
Cache Coherence in Machine-to-Machine
Information Centric Networks

Maroua Meddeb∗‡, Amine Dhraief∗, Abdelfettah Belghith∗†, Thierry Monteil‡§and Khalil Drira‡
∗HANA Lab, Univeristy of Manouba, Tunisia

†College of Computer and Information Sciences, King Saud University, Saudi Arabia
‡CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

§Univ de Toulouse, INSA, F-31400 Toulouse, France
Email: amine.dhraief@hanalab.org, abelghith@ksu.edu.sa, {mmeddeb, monteil, khalil}@laas.fr

Abstract—Information-Centric Networking (ICN) is a new
paradigm proposing a shift in the main Internet architecture from
a host-centric communication model to a content-centric model.
ICN architectures target to meet user demands for accessing the
information regardless of its location. A major building block
of ICNs concerns caching strategies. Concomitantly, Machine-to-
Machine (M2M) technologies are considered the main pattern
for the Internet of Things (IoT). Unifying M2M and ICN into a
single framework raises the challenge of cache coherence. In this
paper, we propose a novel cache coherence mechanism to check
the validity of cache contents. We also propose a caching strategy
suitable to M2M environment. Extensive experimentations are
conducted to evaluate the performance of our proposals. They
show that the combination of our two proposed schemes results
in a notable improvement in content validity at the expenses of a
certain degradation in both server hit and hop reduction ratios.

I. INTRODUCTION

Internet was originally designed to share scarce resources
among a limited number of static nodes with trusted commu-
nications channels. Efficient and scalable content distribution,
mobility and security still challenge the current Internet archi-
tecture. Hence, Internet re-architecture is no more and option
and has become an imperative requirement to the healthy
growth of the Internet of the future.

This has lead researchers to introduce a novel paradigm
namely Information Centric Networking (ICN) [7]. The cor-
nerstone of ICN is the content which the user requests rather
than the location of the node that provides this content: it
is then a shift from a host-centric view of the network to a
content-centric one.

In order to alleviate the pressure on the network bandwidth
caused by the tremendous traffic growth, ICN provides in-
network caching to distribute content in a scalable, cost-
efficient and secure manner. Caching is not a revolutionary
concept; it has already been widely used by the host-centric
Internet in the Web, P2P systems and Content Distribution
Networks (CDNs). However, with the absence of unique
identification, current caching system may handle the same
content at different network location as different contents. In
addition, existing cache systems are designed for a specific
traffic and applications, they are not generic. Furthermore, in
traditional caching systems, cache nodes are predetermined
and fixed, unlike in ICN caching, caches are ubiquitous. Each

node can be a cache and while forwarding a content, the node
can choose to cache a copy or not [7]. Unique identification,
transparency and ubiquity are new features that make ICN
caching more challenging than already existing cache systems.

ICN in-network caching strategies are based on two caching
strategies: On-path and Off-path caching. The On-path caching
strategy uses nodes/routers belonging to the reverse path
pursued by the request. While forwarding a content, an inter-
mediate router has the ability to choose between either caching
the content or not and this is according to its own caching
policy. The Off-path caching strategy reserve a distant cache
node, so the publisher multicasts the content to both the client
and the cache [6].

At a given node, the decision is made based on a caching
strategy which we detail some of them in the following:
(1)Leave Copy Everywhere (LCE) [7]; A copy of the content
is stored in every node in the path towards the user. (2)Leave
Copy Down (LCD) [7]; When a content is found at a node in
the request path, a copy of that content is stored on one level
down in the reverse path towards the user. (3) Probabilistic
cache (ProbCache) [7]; A copy of a content is cached in a
node with a probability. This probability is not constant, it
is inversely proportional to the distance from the user to the
server. As a consequence, nodes close to the user have a greater
chance to be a cache node. (4) Betweenness Centrality (Btw)
[1]; The betweenness centrality parameter is pre-calculated to
each node. It measures the number of times that a node belongs
to a path between all pairs of nodes in a network topology.
On the way of the response towards the user, a copy of a
content is cached only in nodes whit the greatest betweenness
centrality.

Meanwhile, the number of sensors and actuators which can
communicate through the Internet infrastructure is in constant
increase and thus presaging Internet of things(IoT). Machine-
To-Machine (M2M) is believed to be the main framework of
IoT [4]. It refers to the technology that provides machines with
the ability of interacting with each other in order to exchange
information and perform actions with minimal human inter-
vention. Using ICN in M2M networks allow us to get M2M
data from any cache, not essentially from the M2M server. In
this context, ICN is used to alleviate the pressure on the M2M
server and make faster reactions in term of traversed hops and

40th Annual IEEE Conference on Local Computer Networks LCN 2015, Clearwater Beach, Florida, USA

978-1-4673-6770-7/15/$31.00 ©2015 IEEE 430

response time.
In-network caching has been proved to be quite difficult to

use. According to A. Dingle et al. in [2], difficulty lies in the
fact that copies of contents in a cache can be out of date. This
problem is called cache coherence which is the consistency of
a shared resource data stored in multiple caches.

Unlike [2], we focus on caching in ICN rather than web but
the cache coherence problem remains the same. ICN cache
coherence largely impacts M2M networks. As the current
status of the network can change at any time, we need to
check that stored state in caches are valid. To the best of
our knowledge, this is the first research work which focuses
on cache coherence of ICN. In the following, we focus on
existing coherence mechanism used by distributed systems [2]:
(1) Validation check; When a content is stored in a cache,
it is marked with a timestamp. To verify the coherence, the
timestamp of the content is sent to the server to be sure that the
data has not been modified since it was cached. (2) Callback
mechanism; The server notifies all caches when the content
is updated. It is unsuitable that the server holds a list of all
caches to notify them. (3) HTTP Headers; To request a content,
a conditional Get is sent towards the server; an If-Modified-
Since header is appended to the Get request. When the request
reaches a cache, it verifies if the last modification time of the
content is greater than the time in the header, in this case the
content is returned. (4) ”Naive” coherence; This coherence
mechanism is used with an hierarchical topology. When the
content is found in a cache, this latter sends a conditional
GET message to the next higher cache or server. The last
modification time of the cached content is passed as the If-
Modified-Since header time. If the content is returned to the
cache so it is considered as coherent. (5) Expiration-based
coherence; Each content is marked with an expiration time.
Before the expiration time elapses, the content is assumed
valid and any requests made are automatically answered.

This paper is structured as follows. In section 2, we ex-
plain client-cache caching strategy and event-based coherence
mechanism. We proceed to show and analyse simulation
results in section 3. We finally conclude in section 4.

II. A COHERENT CACHING STRATEGY

In this section, we detail our proposed coherent caching
strategy for ICN M2M networks. Our main objective is to
enhance the percentage of validity of requested content while
maintaining system performances.

A. Client-cache strategy

In the following, we present our caching strategy which
we call client-cache. Client-cache design is based on three
hypothesis. It is (i) an on-path caching strategy which (ii)
reduces the number of cache nodes and (iii) selects caches
close to users.

First of all, unlike on-path caching, off-path caching will
serve only local clients. In addition, it requires additional meta-
data to inform client which cache element is associated with a
desired source. For this, we choose, as a first hypothesis, the

on-path caching strategy. Second, in [1] authors demonstrated
that caching less performs better results. Even random caching
is better than LCE. This is explained by the fact that the cache
size is limited and the number of contents to be cached is
more important so the cache replacement error increases. In
our strategy, we choose to reduce the number of cache nodes
and to focus on the most important nodes. Third, experiment
results in [3] show that using edge caching can save most
of the caching benefits of ICN. Since users are located at
network edges, important nodes are connected to clients. The
third hypothesis is to cache close to users.

Considering these hypothesis, client-cache proposes to
cache contents on nodes in request reverse path which have a
connection with a client.

B. Event-based coherence mechanism

Event-based coherence mechanism, as its name indicates,
depends on the data flows. Before explaining our proposed
coherence mechanism, we firstly detail the different M2M
traffic pattern.

1) M2M traffic pattern: M2M data flow are continuous,
periodic or OnOff. In continuous transmission, like video
streaming, content’s chunks are sent continuously. In periodic
transmission, the content is sent every fixed period of time.
Finally, in the OnOff transmission mode, the content value is
sent only when it changes (i.e: presence sensor).
This three modes can be classified in two major modes
periodic and OnOff transmissions. Continuous transmission is
in fact a periodic one with a very short period.

2) Event-based coherence algorithm: Our proposed event-
based coherence algorithm is an expiration-based coherence
where the expiration time is not constant.

The validity of a content is checked at the moment when a
requested content is found in a cache. A content is considered
valid when the lifetime of its version in the cache is lower than
the lifetime of its last version in the source. With the time of
storing a content in a cache cache-time we can calculate for
how long a content is cached (Now − cache time).

In the case of a periodic transmission, the lifetime in the
origin source can be easily calculated since the update of data
is periodic with a constant period T . So, the period must be
appended to the content. We note by Tv this lifetime and Tv =
Now − T ∗ E(Now/T). As we have already mentioned, the
content is considered valid when Tv > Now − cache time,
then it is returned to the client.

In the case of an OnOff transmission, the sensor behavior
is not predicted and values updates can be performed at any
time. For this reason, when a request matches a data in a
cache, we can not deduce the time of last happened events
in the source to verify the validity. To do so, we propose to
store, for each content in the source, the time of happened
events in a list lastEvents. As a concequence, we will have
past events and we can predict the time of the future one
which we note Tevent. If Tevent > Now, that means that
pearhaps an update is performed in the source. The content is
so considered invalid.

431

There are two time series models designated for predic-
tion which are ARMA (Autoregressive Moving Average)
model and Exponential smoothing. To predict future value,
the exponential smoothing takes into account all past data
while ARMA can only use k past data points. In addition,
the exponential smoothing is poor in long-term precision in
comparison with ARMA which is consistent even with long
series. Finally, ARMA can be used with all type of series while
the exponential smoothing is used only on adjusted series. In
our proposal we used the ARMA model.

III. PERFORMANCE EVALUATION

In this section, we describe the adopted metric, the simula-
tion scenario and the obtained results.

A. Performance metrics

In our performance evaluation, we measure the hop re-
duction ratio, the server hit reduction ratio and the response
latency against the Zipf distribution [3] coefficient.

The hop reduction ratio A represents how faster, in term of
hops, a content is fetched from a cache than from the server.
It is analytically represented by Eq. 1. Each client i sends R
requests. For each request r from i the hop reduction ratio is
calculated. It is the ratio of the path length from the client to
the first content cache hir over the path length from the client
to the server Hir.

A(α) =

∑N
i=1

∑R
r=1

hir(α)

Hir(α)

R

N
(1)

The server hit reduction ratio B expresses the alleviation
of the server load. It is the ratio of the number of requests
satisfied by the server serverhit over the totality of requests,
which represent requests satisfied by the server and by a cache
(see Eq. 2).

B(α) =

∑N
i=1 serverhiti(α)∑N

i=1 serverhiti(α) + cachehiti(α)
(2)

The response latency is the duration between the delivery
of a content request from a client and the response, knowing
that the transmission delay between nodes are randomly set.

The last metric is used to evaluate the coherence mecha-
nism. It is the validity percentage of contents. We calculate
the ratio of the number of valid contents over all provided
contents.

B. Simulation scenario

S. K. Fayazbakhsh et al. have experimentally proved in
[3] that the request popularity distribution across different
geographical locations is close to a Zipfian distribution. In
our simulation, content requests are generated following a Zipf
distribution where α varies in a rather wide range [0.5; 2.5] [5].

For our simulations, we choose the cache size C = 1000
chunks, the file number | F |= 104 files and the file size
F = 1 chunk. We set λ = 1, the cache replacement policy
is LRU (Least Recently Used) and the forwarding strategy

is SPR (Shortest Path Routing). We consider a scale-free
topology following the Barabasi-Albert (B-A) model with
N=100 nodes, m0=3 and m=2. Concerning the transmission
delay, we are based on the transmission delays used in real
network topology. We note that delay ∈ [0; 20]ms

C. Results collection and analysis

Our objective is not to have a better caching strategy but
to propose a coherent caching strategy which maximizes the
percentage of contents validity. Fig.1 confirms the advantage
of using event-based coherence mechanism.

We observe from Fig. 1a, that our coherent client-cache
strategy provides the best validity results with 98%. We also
notice that even without coherence mechanism, the result with
client-cache is not so bad as with other strategies, the validity
is over 61%. We can see that the percentage of validity with
other caching schemes is very low. In Fig. 1a, we report from
left to right, 40% under the LCE strategy, 34% using LCD,
31% with ProbCache strategy and 51% with Btw strategy. We
conclude that under our coherent client-cache caching strategy,
almost all requested contents are valid, however with other
strategies, it is unlikely to receive a coherent data.

Fig. 1b portrays the results of client-cache strategy with
different coherence mechanisms. These results confirm the
performance of our event-based coherence mechanism. In fact,
using the expiration-based coherence mechanism has improved
the content validity with 71% but our coherence mechanism
still performs better results with 98%. As a deduction, we
can say that even with the existing coherence mechanism, the
probability to get a valid response is not sufficient.

Now, we evaluate these caching strategies without the co-
herence mechanism and our coherent caching strategy. Results
are depicted in Fig. 2. We reminder that these simulations
have been carried out to evaluate the server-hit reduction, hop
reduction and responce latency against the variation of the
popularity of contents.

In Fig. 2a, we see the server-hit performance. The difference
between simple caching strategies balances around a reduction
of 4-10% for client-cache against the ProbCache strategy,
while, it is smaller compared to LCD and Btw. With this
two latter strategies, results are the same with respectively
α ≥ 1.75 and α ≤ 1.5. Using LCE, the reduction is of 3%
better. With the coherent client-cache strategy, the reduction
decreases against the simple client-cache strategy by 10-40%.

The hop reduction results are showed in Fig. 2b. We notice
that the more popular the content is the faster it is found. With
α ≥ 2, the content is found in the first hop towards the server.
The difference is roughly 4-6% against ProbCache. LCD and
LCE perform better results with a reduction of 12-15% while
results are similar to Btw. Similar to the first metric, the hop
reduction diminishes using coherent client-cache by 10-15%.

Client-cache reduces the response latency of 3% in com-
parison to ProbCache, whereas, results are very similar with
other strategies Fig. 2c. We report that we lose arround 0.01 s
of the response time under the coherent client-cache strategy.

432

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

P
e

rc
e

n
ta

g
e
 o

f
v
a

lid
it
y

LCE
LCD

ProbCache
Btw

client−cache
coherent client−cache

(a) Validity % with different caching strategies

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

P
e

rc
e

n
ta

g
e
 o

f
v
a

lid
it
y

without coherence
expiration−based coherence

event−based coherence

(b) Validity % with client-cache strategy

Fig. 1. System performances with different chaching strategies

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 1 1.5 2 2.5

S
e
rv

e
r

h
it
 R

e
d
u
c
ti
o
n
 R

a
ti
o

alpha

LCE
LCD

ProbCache
Btw

client−cache
coherent client−cache

(a) Server hit reduction ratio

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 1 1.5 2 2.5

H
o
p
 R

e
d
u
c
ti
o
n
 R

a
ti
o

alpha

LCE
LCD

ProbCache
Btw

client−cache
coherent client−cache

(b) Hop reduction ratio

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.5 1 1.5 2 2.5

R
e
s
p
o
n
s
e
 L

a
te

n
c
y
 (

s
)

alpha

LCE
LCD

ProbCache
Btw

client−cache
coherent client−cache

(c) Response latency

Fig. 2. System performances with different chaching strategies

We conclude that there is degradation in system perfor-
mance with our proposal, but it still better than without caching
and the degradation is very small. In other words, our strategy
like other strategies reduces the number of traversed hops
and the server hits, in addition, it increases the percentage
of validity. In term of coherence, it is better to make one extra
hop in order to have a valid content.

IV. CONCLUSION

In this paper, we have outlined the in-networking caching
in information-centric M2M networks, emphasizing its support
for cache coherence mechanism. We have explained the impact
of the lack of mechanisms to check content’s coherence,
especially in M2M networks. We have proposed an event-
based coherence mechanism, an algorithm that verifies if a
cached content is valid or not and it is based on M2M data
flow. In addition, we have suggested to join to this mechanism
a client-cache caching strategy. Our caching scheme propose
to store a copy of a content where there is a client attached
to that node. We report that the combination of our two
propositions provides users with 98% of valid contents, al-
though only around 40% using other caching strategies without
coherence mechanism and approximately 60% with expiration-
based coherence. In our future work, it is intended to improve
existing caching strategies with our coherence mechanism
and to compare the network resources consumed in different

caching strategies. As a challenge we propose to focus on
name-based routing in ICN. We aim to conceive a routing
strategy that look for the nearest coherent cache.

REFERENCES

[1] W. K. Chai, D. He, I. Psaras, and G. Pavlou, “Cache ”less for more” in
information-centric networks,” in Proceedings of the 11th International
IFIP TC 6 Conference on Networking - Volume Part I, ser. IFIP’12.
Springer-Verlag, 2012, pp. 27–40.

[2] A. Dingle and T. Pártl, “Web cache coherence,” Comput. Netw. ISDN
Syst., vol. 28, no. 7-11, pp. 907–920, May 1996.

[3] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen,
B. Maggs, K. Ng, V. Sekar, and S. Shenker, “Less pain, most of the
gain: Incrementally deployable icn,” SIGCOMM Comput. Commun. Rev.,
vol. 43, no. 4, pp. 147–158, Aug. 2013.

[4] M. Meddeb, M. B. Alaya, T. Monteil, A. Dhraief, and K. Drira, “M2m
platform with autonomic device management service,” Procedia Com-
puter Science, vol. 32, no. 0, pp. 1063 – 1070, 2014, the 5th Inter-
national Conference on Ambient Systems, Networks and Technologies
(ANT-2014), the 4th International Conference on Sustainable Energy
Information Technology (SEIT-2014).

[5] D. Rossi and G. Rossini, “Caching performance of content centric
networks under multi-path routing,” Telecom ParisTech, Tech. Rep., 2011.

[6] G. Xylomenos, X. Vasilakos, C. Tsilopoulos, V. Siris, and G. Polyzos,
“Caching and mobility support in a publish-subscribe internet architec-
ture,” Communications Magazine, IEEE, vol. 50, no. 7, pp. 52–58, July
2012.

[7] G. Zhang, Y. Li, and T. Lin, “Caching in information centric networking:
A survey,” Computer Networks, vol. 57, no. 16, pp. 3128 – 3141, 2013,
information Centric Networking.

433

