40th Annual IEEE Conference on Local Computer Networks

LCN 2015, Clearwater Beach, Florida, USA

The (In)Security of Topology Discovery in
Software Defined Networks

Talal Alharbi
School of ITEE
The University of Queensland
Brisbane, Australia
Email:t.alharbi @uq.edu.au

Abstract—Topology Discovery is an essential service in Soft-
ware Defined Networks (SDN). Most SDN controllers use a de-
facto standard topology discovery mechanism based on OpenFlow
to identify active links in the network. This paper discusses the
security, or rather lack thereof, of the current SDN topology
discovery mechanism, and its vulnerability to link spoofing
attacks. The feasibility and impact of the attacks are verified and
demonstrated via experiments. The paper presents and evaluates
a countermeasure based on HMAC authentication.

Keywords—SDN, Security, Topology Discovery

I. INTRODUCTION

An essential service in Software Defined Networking
(SDN) [1] is topology discovery, which underpins higher level
applications and services such as routing and forwarding.
While there is no official standard for a SDN topology
discovery mechanism, there is a de-facto standard, which is
sometimes informally referred to as Open Flow Discovery
Protocol (OFDP) [2], [3]. All major OpenFlow-based SDN
controllers implement it in essentially the same way, most
likely due to the fact that it has been adopted from NOX,
the original SDN controller [4]. The problem with OFDP is
that it is insecure, as is demonstrated in this paper. We show
how an attacker can poison the topology view of the SDN
controller and create spoofed links by crafting special control
packets and injecting them into the network via one or more
compromised hosts. We further demonstrate and evaluate the
impact of the link spoofing attack on higher layer services,
using shortest path routing as an example. A key contribution
of the paper is the discussion and evaluation of a simple and
effective countermeasure.

II. BACKGROUND - OPENFLOW AND OFDP

OpenFlow [5] is the predominant southbound interface
protocol for SDN. It is a wire protocol that allows the SDN
controller to configure switches, i.e. via the installation of
packet forwarding rules. The protocol also allows switches to
notify the controller about special events, e.g. the receipt of a
packet that does not match any installed rules. At the time of
writing this paper, the latest edition of the OpenFlow standard
is version 1.5 [S]. However, the following discussion of the
topology discovery method and its security is version agnostic
and relevant to all versions of OpenFlow.

978-1-4673-6770-7/15/$31.00 ©2015 |IEEE 502

Marius Portmann
School of ITEE
The University of Queensland
Brisbane, Australia
Email: marius @ieee.org

Farzaneh Pakzad
School of ITEE
The University of Queensland
Brisbane, Australia
Email:farzaneh.pakzad @ugq.net.au

Time

Ether- | Chassis [Port End of | Frame
Preamble “Iz;tc l;lr:c type: ID D Ise '(I?I.'\,I‘s LLDPDU | check
0x88CC| TLV TV v TV seq.

Fig. 1. LLDP Frame Structure

As part of the initial OpenFlow protocol handshake be-
tween the switches and the controller, the controller learns
about the existence of switches and their key properties, i.e.
their ports, MAC addresses, etc. As mentioned above, Open-
Flow allows controllers to access and configure the forwarding
rules (flow tables) in SDN switches, and these rules provide
fine grained control over how packets are forwarded through
the network. OpenFlow switches support a basic match-action
paradigm, where each incoming packet is matched against
a set of rules, and the corresponding action or action list
is executed. The supported match fields include the switch
ingress port and various packet header fields, such as IP source
and destination address, MAC source and destination address,
etc. One of the main actions supported by an OpenFlow switch
is forwarding a packet on a particular switch port, which can
be either be physical ports, or can also be one of the following
virtual port types: ALL (sends packet out on all physical ports),
CONTROLLER (sends packet to the SDN controller), FLOOD
(same as ALL, but excluding the ingress port).

To send a data packet to the controller, an SDN switch
encapsulates the packet in an OpenFlow Packet-In message.
OpenFlow also supports a Packet-Out message, via which
the controller can send a data packet to a switch, together
with instructions (action list) on how to forward it. Both
OpenFlow Packet-In and Packet-Out messages are essential for
the topology discovery mechanism discussed in the following.

Topology discovery is an essential service in SDN and
it underpins many higher layer services. When we refer to
topology discovery, we actually mean link discovery, since
the controller learns about the existence of network nodes
(switches) during the OpenFlow handshake.

As mentioned above, OFDP (OpenFlow Discovery Proto-
col) [2], [3] is the de-facto standard for topology discovery in
SDN, and is implemented by most SDN controller platforms.
OFDP uses the frame format defined in the Link Layer Dis-
covery Protocol (LLDP) (shown in Figure 1) [6], designed for
link and neighbour discovery in Ethernet networks. However,
with the exception of the frame format, OFDP has not much

Packet-Out Packet-In

with LLDP pkt SDN with LLDP pkt
/ Controller \
/ LLDP pkt:
LLDP pkt:
Chassis 1D = S1
8 st 2 B
P3 . o1 o3 o
LLDP pkt:
PortID=P

Fig. 2. Basic OFDP Example Scenario

in common with LLDP. The LLDP payload is encapsulated
in an Ethernet frame with the EtherType field set to 0x88CC.
The frame contains an LLDP Data Unit (LLDPDU) (shaded
in grey in Figure 1), which has a number of type-length-value
(TLV) fields. The mandatory TLVs include Chassis ID, which
is a unique switch identifier, Port ID, a port identifier, and a
Time to live field. These TLVs can be followed by a number
of optional TLVs, and an End of LLDPDU TLV.

In SDN, link discovery is initiated by the controller. A basic
example scenario is shown in Figure 2. The SDN controller
creates a dedicated LLDP packet for each port on each switch.
All these LLDP packets have their Chassis ID and Port
ID TLVs initialised accordingly. The controller then uses a
separate OpenFlow Packet-Out message to send each of the
LLDP packets to the switch, S/ in this case. Every Packet-Out
message also includes an action, which instructs the switch to
forward the packet via the corresponding port.

Switches are pre-configured with a rule which states that
any received LLDP packets are to be sent to the controller via
an OpenFlow Packet-In message. As an example, we consider
the LLDP packet which is sent out on port P/ on switch S/
and is received by switch S2 via port P3 in Figure 2. Switch
S2 sends the LLDP packet to the controller in a Packet-In
message, which also contains additional meta data, such as
the ingress port where the packet was received (P3), as well
as the Chassis ID of the switch sending the Packet-In message,
which is S2 in this case. This information, combined with
information about the origin switch and port, contained in the
payload of the LLDP packet (Chassis ID and Port ID TLVs)
can be used by the controller to infer the existence of a link
between (SI, P1) and (S2, P3). This process is repeated for
every switch in the network, i.e. the controller sends a separate
Packet-Out message with a dedicated LLDP packet for each
port of each switch, allowing it to discover all available links
in the network. !

III. OFDP LINK SPOOFING - BASIC VULNERABILITY

The basic security problem with OFDP is that there is no
authentication of LLDP control messages. Any LLDP packet
received by the controller is accepted and link information
contained in it is used to update the controller’s topology
view. As a result, it is relatively easy for an attacker to
inject fabricated LLDP control messages into the network,
thereby corrupting the topology information of the controller.
We illustrate this via the example shown in Figure 3. Here,

'We have shown in [2] how the efficiency of this can be greatly improved.

503

SDN
Controller

Fig. 3. Basic Attack Scenario

we assume that host 4/ has been compromised by an attacker,
who aims to create a fake link between switches S/ and S3.

The attack can be broken down into the following steps:

1) Host Al injects an LLDP packet via port P/ on
switch S/, where hl is attached. The injected packet
follows the structure shown in Figure 1, but with the
Chassis ID TLV set to S3, and the Port ID set to P1.

2) Switch SI receives the LLDP packet from A/ and
forwards it to the controller in a Packet-In message.
Switch S7 adds information to the Packet-In message,
i.e. its own Chassis ID and the Port ID of the ingress
port via which the LLDP packet was received at
switch S1, i.e. (S1, PI) in our scenario.

3) The controller receives the Packet-In message and
identifies the source of the LLDP packet from the
TLVs in the payload as (S3, PI). The information
about the other end of the link is taken from the meta-
data of the Packet-In message, and is identified as (S1,
P1). Hence, the controller concludes (wrongly) that
there exists a link between (S3, PI) and (S1, PI).

In order to validate the feasibility of the link spoofing
attack experimentally, we used Mininet [7], a Linux based
network emulator which allows the creation of a network of
virtual SDN switches and hosts, connected via virtual links. We
used Open vSwitch [8], a software OpenFlow switch which is
supported in Mininet. We used the POX controller platform
and its implementation of OFDP, i.e. the openflow.discovery
component. In order to craft the special LLDP packet for the
attack, we wrote a packet generator in Python, based on the
Scapy library [9]. The experiments were run on a PC with a
3 GHz Intel Core 2 Duo CPU with 4 GB of RAM, running
Ubuntu Linux with kernel version 3.13.0.

Figure 4 shows the debug output of the POX controller. We
see that our three switches have connected to the controller,
with Chassis ID of 00-00-00-00-00-01 for switch SI, 00-00-
00-00-00-02 for switch S2 and 00-00-00-00-00-03 for switch
S3. This debug output is generated by the main POX compo-
nent. The last 5 lines are from the POX openflow.discovery
component which implements OFDP. Each of these lines
indicates the detection of a unidirectional link, caused by the
reception of a corresponding LLDP packet at the controller.
The first 4 of the 5 lines show the detection of the bidirectional
links between (SI, P2) and (S2, P2), as well as between
(S3, PI) and (S1, PI). The key part is the last line, which
appears after we run the attack by injecting the fabricated

root@mininet-vm:~/pox# ./pox.py openflow.discovery

POX ©.3.0 (dart) / Copyright 2011-2014 James McCauley, et al.

INFO:core:POX 0.3.0 (dart) is up.

INFO:openflow.of_01:[00-00-00-00-00-01 2] connected
INFO:openflow.of_01:[00-00-00-00-00-02 1] connected
INFO:openflow.of_01:[00-00-00-00-00-03 3] connected

INFO:openflow.discovery:link detected: ©0-00-00-00-00-01.2 -> 00-00-00-00-00-02.2
INFO:openflow.discovery:link detected: 00-00-00-00-00-02.3 -> 00-00-00-00-00-03.2
INFO:openflow.discovery:link detected: 00-00-00-00-00-02.2 -> 00-00-00-00-00-01.2
INFO:openflow.discovery:1link detected: 00-00-00-00-00-03.2 -> 00-00-00-00-00-02.3
INFO:openflow.discovery:link detected: 00-00-00-00-00-03.1 -> 00-00-00-00-00-01.1

Fig. 4. POX Debug Information

LLDP packet from host i/ to switch S/. The line indicates that
a non-existent link from (S3, P1) to (S1, P1) is detected by the
controller, and hence the link spoofing attack was successful.

It is important to note that the attacker can spoof the
origin of the link (switch and port) arbitrarily, simply by
setting the relevant LLDP TLVs accordingly. However, the link
destination information is added as meta data to the Packet-In
message by the ingress switch, and hence cannot be changed
by the attacker. For our example, this means that the spoofed
links that 4/ can create are limited to the set of unidirectional
links terminating at port P/ on switch S/. If an attacker wants
to create a spoofed bidirectional link, say from S/ to S3 in
our example, he/she needs to control both i/ and h3, as we
will discuss later. We also performed the above attack using
the Ryu SDN controller, with identical results.

IV. IMPACT ON ROUTING

Routing is a key network application that relies on the
controller having an up to date and accurate topology view.
Here, we demonstrate and discuss the impact of the link
spoofing attack on routing. We consider the simple linear
topology shwon in Figure 5. As before, we assume host Al
is the attacker, which in this case injects a fabricated LLDP
packet with the aim of creating a false (unidirectional) link
between (S5, PI) and (S, PI). This spoofed link is shown
as a dashed line in Figure 5. As described earlier, the attacker
simply needs to set the Chassis ID to S5, and the Port ID TLV
to P1 in the fabricated LLDP packet for this attack. We created
this topology in Mininet, and used the layer 2 shortest path
routing component in POX (I2_multi.py) for our experiment.

Prior to launching the attack we verified that there is
connectivity among all host pairs using ping. After launching
the attack from host 47, which injected the fabricated LLDP
packet, we verified that the topology discovery service had
indeed detected a link from (S5, PI) to (SI, PI). Since the
routing POX component [2_multi.py only considers bidirec-
tional links, the above attack has no immediate impact on
connectivity. In this case, for the attacker to be able to disrupt
network connectivity, he/she needs to spoof a bidirectional
link. In order to achieve this, an attacker needs to have control
over two hosts, since only one end point of the spoofed link,
i.e. the source, can be chosen by the attacking host.

In this new attack scenario, we assume the attacker controls
hosts 1 and h5. As in the previous case, 4l injects an LLDP
packet with the Chassis ID and Port ID set to S5 and P,
creating the unidirectional link from (S5, P1) to (SI, P1). In
addition, A5 injects an LLDP packet with the source set to
(S1, PI), creating the link in the reverse direction. We ran
the pairwise ping test again, and now we observed that the

504

SDN
Controller

Fig. 5. Linear Topology for Routing Experiment

attack on connectivity had been successful. We see that all host
pairs which are connected via a shortest path that includes the
spoofed link (S7-S5), are disconnected. In this basic scenario,
connectivity of almost 30% of all the paths is disrupted by the
creation of a single spoofed link. We have verified this for a
range of other topologies, but are unable to present the detailed
results due to lack of space.

V. COUNTERMEASURE

As mentioned above, a key problem of OFDP is the lack
of any authentication of LLDP packets. We propose to address
this by adding a cryptographic Message Authentication Code
(MAC) to each LLDP packet, providing both authentication
and packet integrity. We have implemented this mechanism in
POX using HMAC, a keyed-hash based message authentication
code [10]. The MAC is computed as follows:

HMAC(K,m) = h((K & opad)|h((K @ ipad)|m))

K is the secret key, and m is the message over which the
HMAC is calculated. In our case, m consists of the relevant
LLDP TLVs, ie. the Chassis ID and the Port ID. h() is
a cryptographic hash function, ‘|’ denotes concatenation and
‘@’ denotes the XOR operation. opad and ipad are constant
padding values [10].

It is important to note that the basic HMAC is vulnerable
to replay attacks, which we can demonstrate for the scenario
shown in Figure 3. The attack requires control over two hosts,
e.g. hosts il and h3. As part of the normal OFDP protocol,
host 4l will receive LLDP packets with Chassis ID set to S1
and Port ID set to PI. Here, we assume the LLDP packet
is secured with a HMAC, computed over the relevant LLDP
TLVs, using the secret key K. Host i/ can then send this
LLDP packet to its colluding partner host 43 via an out-of-
band channel. A3 then injects the packet to switch S3 via port
P1I. Since the packet has a valid MAC, the controller accepts
it, and a spoofed link from (S1, PI) to (S3, PI) is successfully
created. The reverse link can be created in the same way. We
have implemented this attack and verified its feasibility.

The traditional approach to prevent replay attacks in
HMAC is via the use of a unique message identifier (or nonce)
to ensure that each HMAC value is unique. This message
identifier needs to be sent as cleartext to the receiver as part of
the message, causing additional overhead. We therefore use an
alternative approach. We replace the static secret key K with a
dynamic value K ;, which is randomly chosen for every single
LLDP packet i, in every topology discovery round j. The best
chance for an attacker to compute a valid MAC and launch
a successful link spoofing attack, is via guessing the correct

700

OFDP =23
OFDP.HMAC
600

500

400

300

200

Cumulative Discovery CPU Time (ms)

100

Fig. 6. Computational Overhead of HMAC in OFDP

value of the random numbers K ;. This is virtually impossible
if we generate K;; with sufficient entropy. In addition, any
wrong guess by an attacker is detected by the controller.

In order to verify the authenticity of a received LLDP
packet and compute its HMAC value, the controller needs to
know the corresponding value of K ;. This is achieved via the
controller keeping track of the key used for each packet. The
combination of Chassis ID and Port ID provides the necessary
identifier. We used MDS5 as our hash functions. While MD5
has been shown to be vulnerable to a range of collision attacks,
it can still be considered sufficiently secure in the context
of HMAC [10], since HMAC does not rely on the collision
resistance property [11].

We have implemented this HMAC based mechanism in the
topology discovery component in POX. To accommodate the
MAC, we defined a new, optional TLV in the LLDP packet.
We have conducted extensive tests and have verified that OFDP
with the added HMAC (OFDP_HMAC) is indeed able to detect
the injection of any fabricated LLDP packets from an attacker.

We have evaluated the computational overhead on the
controller caused by this mechanism. For this, we used a
21 node tree topology in Mininet, with fan-out 4 and depth
2, and ran both the original POX OFDP mechanism and
OFDP_HMAC. Figure 6 shows the total cumulative controller
CPU time over a period of 300 seconds. A topology discovery
round was initiated every 5 seconds, which is the default value
in POX. The experiment was run 20 times and the figure shows
the mean and the 95% confidence interval. In relative terms,
the overhead of HMAC adds an extra 8% in CPU load, to the
low computational cost of the topology discovery mechanism.
We believe this is an acceptable cost for the increased level of
security.

VI. RELATED WORKS

There have been a number of works that address various
security aspects of SDN. However, only very few recent
papers have addressed the security of topology discovery.
The paper [12] discusses a range of attacks against SDN,
and proposes SPHINX, a generic SDN attack alert system,
which compares network behaviour with predefined or learned
‘normal’ behaviour, defined as policies. The paper also men-
tions the possibility of attacks against topology discovery via
spoofing of LLDP packets, as discussed in our paper. The
paper does not address the specific technical details of the

505

attack, nor does it explore the impact of the attack on network
connectivity. In [13], the authors also discuss a range of attacks
against SDNs, including ARP spoofing attacks as well as link
spoofing attacks. Due to the wide scope of the paper, it does
not specifically consider and evaluate the impact of the link
spoofing attack on routing and hence network connectivity,
as we have done in our paper. The authors of [13] also
discuss potential countermeasures against the link spoofing
attack, and also suggest a HMAC based packet authentication
mechanism. However, their proposed method uses a static
secret key, without a nonce, for the computation of the HMAC,
and is therefore vulnerable to replay attacks, as discussed in
the previous section.

VII. CONCLUSIONS

Topology discovery is an essential service in SDN. In this
paper, we have discussed OFDP, the current de-facto standard
of topology discovery in SDN, implemented by most SDN
controller platforms. We have discussed and demonstrated the
vulnerability of OFDP to link spoofing attacks, which only
require an attacker to have control over one or more hosts
(physical or virtual) in the network. We have demonstrated the
feasibility of the attack and its impact on network connectivity,
using the example of routing. Finally, we discussed and
evaluated a potential countermeasure based on authentication
of LLDP control messages using HMAC.

ACKNOWLEDGMENT

This work is supported by Majmaah University through the
Saudi Arabian Culture Mission in Australia.

REFERENCES

[11 N. Feamster, J. Rexford, and E. Zegura, “The road to sdn,” Queue,
vol. 11, no. 12, p. 20, 2013.

[2] FE Pakzad, M. Portmann, W. L. Tan, and J. Indulska, “Efficient topology
discovery in software defined networks,” in IEEE ICSPCS, 2015.

[3] GENI Wiki. [Online]. Available:
http://groups.geni.net/geni/wiki/OpenFlowDiscoveryProtocol

[4] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, “Nox: Towards an operating system for networks,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, Jul. 2008.

[S1 Open Flow Standard. [Online]. Avail-
able: https://www.opennetworking.org/sdn-resources/onf-
specifications/openflow

[6] “IEEE standard for local and metropolitan area networks— station and
media access control connectivity discovery,” IEEE Std 802.1AB-2009
(Revision of IEEE Std 802.1AB-2005), pp. 1-204, Sept 2009.

[7]1 B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks.

[8] Open vSwitch. [Online]. Available: http://openvswitch.org

[9] Scapy Library. [Online].
http://www.secdev.org/projects/scapy/doc/usage.html

[10] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-hashing for
message authentication,” IETF RFC 2104, pp. 1-11. , February 1997.

[11] S. Turner and L. Chen, “Updated security considerations for the md5
message-digest and the hmac-md5 algorithms,” IETF RFC 6151, 2011.

[12] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “Sphinx: Detecting
security attacks in software-defined networks,” in NDSS’15, February
2015.

[13] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network visibility
in software-defined networks: New attacks and countermeasures,” in
NDSS’15, February 2015.

Available:

