stations since access points
are typically available in such scenarios.

4) Cellular: Similar to Wi-Fi, cellular signals, such as LTE
and 5G ones, can be used for device-aided crowd counting,
due to their ubiquitous availability and good penetration in
indoor environments. Cellular signals could be available in
areas where Wi-Fi coverage is not present, such as bus/tram
stops, remote, and small railways/metro stations. A cellular-
based crowd density estimation method is proposed in [150],
which measures the signal strength emitted in uplink by
the smartphones of the crowd components and classifies the
crowd density in different levels using DL techniques, with an
accuracy of 78% when three levels are considered.

In principle, the position of users in a cellular network
can be obtained with satisfactory precision by combining
knowledge of the serving base station, RSSI values, and
triangulation principles [151], which can be at the basis
for large-scale crowd analysis. However, this approach is
difficult to be used in real time, whereas it is more suited
for long-term travel demand estimation [152]. Real-time
passenger counting using cellular data is rarely performed,
due to several drawbacks: 1) it requires gathering data from
different mobile operators; 2) it raises significant privacy
concerns; 3) it does not allow one to precisely discriminate
passengers from general public in open areas. A breakthrough
could be the planned introduction in 5G systems of the
millimeter-wave (MMW) band, which will require very small
cells: from the viewpoint of crowd analysis, the placement
of small cells allows one to more precisely monitor spatially
limited areas, such as bus/tram stops.

I. Discussion
In this section, we provide a discussion regarding the

applications of the abovementioned sensing techniques in the
different transportation scenarios.3

1) Trains/Buses/Trams: Such vehicular scenarios are charac-
terized by a well-delimited indoor space with a limited number
of accesses (gates). Traditional APC systems [4], [37], [149]
count the number of passengers inside vehicles on the basis
of various onboard sensors, mainly IR or pressure-sensitive
ones. The number of passengers can also be estimated by
the number of validated/issued tickets, as in AFC systems,

3For a review and discussion of some industrial solutions employing some
of these technologies for people counting in PT systems, see [90].

which, however, requires user cooperation and can provide
underestimated results in the case of diffuse fare evasion.

Although solutions based on sensors installed on the
vehicles are simple, they require a large initial investment.
Therefore, the diffusion of portable and mobile devices
between passengers has pushed many researchers to study
solutions based on RF techniques (both device-aided and
device-free). Summarizing, as also indicated in Table III, even
though more sophisticated VB/NVB sensing technologies may
be used as well, their usage is not expected to lead to
significant innovations in this scenario, compared to traditional
solutions adopted in commercial APC systems.

2) Railway/Metro Stations: Many crowd monitoring options
are available in this scenario since the access to the stations
occurs through a limited number of gates. Moreover, CCTV
surveillance systems are typically present inside stations
and can be used for VB crowd analysis. The access to
train platforms is usually governed by turnstiles where
tickets/passes must necessarily be validated: thus, IR-based
APC or AFC systems could be a reasonable option to count
passengers in this scenario. However, this solution only counts
people trying to access the platforms, disregarding other
people which could walk inside the station for different
purposes (e.g., for shopping or leisure). RF-based techniques
could suffer from coverage problems, especially within
metro/subway stations.

3) Bus/Tram Stops: This scenario is by far the most difficult
to manage since bus/tram stops are usually located in outdoor
spaces, not well delimited by fixed gates. In this case, both
VB and NVB sensing technologies can be used, but it is
imperative to adopt cost-effective, rugged, and low-power
solutions, in order to reduce the maintenance cost. Moreover,
solutions that do not require significant infrastructures are
preferred since, in many cases, the stops are not equipped
with shelters and are indicated by simple poles.

VI. MAIN INNOVATIONS AND ADVANTAGES

The crowd management functionalities of the new frame-
work can provide several innovations and advantages that are
not present in state-of-the-art ITSs.

A. Proactive Control of Station Access
In railway/metro applications, based on the knowledge of

the number of passengers aboard the arriving trains and the
prediction of those alighting at the station, it will be possible to
predict the number of accesses to stations/platforms with a low
error margin and in real time, so as to avoid crowding. This
number can be communicated to the users (by displays at the
station gates or by the mobile transport apps) and can be used
by the security operators to filter passengers at the turnstiles.
Priority policies can be envisioned, such as considering the
time already spent in queue or the trip motivations (e.g.,
a priority could be assured to health workers, disabled or elder
users, law enforcement operators, and teachers/students).

B. Vehicle Access Reservation
In bus/tram trips, a vehicle access reservation system can be

implemented. A sensor at the bus/tram stop detects the user
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TABLE IV
MAIN ADVANTAGES RELATED TO ADOPTION OF CROWD MANAGEMENT IN PT SYSTEMS

presence and exchanges information with his/her device (i.e.,
the smartphone), so as to grant him/her the access to board
the first arriving vehicle (a virtual queuing system) or putting
him/her in an overbooking list (with priority) to allow him/her
to board the next one. The application can generate an e-ticket
with the access grant (e.g., a QR code) that can be validated
on board at the ticket machine.

C. Crowding Information Dissemination
Users receive real-time information related to available

capacity (in terms of number of seats or in percentage)
of the bus/trams/trains in arrival and/or crowding at the
stops/stations, so as to avoid unnecessary waiting or crowding
and possibly reschedule their trips. Such RTCI can be provided
by means of displays installed in correspondence of the stops
or at the entrance of the stations, or by messages/alerts issued
by mobile transport apps.

D. Crowd-Based Route Planning
Users can plan their trips on the mobile transport app,

by considering not only geographical information and traveling
times (static data) but also traffic and crowding information
about vehicles and stops/stations during the trip (dynamic
data). The app may not necessarily suggest the shortest
route, but the least crowded one, considering also crowding
levels measured during the trip. Such a feature not only
helps reduce crowds (and the consequent infection risk in the
case of a pandemic) but also improves the passenger QoE,
by distributing more efficiently the load on the transportation
network.

E. Crowd-Aware Real-Time Control
Some of the typical functions of PT planning and operations

can benefit from the availability of new crowd information.

At the strategic and tactical levels, average long-term crowding
data can be used to plan the services. At the real time and
operational level, critical situations (service disruptions and
unusual crowding) or even random spatiotemporal demand
variations can be tackled by implementing crowd-aware
rescheduling solutions, such as holding, stop skipping,
or similar ones, which can be communicated to the drivers
and staff in real time, as well as to the passengers via displays
and/or alerts.

The main advantages of the crowd management framework
are summarized in Table IV. Compared to static methods,
like traditional survey-based compilation of O–D matrix flows,
more efficient planning and real-time control of the operation
of the PT system is allowed. The large amount of generated
data can be used by AI and ML/DL algorithms to better
understand and plan a series of aspects generally associated
with improvements of the quality of life in urban areas and
smart cities.

Compared to the other anti-COVID-19 solutions discussed
in Section II, the new framework is not aimed at enforcing
social distancing measures only. Its scope is wider since
it tries to incorporate crowding information to adaptively
optimize the overall performance of the PT system. As a by-
product, it also allows to partially recover the drawbacks and
inefficiencies of PT systems due to the adoption of rigid social
distancing measures during both pandemic and post-pandemic
phases.

VII. MAIN CHALLENGES

In this section, in relation to the proposed reference
architecture, we enlighten some of the main challenges to
be addressed for the introduction of crowd management
functionalities in existing or forthcoming ITS systems. The
impact of such challenges on the subsystems of the introduced
reference architecture is summarized in Table V.
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TABLE V
COLORTABLE SHOWING THE IMPACT OF THE MAIN CHALLENGES ON

THE SUBSYSTEMS OF THE INTRODUCED REFERENCE ARCHITECTURE:
THE INTENSITY OF THE COLOR VARIES FROM DARKER (MAPPING A

HIGHER IMPACT) TO LIGHTER (MAPPING A LOWER IMPACT)

A. Cooperative Sensing
In NVB cooperative sensing approaches, a large number

of users must be engaged to obtain significant amounts
of data. Several works [153], [154] have proposed to
introduce incentive mechanisms aimed at stimulating user
motivation and encouraging participation. A common solution
is to let participants earn credits in exchange of their
data. However, such a strategy might present some privacy
risks, by exposing sensitive data and linking them to
users’ identities. Several efforts have been made to propose
privacy-preserving cooperative sensing approaches (based,
e.g., on data anonymization, randomization, and aggregation).
An interesting solution is discussed in [155], where a
rewarding platform based on a voucher exchange system is
proposed, which decouples mobile crowd-sensing instruments
from participation incentives. Each voucher is produced as
compensation for user’s participation, and it is designed to
be fully anonymous and not exclusive.

B. Security
As an ICT-based evolution of the state-of-the-art ITSs,

the proposed reference architecture strictly relies on ICT
infrastructures too, i.e., most of the functions accomplished
by the MPCSS subsystem could be implemented using
modern cloud technologies. Since every ICT infrastructure
can be prone to well-known cyberattacks, security issues are
particularly serious in all portions of our reference architecture,
mainly due to the large volume of data exchanged among
subsystems. A malicious user, for example, could launch
a man-in-the-middle attack to the system, by intercepting
and altering the content of the exchanged messages between
crowd monitoring tools and vehicles, which could entail
catastrophic effects in the decision-making phase, especially
when self-driving vehicles are involved. Furthermore, denial-
of-service attacks could be used to saturate the resources of
the infrastructure to completely interrupt the decision-making
process.

Security issues related to the IoT paradigm are well known
in the literature, but there are some aspects peculiar to

ITSs [156]. In particular, one of the most limiting factors
is represented by the scarce computational resources of
many sensing devices used in ITSs, which may render
the commonly used countermeasures (i.e., cryptography
and authentication schemes) infeasible for providing secure
communications. The proposed architecture, indeed, is based
on a plethora of heterogeneous sensors and devices, which are
required to be inexpensive, low energy, and, in some cases,
have small form factor. However, energy-constrained sensors
are resource-limited in terms of memory, computational
capabilities, and communication range. Such constraints
greatly limit the use of complex algorithms, useful even
to guarantee security and privacy. Therefore, it becomes
paramount to adopt energy-aware solutions to prolong the
lifetime of the sensing subsystem. In this sense, a promising
solution can be ambient backscattering [157], where small
passive devices are able to transmit data by reflecting
electromagnetic waves transmitted by existing RF transmitters.

C. Data Fusion
The availability of large amounts of data acquired by

heterogeneous sensors can pose a challenging problem for
crowd monitoring, prediction, and control tools. In the
proposed architecture, indeed, the MPCSS subsystem must
analyze in real time a large amount of multisource and
multimodal data, which are characterized by different levels of
resolution, accuracy, reliability, and redundancy. Various DF
algorithms, aimed at associating, correlating, and combining
information from multiple sensors, are commonly adopted
to provide accurate and timely decision-making support.
Among the commonly adopted approaches (i.e., statistical,
probabilistic, and data-driven ones [58]), probabilistic-based
methods seem to be more suitable in our scenario. In par-
ticular, Bayesian approaches, maximum likelihood methods,
and Kalman filter-based DF techniques can be utilized for
multisensor DF [158].

D. Privacy
Privacy is one of the major issues related to sensing

technologies for crowd management. In what follows, VB and
NVB techniques are discussed separately since they involve
different privacy concerns that can be overcome by resorting
to radically different technical solutions.

VB solutions must be designed to implement data protection
principles, collectively referred to as privacy-by-design, set
out in international data privacy laws. For crowd counting
and crowd density estimation, identification is not necessary.
Therefore, for such applications, privacy-by-design can be
achieved by suitably choosing resolution and other modifiable
factors of VB devices to ensure that no recognizable facial
images are captured. In addition to privacy-by-design, some
data privacy laws also mandate privacy-by-default. Under
such an obligation, personal data collected through VB
approaches must be used only for the specific purpose of
crowd management. This means that the minimum required
amount of personal data should be collected, their processing
should be minimized, and their storage and accessibility
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should be controlled. A viable approach to ensure privacy-by-
default consists of turning VB feeds featuring individuals into
numbers and heatmaps in such a manner that the data subject is
not or no longer identifiable. Within the European Community,
such countermeasures allow VB solutions to comply with the
GDPR, which is one of the most restrictive legislations in the
world in terms of safeguarding citizens’ privacy.

Regarding NVB solutions, sensing solutions based on
mobile RF devices pose important privacy issues, especially
for device-aided crowd monitoring. Apart from the issues
regarding participatory sensing, which have been discussed
previously, many device-aided RF-based NVB techniques
basically perform monitoring of over-the-air beacon signals
sent by individuals’ smartphones when they connect to a
network or install an application. In this case, to extract
relevant features for crowding information, processing of
devices’ IDs is required, e.g., MAC addresses in Wi-Fi
networks. Most RFID tags emit unique identifiers when they
respond to reader interrogation, even tags that protect data
with cryptographic algorithm [159]. A similar problem arises
for Bluetooth-enabled wireless devices [160], as well as for
the NFC protocol that is based on the transfer of an ID
for anticollision during the process of contactless reading
of transponders [161]. Although cryptographic techniques
can be used to transform ID data to preserve privacy,
thereby complying with the GDPR, they are computationally
intensive and require the generation and maintenance of
multiple keys, which also leads to higher energy consumption.
Alternatively, devices’ IDs can be aggregated or perturbed
in such a way that individual data privacy is preserved,
but, at the same time, useful information for crowding
management is not destroyed. In the case of Wi-Fi
networks, a viable solution is represented by MAC address
randomization [162], which is an available option in different
operating systems, such as iOS, Android, and Windows.
However, although it is compliant with the GDPR, some crowd
counting methods are adversely affected by MAC address
randomization.

A cutting-edge future research direction might be exploiting
the mathematical concept of differential privacy [163], which
addresses the challenging goal of learning nothing about
an individual while learning useful information about a
population. This is in accordance with existing data protection
laws, including the GDPR. However, the feasibility of applying
differential privacy approaches to crowd management remains
an open topic of research. Device-free NVB solutions, both
based on RF or other physical properties (such as audio
or ultrasound signals), are less harmful to an individual’s
privacy since they do not require processing of devices’
IDs and, thus, according to the GDPR, they do not collect
personally identifiable information that could potentially be
used to identify a particular person during people counting
activities. This pushes toward emerging NVB techniques
using reflected-power approaches [164], also referred to as
passive NVB solutions, which reuse existing over-the-air
signals to count people or estimate their flow, by viewing
the signals as power carriers rather than information
ones.

E. Communications
A constant stream of up-to-the-minute data can help PT

system operators stay one step ahead of crowd situations.
However, with limited budgets and compressed time frames,
implementing a state-of-the-art CSS can present fundamental
challenges. There are three basic challenges regarding ITSs
based on acquisition and processing of large amounts of
sensor data: bandwidth, latency, and heterogeneity of data and
infrastructures.

A first critical issue is represented by the significant
bandwidth demand to connect thousands of devices and
support hundreds of real-time video feeds, along with data
gathered from ubiquitous sensors. A potential approach to
fulfill such a bandwidth demand is offered by the unlicensed
band technology, which has attracted significant effort during
the last decade. In particular, the new radio unlicensed (NR-U)
technology appears to be particularly suited for ITS
applications [165] since it considers multiple bands and
other deployment scenarios, such as dual connectivity and
standalone operation in unlicensed bands.

In addition to bandwidth, since some crowd management
decisions are time-sensitive in nature, latency is another key
performance indicator of the CSS. Cloud computing at the
edge of the network [166], namely, close to railway/metro
stations, bus stops, and ITS sensors, can provide a solution
for satisfying latency and bandwidth constraints, thus avoiding
unacceptable upload delays as well as energy consumption
of IoT sensors. In those scenarios, when there is no edge
server nearby that can offload the tasks, employing UAVs is a
promising solution by serving as computing-communications
edge server for resource-constrained IoT devices [167]. One
can imagine a hybrid communication architecture for future
ITSs where edge nodes locally process the time-critical raw
sensed data, while non-time-sensitive data are transmitted to
the cloud.

From a communication viewpoint, an ITS is a hetero-
geneous network, where a huge number of devices are
connected to global networks using multiple technologies
and platforms (i.e., cloud, edge, and wireless), with various
intelligence levels. Traditionally, communication between
different wireless technologies is achieved indirectly via
gateways equipped with multiple radio interfaces, which will
become a bottleneck when many heterogeneous IoT devices
are deployed. Cross-technology communication (CTC) opens
a new direction of direct communication among different
wireless technologies when they operate in the same spectrum
band [168]. These technologies are purely a software-based
solution, requiring no hardware modification.

F. Crowd Control
A significant research effort is studying how to optimally

employ (possible heterogeneous) crowding data to optimize
(at the various levels) the PT system behavior. Suitable
performance metrics must be defined, as well as optimiza-
tion methodologies, especially when applied to large-scale
complex PT networks involving thousands of vehicles and
stations/stops. Indeed, in many papers, crowd control strategies
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are localized, i.e., they are applied only to single lines
or to a small portion of the network, whereas obviously
crowd control must be applied holistically to the whole
PT network. As an example, stop skipping can solve the
problem of single-vehicle overcrowding but can negatively
affect crowding at the stops or metro platforms. To perform
complex system-wide optimization, it seems difficult to
apply model-based approaches. Thus, the preferred choice
should be resorting to techniques such as data mining, AI,
or ML/DL, along the vision of data-driven PT systems [169].
An interesting issue is to assess the impact of inaccurate
crowd monitoring/prediction measurements due to sensing on
optimization strategies, in order to devise robust techniques.
Another interesting development is how to incorporate
crowding data in existing simulation tools for transportation
planning, such as BusMezzo [76] or SUMO [77].

VIII. CONCLUSION AND DIRECTIONS

FOR FUTURE WORK

A clean, smart, and resilient PT system is at the core of
worldwide economies and is central to people’s lives: this is
why there have been an increased number of research articles
that discuss the feasibility of integrating ICT/IoT sensing
solutions in ITSs. In this article, we have reviewed the main
ICT/IoT sensing technologies for crowd analysis, showing also
how they can be adopted in a reference architecture aimed at
introducing innovative crowd management functionalities in
legacy ITS systems. The new framework is based on some
basic components and subsystems, which can be used as
building blocks to implement an evolved ITS, capable of
real-time monitoring and predicting crowd situations, as well
as disseminating useful information to users at the bus
stops/stations and/or through mobile transport apps. A series
of challenges arises from the proposed reference architecture,
such as incentive mechanisms for user cooperation, DF and
processing of heterogeneous data, security, privacy, broadband
and ultralow latency communications, and system-wide
optimization of crowd control strategies.

Some features of the new framework are similar to those
of a contact tracing system, which can be implemented more
easily by resorting to user cooperation. In this sense, the
crowd detection functionalities can be incorporated in a more
complex system, which can implement, besides the typical
mobile transport app functionalities (such as Moovit), also
the possibility to buy tickets and/or to reserve the access to
the vehicles, in conditions of particular crowding. This could
represent a decisive incentive to the use of a PT system.
However, the more appropriate crowd monitoring solution
must be singled out case-by-case, in dependence on the
scenario, the ICT infrastructure owned or leased by the PT
operator, the socioeconomic context, and the cost–benefit ratio.
The potentials of crowd management go beyond the scope
of dealing with typical social distancing problems, by also
allowing real-time optimization and adaptive management of
PT systems.

Finally, the study of the open literature makes it clear that
an in-depth performance analysis of the sensing techniques
for PT systems reported in Table III has not yet been

carried out in each considered scenario. Therefore, the
first interesting research development consists of performing
a comparative statistical performance evaluation (numerical
and/or experimental) of such sensing techniques for each
outlined indoor/outdoor scenarios. An additional research issue
is to carry out a performance analysis of the DF algorithms
for associating, correlating, and combining information from
different sensors, whose accuracy is crucial to provide effective
actions.
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