
SDN Shim: Controlling Legacy Devices
Daniel J. Casey, Barry E. Mullins

Department of Electrical & Computer Engineering
Air Force Institute of Technology

Wright-Patterson Air Force Base, OH 45433 USA
{daniel.casey, barry.mullins}@afit.edu

Abstract—We propose a design to aid experimentation with
SDN architectures using legacy network equipment. We im-
plement a portion of the design on an FPGA and evaluate
throughput and latency. Results indicate viability for testbed
and research environments, especially with proposed additions to
further reduce latency in broadcast- and multicast-heavy traffic.

Index Terms—Ethernet networks, Field programmable gate
arrays, Software defined networking.

I. INTRODUCTION

Upgrading an enterprise network to leverage software-
defined networking (SDN) can be difficult and expensive. The
most widely-used SDN protocol, OpenFlow, has only been
available in commercial switches since 2012. Furthermore,
the protocol itself is rapidly evolving, with other SDN pro-
tocols under active development. These factors add cost and
risk to SDN upgrades, which hinder adoption and growth.
Moreover, legacy networking equipment may still provide
full functionality. As described in [1], “Certainly, rip-and-
replace is not a viable strategy for the broad adoption of new
networking technologies”. Providing cost-effective means to
adopt SDN technologies without completely replacing existing
infrastructure benefits researchers and end-users alike.

We propose an inexpensive hardware device that usurps
flow-level control from a legacy switch. This “shim” layer
can provide SDN features on legacy switches to enable pre-
purchase testing and cost-effective infrastructure upgrade plan-
ning.

Our goals are to determine a viable shim design, where the
shim is best deployed and if, despite performance limitations,
such a device is practical. The specific performance metrics
are throughput and latency of the device while connected
to a switch. The design is implemented on a NetFPGA-1G-
CML development board which uses a Xilinx Kintex-7 FPGA
connected to four 1 Gigabit per second (Gbps) Ethernet PHY
chips and ports. The switch is a Cisco Nexus 3048T. It is not a
“legacy” switch as it includes support for OpenFlow and other
SDN protocols, but was configured to behave as one for our
experiments. It is equipped with 48 1 Gbps Ethernet ports and
four 10 Gbps small form-factor pluggable transceiver (SFP+)
ports.

II. RELATED WORK

There are a variety of proposed techniques for gaining
control of legacy network devices in an SDN network. They

generally fall into the categories of controller-based legacy
control, intermediate devices, and network architecture plan-
ning.

An example of controller-based legacy control is Open-
Daylight, a relatively new and open-source SDN controller.
It includes a service adaptation layer which aims to abstract
the southbound protocol details from the higher layers by use
of protocol plugins [2]. In addition to OpenFlow, NETCONF,
etc., plugins can be created to cover various legacy switches.
Depending on the particular target switch and control devices
exposed (CLI, SNMP, web, etc.), this could be difficult. A
heterogeneous switch environment would further complicate
the effort. Even a well-written plugin for a specific device
might not provide the required resolution of control to cover
certain use cases, making the investment questionable.

An example of an intermediate device is given in [3], where
the authors propose a system to translate OpenFlow messages
on-the-fly into legacy command directives for non-OpenFlow
switches. They test this on three different vendors’ switches,
using command-line, SNMP, and web service configuration to
modify the switch behavior in accordance with the OpenFlow
messages from the controller. This approach has its own
drawbacks. Again, it would be necessary to customize the
method of configuration control for every vendor, and possibly
every model or even software version of a switch. Also, as
explained in [1]:

One fundamental restriction of this approach is sac-
rificing the reactive mode of operation of OpenFlow,
which packets without a matching rule are forwarded
to the controller via packet-in events.

As the OpenFlow protocol itself must be altered, many net-
work applications could not run unmodified. Finally, they also
found their approach requires substantial modifications to the
controller, further distancing their solution from a standard
OpenFlow deployment.

ClosedFlow is a more recent effort to include legacy
switches in an OpenFlow environment. In [4], the authors
target 10-year old Cisco switches with the goal of being
able to run unmodified SDN applications. They repurpose the
layer 3 routing protocols on the switches, specifically OSPF.
The obvious drawback to this approach is that it requires
the legacy switches to be multilayer switches that support
routing protocols. These switches are much more expensive
and typically less abundant than layer 2-only switches.

40th Annual IEEE Conference on Local Computer Networks LCN 2015, Clearwater Beach, Florida, USA

978-1-4673-6770-7/15/$31.00 ©2015 IEEE 169

switch
1 2 3 48

shim
controller

Fig. 1. Physical switch/shim configuration

An example of network architecture planning as an SDN-
enabler is given in [5], where the authors propose careful
placement of SDN-enabled switches in a network. As long
as any flow traversing the network is handled by at least one
SDN switch, many of the benefits of SDN can be gained
while requiring only a subset of devices be upgraded. Given
certain assumptions and a typical, 3-tier enterprise network
architecture, they suggest that as few as 10% of the distribution
layer switches can be upgraded to achieve SDN management
capabilities over the whole network. We believe this approach
comes closest to solving the problem, and could be used
simultaneously with our proposed shim.

III. HARDWARE SHIM DESIGN

We believe an OpenFlow “shim” layer implemented with
relatively inexpensive hardware could be successful in certain
scenarios. Our interest is to develop a device that will connect
to an OpenFlow controller, present itself to the controller as a
regular OpenFlow switch, and control flows on the connected
legacy switch in accordance with messages from the controller.
Design goals include utilizing ubiquitous switch features,
supporting all OpenFlow features, minimizing added latency
and reduced throughput, matching the frame rate from the
switch, and keeping the hardware design simple (and therefore
inexpensive).

The only prerequisite switch feature is support for IEEE
802.1Q virtual local area network (VLAN) tags. This makes
the design widely applicable, as VLANs are supported on
the vast majority of business class switches manufactured
in the last 10 years. An example physical configuration is
shown in Figure 1, with a corresponding configuration in Cisco
IOS format shown in Figure 2. The legacy switch must be
preconfigured with a VLAN trunk to the shim and access ports
on unique VLANs. While there are 4094 VLAN IDs available
(12 bits with first and last reserved: 212 − 2), some switches
only support a smaller subset of active VLANs. However, this
smaller subset is usually more than the number of ports on the
device. Switch-connected ports should be configured as trunk
ports, but the selection of VLANs for these trunks should be
distinct from those used for the host-connected access ports.

As each host port resides on its own VLAN, the switch will
never pass frames from one port to another, only to the shim.

interface Ethernet1/1
no lldp transmit
no cdp enable
switchport mode access
switchport access vlan 101
spanning-tree port type edge
spanning-tree bpdufilter enable

interface Ethernet1/2
...
switchport access vlan 102
...

interface Ethernet1/48
description netfpga-shim
...
switchport mode trunk
switchport trunk allowed vlan 101-147

Fig. 2. Example switch configuration

parse mod

fifo

tx

shim component

eth txeth rx

Fig. 3. Design VHDL components

The shim receives all switch traffic, and is able to manage
whether each packet is delivered out another port, delivered
to the controller via an OpenFlow PACKET_IN message,
dropped, modified, or rewritten. The shim therefore contains
the primitives of a true OpenFlow switch, with the legacy
switch providing a physical extension of ports to the FPGA
device. This approach should work even on a network where
VLANs are already in use, as long as separate VLAN IDs are
chosen and the VLANs allowed on each trunk are carefully
controlled.

In contrast with other approaches, this design does not
require any modification to the SDN controller, and should be
able to support all OpenFlow features. It is widely applicable
to legacy switches, requiring only VLAN support, and does
not have to be customized to the switch make or model. It can
be implemented with relatively inexpensive hardware (cost of
FPGA board).

IV. IMPLEMENTATION

Our system is written in VHDL with Vivado Design Suite
2014.4, targeting the Xilinx Kintex-7 XC7K325T-1FFG676
FPGA on the Digilent/CML NetFPGA-1G-CML. To keep
the design small and fast, we did not use the existing Digi-
lent/CML code base but rather designed our own components.
The design is comprised of three top-level components: the re-
ceive and transmit interfaces and the shim wrapper. Secondary
top-level components include the clock generator, global reset,
and PHY reset, along with debugging components (integrated
logic analyzer and virtual I/O).

The VHDL components are depicted in Figure 3. The shim
wrapper instantiates a shim component for each activated

170

TABLE I
FIELD-PROGRAMMABLE GATE ARRAY RESOURCE UTILIZATION

(1 PORT, STATIC FLOW, KINTEX-7)

Resource Utilization Available Utilization %

FF 870 407600 0.21
LUT 582 203800 0.29
Memory LUT 7 64000 0.01
BRAM 15 445 0.34

interface (the number of active shim interfaces is config-
urable). Each shim component includes an Ethernet parser
which extracts header details, a modifier which manipulates
the header, and an Ethernet generator which combines the
modified header with the frame payload into a Gigabit Media
Independent Interface (GMII) stream. The modifier references
the shim configuration memory to map the incoming frame
VLAN to the input port of the external switch, which is
analogous to OpenFlow’s uint8_t in_port portion of
a ofp_packet_in message. Based on the other header
parameters and the configuration memory, the modifier se-
lects whether to transmit a modified version of the frame
or drop it. If selected for transmission, the output port is
encoded as the new VLAN (again analogous to the OpenFlow
uint16_t out_port), and the Ethernet generator is sig-
naled to generate the modified GMII stream for transmission.
The FIFO queue is used to hold the frame payload.

If the frame must be broadcast or output on multiple ports
(OFP_FLOOD or OFP_ALL output ports in OpenFlow), the
modifier instead signals the broadcast generator, which keeps a
two-stage FIFO buffer for generating n copies of frame with-
out blocking the primary pipeline. Of course, given enough
sequential broadcasts and a smaller parameterized FIFO for
the broadcast generator, the system can end up dropping some
broadcast frames. However, dropping frames due to contention
is allowed in Ethernet.

This system is designed to match the switch’s outgoing
frame rate. As the shim is a hardware pipeline design, it is
able to track one-for-one with frames coming from the switch.
Implementing a single port of the design on the NetFPGA-
1G-CML uses only a small portion of the FPGA, as shown in
Table I (without broadcast offload and using a static VLAN
configuration). A custom shim could be developed on a much
smaller (and inexpensive) FPGA.

V. MEASUREMENTS AND RESULTS

Throughput was measured with iperf3 [6] and latency was
measured with a separate FPGA. The switch was a Cisco
Nexus 3048 (N3K-C3048TP-1GE). Switch features that may
interfere (e.g., STP, CDP, and LLDP) were disabled for all
tests. The test server was an Aberdeen Superserver with 384
GB RAM, two 2.30 GHz 8-core Intel Xeon E5-4610 CPUs,
and two 4-port Intel 82576 1 Gbps Ethernet cards running
Fedora 21. Pairs of containers were used to perform each
throughput test with iperf3, with one container attached to
either end of the switch or shim.

Test 1: switch only

switch

server

IP x

IP y

Test 2: switch & shim

shim

server

switch

IP x

IP y

Fig. 4. Overview of test configurations

TABLE II
PERFORMANCE RESULTS

Avg Throughput Avg Latency

Switch 943 Mbits/sec 3894.6 ns
Switch & Shim 936 Mbits/sec 7567.6 ns

The throughput test configurations are depicted in Figure 4;
latency tests were analogous, but with an FPGA instead of
the server for higher resolution timing. Test 1 provides a
baseline and measures switch performance, with two switch
ports configured as access ports of the same VLAN. Test 2
connects the shim device to the switch as a VLAN trunk,
and the two access ports are set to separate VLANs. Table II
summarizes the results of each test. The throughput test
uses iperf3 with default settings, which attempts to simulate
typical application performance by sending a series of 10 TCP
streams, each 1 second, and measuring bytes successfully sent.
The latency test uses an FPGA that sends a UDP packet once
per second over a period of 40 seconds and measures the
time until the packet is received to estimate total round trip
time. Our latency measurements meet our expectations based
on the switch specifications, which indicate latency between
2.7 and 7.2 microseconds. When dealing with single flows, the
shim hardly limits network performance. While the increased
latency and reduced throughput may be negligible for this
simple set up, we expect it to be a larger issue with contention
in the switch when there are multiple simultaneous streams
that all need to be fed through the shim.

VI. POTENTIAL ISSUES AND MITIGATIONS

The most significant issue is decreased throughput as the
configuration creates a bottleneck at the switch port leading
to the shim. A single switch port simply cannot handle the
traffic of all the other ports at the same time. While this design
would not be the best fit for a high-traffic, throughput-sensitive
network, there are a few approaches that can help alleviate the
issue.

Order-of-magnitude higher-bandwidth ports can be used, if
available, on both the shim device and switch. For example,

171

many switches have a few higher-speed uplink ports, e.g., 10
Gbps ports on an otherwise 1 Gbps switch, or 40 Gbps ports
on a 10 Gbps switch. A variety of 10 Gbps SFP+ FPGA boards
are available at reasonable cost. As another approach, many
FPGA development boards have two or four network ports; the
bandwidth of these could be combined with a link aggregation
protocol, albeit to the detriment of the number of available
switch ports.

The design also introduces added latency to each flow. The
amount of latency is proportional to the amount of traffic
and number of ports the shim is required to handle. The
mitigating approaches outlined above also help reduce added
latency. Additionally, the choice of FPGA as a platform and
the specific implementation of that design keep added latency
to a minimum, as opposed to a purely software-based design.

While the design introduces some additional latency, it is
less than 10 microseconds for most flows. However, the added
latency is more profound with broadcast or multicast traffic.
Since each port is on a separate VLAN, there is no shared
broadcast domain. As a result, when the shim must deliver a
frame to multiple ports, it must sequentially produce a copy
of that frame for each destination port. The amount of time
required to transmit one broadcast frame will be more than
n times that of a traditional switch, where n is the number
of ports. This also results in skew between the broadcast
times of the first and last ports, which could negatively affect
some applications. The time the shim spends sending all these
frames precludes it from sending any other traffic, which could
result in a backlog of traffic and potentially many dropped
frames.

One technique to avoid the broadcast latency issue is to
use a feature that retains isolation between host ports while
providing a shared broadcast domain, like protected or isolated
ports or private virtual LANs (PVLANs). These features are
generally the same, but have different names and nuances
across vendors and models. Since the shim is on an unpro-
tected or promiscuous port of a primary VLAN, it could
send broadcasts to all other ports with a single frame. The
issue with using PVLANs is that it removes the ability of
the shim to distinguish between individual ports. The shim
could potentially target certain ports by keeping track of MAC
addresses and relying on the MAC learning of the switch, but
the device could no longer be a drop-in replacement supporting
OpenFlow.

Another technique to mitigate broadcast latency, resulting
backlog, and dropped frames is to utilize a separate port and
processing pipeline of the shim for sending broadcasts. This
keeps the primary port of the shim dedicated to unicast trans-
missions only, which are higher priority in most situations.
When a broadcast is needed, it is sent to a separate pipeline
within the FPGA that transmits packets out a secondary port
connected to the switch. The delay for the primary pipeline is
identical to that of a unicast frame.

While these approaches can mitigate the issue, the design
will always result in some reduction in bandwidth. Whether
this is acceptable depends upon the nature of the network; the

shim may not be an acceptable choice for a network operating
near its maximum capacity. On the other hand, an existing
network could be safely partitioned to allow experimental
deployment of the SDN architecture on the existing hardware.

VII. FUTURE WORK AND CONCLUSION

We plan to continue design development to make it more
relevant to high-traffic environments. The first step is to move
development to a 10 Gbps board and use 10 Gbps switch
uplink ports for the shim trunk. The next step is hand-
off between output ports on the shim; the switch will be
partitioned into three or four sets of ports, with each set
being handled by a different port on the shim. Frames that
cross partitions will be transparently handed off in the FPGA;
we expect this will improve contention by a factor of the
number of partitions. Finally, updating the design to include
an OpenFlow agent will make the shim a stand-alone, drop-in
SDN-enabler. We will compare implementing the agent as a
soft-core processor (MicroBlaze on Xilinx FPGAs) against an
ARM-based mezzanine card.

The upgrade path to a modern SDN network architecture
can be daunting. Equipment costs are formidable, benefits
may be unclear, and networking programming is unfamiliar
territory for many network engineers. A simple shim device
that can add a layer of SDN functionality to legacy equipment
may go a long way toward easing adoption pains for network
practitioners. Certainly, there will be trade-offs in such a
design in terms of performance. However, these compromises
may be acceptable in testbeds as the shim can help SDN
newcomers understand how they might leverage new net-
working technologies, perform more controlled upgrades of
their equipment, and get the most long-term value for their
investment.

ACKNOWLEDGMENT

The views expressed in this article are those of the authors
and do not reflect official policy of the United States Air Force,
Department of Defense, or the U.S. Government.

REFERENCES

[1] F. Hu, Network Innovation Through OpenFlow and SDN: Principles and
Design. CRC Press, 2014.

[2] J. Medved, R. Varga, A. Tkacik, and K. Gray, “OpenDaylight: Towards a
Model-Driven SDN Controller architecture,” in IEEE 15th International
Symposium on A World of Wireless, Mobile and Multimedia Networks
(WoWMoM), June 2014, pp. 1–6.

[3] F. Farias, J. Salvatti, P. Victor, and A. Abelem, “Integrating Legacy
Forwarding Environment to OpenFlow/SDN Control Plane,” in 15th Asia-
Pacific Network Operations and Management Symposium (APNOMS),
September 2013, pp. 1–3.

[4] R. Hand and E. Keller, “Closedflow: Openflow-like control over propri-
etary devices,” in Proceedings of the Third Workshop on Hot Topics in
Software Defined Networking (HotSDN ’14). New York, NY, USA:
ACM, August 2014, pp. 7–12.

[5] D. Levin, M. Canini, S. Schmid, F. Schaffert, and A. Feldmann, “Panopti-
con: Reaping the Benefits of Incremental SDN Deployment in Enterprise
Networks,” in 2014 USENIX Annual Technical Conference (USENIX ATC
14). Philadelphia, PA: USENIX Association, June 2014, pp. 333–345.

[6] ESnet & Lawrence Berkeley National Laboratory. iperf3. [Online].
Available: http://software.es.net/iperf/

172

