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Abstract—Compressive sensing has been successfully used for
optimized operations in wireless sensor networks. However, raw
data collected by sensors may be neither originally sparse nor
easily transformed into a sparse data representation. This paper
addresses the problem of transforming source data collected by
sensor nodes into a sparse representation with a few nonzero
elements. Our contributions that address three major issues
include: 1) an effective method that extracts population sparsity
of the data, 2) a sparsity ratio guarantee scheme, and 3) a
customized learning algorithm of the sparsifying dictionary. We
introduce an unsupervised neural network to extract an intrinsic
sparse coding of the data. The sparse codes are generated at
the activation of the hidden layer using a sparsity nomination
constraint and a shrinking mechanism. Our analysis using real
data samples shows that the proposed method outperforms
conventional sparsity-inducing methods.

Abstract—Sparse coding, compressive sensing, sparse autoen-
coders, wireless sensor networks.

I. INTRODUCTION

A sparsely-activated data (a few nonzero elements in a
sample vector) may naturally exist for compressive sens-
ing (CS) applications in wireless sensor networks (WSNs)
such as the path reconstruction problem [1], indoor local-
ization [2], and sparse event detection [3]. On the other
hand, a sparse data representation cannot be easily induced
in many other real-world contexts (e.g., in meteorological
applications and environmental data gathering). In particular,
noise patterns are usually presented in collected data from
WSNs which greatly affect the performance of conventional
sparsity-inducing (transformation) algorithms such as the Haar
wavelet and discrete cosine transforms [4]. This motivates the
quest for noise-robust and effective sparsity-inducing methods
for WSNs.

One of the breakthroughs in recent deep learning paradigms
for finding high level data abstractions is achieved by intro-
ducing sparsity constraints on data representations, e.g., the
Kullback–Leibler divergence [5], rectifier function [6], and
topographic coding [7]. These methods are introduced for
extracting intrinsic features from the data in a similar way
that the human brain does while encoding sensory organ data,
e.g., the low percentage of spikes in a visual cortex [8].
In particular, sparse deep learning methods generate sparse
representations across training data for each single unit (i.e.,
lifetime sparsity), and they neither guarantee sparsity for each
input signal nor assert on the number of nonzero values in
the sparse codes. However, a practical CS implementation in

WSNs requires a sparse representation for each input signal
(i.e., population sparsity) with a sparsity ratio guarantee.
Specifically, the CS solution to the underdetermined system
(more number of unknowns than the number of equations)
is dependent on the sparsity ratio of the signal, and the
sparsity-inducing mechanism must assert an upper limit for the
sparsity ratio. This sparsity bounding is necessary in WSNs
as it enables using only one flat acquisition matrix for data
encoding in the node. Therefore, it reduces the CS overhead
in terms of memory for storing many measurement matrices
in transmitting node and data control exchange as there is no
need to send out rate control messages.

The main contributions of this paper can be summarized
into three folds as follows.

1) This paper introduces an effective, population sparsity-
inducing algorithm with sparsity ratio guarantee. The
algorithm is based on a customized unsupervised neural
network model of three layers (also called an autoen-
coder network) that generates the required, sparse coding
at the second (hidden) layer. In the proposed shrinking
sparse autoencoder (SSAE), the sparsity is achieved by
introducing a regularization term to the cost function of
the basic autoencoder.

2) We customize the learning algorithm to meet WSN
characteristics. For example, the activations of the hid-
den layer during parameter learning stage are rounded
to only three places to consider limited computational
precision of the node. The rounding considers the low
precision computations of sensor nodes, and it reduces
the compressed data size and data transmission load.

3) We present a customized learning method that optimizes
the SSAE cost function. Basically, the back propagated
error is only used to update the nonzero and active
neurons with dominant output values for each input pat-
tern. Moreover, a shrinking mechanism that guarantees
the sparsity bound is also used during the learning of
the SSAE’s parameters. Therefore, an SSAE asserts on
the number of nonzero elements generated at any time
instant.

The literature is rich with sparsity-based methods that are
designed for optimized WSN operations [1]–[4], [9]–[14].
Nonetheless, much less attention is given to the sparsity-
inducing stage, and using straightforward methods to extract
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Fig. 1: Compressive sensing (CS) based data aggregation
model: The RoI is assumed to be relatively far from the BS.
Therefore, a gateway is designed to transmit compressed data
over a costly long distance wireless connection.

sparsity basis is common in previous studies such as using
principal component analysis (PCA) [10], discrete cosine
transform (DCT) [4], [11], [12], discrete Fourier transform
(DFT) [9], discrete wavelet transforms [4], [13], and difference
matrices [4], [15]. However, the sparse coding discipline has
evolved considerable advances that significantly enhance the
sparsity-inducing and hence overall WSN operations. There-
fore, this paper is intended to introduce a robust and more
effective sparsity-inducing method. The proposed method con-
sists of three steps: (i) data collection, (ii) offline training and
modeling, and (iii) online sparse code generation. An example
of the online sparse code generation for a CS application is
shown in Figure 2 which will be described in details later.

The rest of the paper is organized as follows. In Section II,
the problem formulation is presented. Section III describes the
proposed algorithm and the SSAE structure. Then, Section IV
discusses important practical issues of training and fitting the
proposed model. In Section V, numerical results using real-
world data set are presented. Finally, Section VI summarizes
this paper.

II. PROBLEM FORMULATION

Consider a dense wireless sensor network consisting of N
nodes, as in Figure 1, that collects data about a region of
interest (RoI). Each sensor i (where i = 1, . . . , N ) collects
a real-valued sample xi (e.g., temperature measurements)
at a predefined sampling period and transmits packets at a
configured transmission power that is not sufficient to reach the
base station (BS) due to long distance propagation. Therefore,
a gateway (GW) is used to collect a data vector x ∈ RN from
all sensor nodes and relay it to the BS for further analysis and
processing. Thereafter, a historical data matrix X ∈ RT×N is
formulated at the BS containing the collected data vectors as
its rows, where T is the number of collected vectors. Here,
the sensors’ oscillators are assumed to be synchronized to the
GW’s clock.

After collecting sufficient historical samples (details of data
collection are elucidated in Section IV-A), and as the GW
is energy and bandwidth constrained, the GW employs CS
to spatially compress the data into a smaller data size. The
radio transceiver is the most energy consuming unit in an
ordinary sensor node [16]. Thereby, the energy consumption
becomes more critical in the GW unit as it transmits huge

data over the backhaul connection, while sensor nodes are
assumed to transmit for short distances. It is important to
note that our algorithm can be also temporally applied at
each individual sensor node. However, data delivery latency is
provoked as temporal samples must be collected at the node
before being transmitted as one compressed chunk. Next, we
give an overview of the CS framework and its implementation
at the GW device, and the data reconstruction at the BS unit.

A. Compressive Sensing (CS)

CS is a signal processing method for effective data recovery
from a few data samples than the Nyquist rate [17]. Assuming
a sparse signal s ∈ RL that has only K nonzero elements;
therefore, s is called a K-sparse signal, and the sparsity ratio η
is equal to K

L . Moreover, suppose a measurement (or sensing)
matrix Φ ∈ RM×L that obeys the restricted isometry property
(RIP) [18]. Here, M is assumed to be much smaller than L;
therefore, Φ is a flat matrix with more columns than rows.
The sensing system under consideration that is executed by
the GW to compress data can be expressed as

y = Φs (1)

where y ∈ RM is the resulted measurement vector. Φ can be
sampled from different distributions to meet the RIP such as
the Gaussian distribution [19]. Moreover, for high probability
recovery, M must also meet the following constraint [20]:

M ≥ ρK log2

(
L

K

)
(2)

where ρ is a constant, and M � N . At the BS unit, the
reconstruction of s from y can be achieved by minimizing the
following relaxed problem [21]:

s∗ = arg min
‖y−Φs‖2≤ε

‖s‖1 (3)

where ε is a small constant. The optimization problem (3) can
be solved using a regularized least square method called least
absolute shrinking and selection operator (LASSO) [22].

B. Sparsity-inducing

Clearly, the whole CS framework is based on the sparsity
assumption. Natural signal such as sound and images can
be transformed into a sparse form by projecting them into a
suitable basis [17]. However, this is not the case when dealing
with WSN data. More precisely, sensor nodes produce noisy
readings of the form

x = x∗ + z (4)

where x∗ ∈ RN is the noiseless data vector of the physical
phenomenon, and z ∈ RN is the added noise vector. Noise
values are assumed to be independent Gaussian variables with
zero mean and variance σ2

z such that z ∼ N
(
0, σ2

zIN
)
.

Therefore, even through the neighbor sensors are spatially
correlated and hence compressible, the noise existence ham-
pers the accurate approximation of source signal x using
linear projection methods. In particular, smooth signal are
representable using linear combinations of Fourier bases, and
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Fig. 2: Example of data compression, transmission, and recov-
ery operations using CS and sparsity-inducing models.

smooth piecewise signals are linearly representable in wavelet
bases [11]. Nonetheless, the smoothness condition is not
guaranteed in sensor data as data samples are usually affected
by noise patterns, and commercial sensors sense phenomenon
with finite precision and are not noise robust. For example, a
few noise readings can destroy the sparsity pattern of a DCT
transformed data [12].

The main aim of any robust sparsity-inducing mechanism is
to transform the source signal x ∈ RN into the sparse signal
s ∈ RL. An upper bound guarantee on the sparsity ratio of the
generated signal s is a “must-have” feature in most sparsity-
based applications such as in CS. In particular, this guaran-
tee enables designing low memory and low communication
overhead applications for WSNs as a single sensing matrix
Φ is used by the GW unit to compress data. Then, the BS
does not require any information from the GW to recover the
reconstruction signal x other than the measurement vector y,
where x is a reconstruction of the noiseless data vector x∗.

An example of the system online operational procedure is
shown in Figure 2 which includes the sparsity-inducing and CS
components. The next section presents the proposed sparsity-
inducing mechanism.

III. SHRINKING SPARSE AUTOENCODER (SSAE)

In this section, we introduce an autoencoder’s variant which
we call shrinking sparse autoencoder (SSAE) as shown in
Figure 3. The SSAE network is specially designed to transform
sensory data from its original domain into a sparse domain.
The SSAE structure consists of three neural (or computational
unit) layers. Firstly, an input layer that is connected to the
input signal d ∈ RN , where N is the number of sensor nodes
in the network. Briefly, d is a sphered version of the raw
sensor data x, where {di ∈ R| − 1 < di < 1} as described in

.
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Fig. 3: Illustration of the SSAE structure.

Section IV-B. Secondly, a hidden layer is used to generate an
intrinsic code h ∈ RL at its activation. Thirdly, an output layer
that includes the same number of neurons as the input layer
and generates a recovery of the input data d̂ ∈ RN . The layers
are connected to each other using the following formulations:

h = f
(
W(1)d + b(1)

)
(5)

d̂ = f
(
W(2)s + b(2)

)
(6)

where W(1) is the weight matrix connecting the input and
hidden layers, W(2) is the weight matrix connecting the
hidden and output layers, and b(1) and b(2) are the biases
of the input and hidden layers, respectively. Additionally, s
is the sparse data representation that is obtained by applying
the shrinking operation as described in Section III-A. For
simplicity, we define θ to contain all the SSAE’s parameters
such that θ .

=
[
W(1),W(2),b(1),b(2)

]
. Moreover, f (·) is the

non-linear hyperbolic tangent function.
The SSAE’s cost function Γ (·) includes two terms as

follows:

Γ (θ; D) =
1

T

(
T∑
u=1

1

2

∥∥∥d̂(u) − d(u)
∥∥∥2)+

γ

T

(
T∑
u=1

log10

(
1 +

(
h(u)

)2))
(7)

where D ∈ RT×N is the training matrix of historical data
such that each input vector

{
d(u)

}T
u=1

is stored in a row of
this matrix, and h(u) is the hidden layer activation of d(u).
Moreover, T is the training set size configured at the offline
training algorithm (the details are given in Section III-B). As
with any other autoencoder, the first term is the average sum of
the difference between input vectors and their reconstructions
at the output layer. This term is used to encourage the neural
network to reconstruct its input data at the output layer. The
second term is used to encourage sparsity at the generated
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coding in the hidden layer. The sparsity penalty γ is a hyper-
parameter to manage the weights of each term in the optimiza-
tion problem. In other words, using a big value for γ results
in highly sparse representation, but with poor reconstruction
capability. Then, the well-known delta rule can be used to
update the SSAE’s weights and biases as follows [23]:

W
(q)
ij

.
= W

(q)
ij − α

∂

∂W
(q)
ij

Γ (θ; D) , (8)

b
(q)
i

.
= b

(q)
i − α

∂

∂b
(q)
i

Γ (θ; D) (9)

where α is the learning rate, and q ∈ {1, 2} is the layer
number within the SSAE network. These update rules are
executed at each iteration of a gradient descent method. The
partial derivative is given by

∂

∂W
(q)
ij

Γ (θ; D) =
1

T

T∑
u=1

∂

∂W
(q)
ij

Γ
(
θ; d(u)

)
(10)

where Γ
(
θ; d(u)

)
is the cost function defined for a single

sample d(u) ∈ D. This means that the overall partial derivative
of (7) is found by averaging the partial derivatives of all
input samples. The second term of (7) only affects the partial
derivative of the hidden layer (q = 2) which is computed as
follows:

γ

T

T∑
u=1

∂

∂W
(2)
ij

(
γ log10

(
1 +

(
h(u)

)2))
=

γ

loge (10)× T

T∑
u=1

(
2h(u)

1 +
(
h(u)

)2
)
f ′
(
W(2)d(u) + b(2)

)
(11)

where f ′ (·) = 1 − (f (·))2 is the element-wise derivative
of f (·). Thereby, the SSAE is designed to generate many
zeros at the hidden layer. One can think of a neuron as being
active when its output is not equal to zero, and an inactive
neuron does not participate in forwarding the input data to the
output (because it does not generates signals). To this end, two
important issues of the second term of (7) must be noted as
follows:
• The second term minimizes the hidden layer activation,

but it still does not ensure exactly zero activations.
• It does not guarantee sparsity ratio at the generated codes.

Accordingly, a shrinking mechanism must be applied at the
hidden layer activation and before propagating them to the
output layer to reconstruct the input. In particular, one can
think of the second term as only being used as a mechanism
of nominating the most promising neurons to be deactivated
by the shrinking mechanism as described in the next section.

A. Shrinking (Pruning) Scheme

Even though the cost function of the SSAE is designed
to generate a sparse data coding at the hidden layer, it
does still neither guarantee a coding with population sparsity
(sparsity at each input vector) nor assert on the maximum

Algorithm 1 Pseudo-code for the shrinking operation of
hidden layer’s neurons.

1: Input h ∈ RL: hidden layer activation before shrinking
2: Input K: maximum nonzero activations
3: s = h . copy operation
4: for i = 0 to L−K do
5: p = 0
6: for j = 0 to (L− 1) do
7: if |sp| > |sj | and |sj | > 0 then
8: p = j
9: end if

10: end for
11: sp = 0 . zero-out smallest value
12: end for
13: Output s ∈ RL

nonzeros for each input. Equally important, it will most likely
generate values close to, but not absolutely zero. Therefore, we
propose a simple shrinking mechanism that can complete the
design cycle. For each input vector, the proposed shrinking
mechanism “zero out” the least dominant neurons from the
hidden layer, and therefore switching them to the deactivation
mode. The least dominant neurons are the ones with the
least effect on the data reconstruction at the output layer,
and hence the minimum activation values that result from the
sparsity restrictions. Therefore, only K active neurons at the
hidden layer forward propagate the input through the SSAE
network, and the remaining L−K neurons are switched off.
An optimized implementation of the shrinking scheme is given
by the pseudo-code in Algorithm 1, where |·| is the absolute
value function.

B. Offline Training

The SSAE’s parameter adjustment is done during an offline
training stage. As a resource demanding process, the training
must be performed at the BS unit, and then the SSAE’s
parameters (θ) are disseminated for online data compres-
sion at GW. The learning stage and SSAE’s parameters are
tuned using a resourceful BS with relatively high precision
operations. However, GW is usually constrained in terms of
computational resources and computational precision (i.e., the
machine epsilon value). Therefore, rounding the activation at
the hidden layer is needed during the learning stage to match
the GW’s low precision. Moreover, with rounding, less data
is transmitted from GW to BS.

To learn the SSAE’s parameters (θ), we minimize
(7) by using a non-linear quasi-Newton method called
the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) method [24]. However, firstly the collected historical
data X ∈ RT×N must be randomly shuffled. This is because
sensors’ readings are highly correlated over time, and a non-
shuffled data causes the SSAE to dominantly learn the training
data’ patterns in training data only. Therefore, the shuffling
step ensures that the training and testing data sets contain
all possible data patterns. Moreover, the cross validation
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Algorithm 2 The offline training algorithm.
1: Input X ∈ RT×N : historical sensor data
2: Input K: maximum nonzero activations
3: Input γ: sparsity hyper-parameter
4: Input ϕ: number of folds for cross validation
5: Randomly shuffle X
6: Divide X into ϕ folds X1, . . . ,Xϕ

7: for all Xi, i = 1, . . . , ϕ do
8: for all x ∈ (X \Xi) do . held out Xi for testing
9: Sphere input x to get d using (12)

10: Append d to D
11: end for
12: repeat
13: for all d ∈ D do
14: Forwardly propagate d to compute h using (5)
15: Shrink h to get s as in Algorithm 1
16: Compute d̂ using (6)
17: end for
18: Compute the cost value using (7)
19: Compute the gradient vector as in (10)
20: Update θ using the L-BFGS method
21: until learning converges
22: Compute accuracy using Xi

23: end for
24: Compute average accuracy of the ϕ folds
25: Output θ .

=
[
W(1),W(2),b(1),b(2)

]

technique [25] is an effective method for testing the model
generalization capabilities, while benefiting from all available
samples for training. Cross validation divides the training data
into ϕ groups (e.g., 10 groups) then at each time, one group
is held out for testing while using the remaining for model
fitting. Then, the model performance is found by averaging
errors of all cross validation’s groups. The offline learning is
described in Algorithm 2.

The learning algorithm is computationally intensive for
sensor nodes and must be performed at the BS. Moreover,
if the statistical parameters of the underlying phenomenon
change, the offline training must be re-executed and an updated[
W(1),b(1)

]
should be disseminated to the nodes.

C. Computational Complexity

The online encoding and decoding of sparse codes are
lightweight. In particular, the GW (or a sensor node) can
generate sparse codes by only using

[
W(1),b(1)

]
as in (5) and

Algorithm 1 with O(L×N) of overall time complexity. The
data recovery is performed at the BS by using

[
W(2),b(2)

]
as in (6) with a similar time complexity of O(L×N).

D. Sparse Codes

For the verification and analysis in the following sections,
a meteorological data set from the Sensorscope project [26] is
used. The data set contains surface temperature samples of 23
sensors. The learning curve of the SSAE is shown in Figure 4a.

An important indication of successful SSAE training is en-
suring that hidden neurons are not connected with zero weights
to the input layer. In other words, this ensures that any neuron
in the hidden layer will be active for some input patterns,
and hence no “always-off” neuron exists. This increases the
model performance of generalizing to non local data, and
hence it performs well on extremely non linear data, as all
neurons participating increases the possible code formulations
(i.e., the number of distinct combinations is increased when
having more active neurons). Figure 4b shows hidden layer
activations over time. Here, two main desirable properties can
be observed

1) Population sparsity is achieved, and the maximum num-
ber of active neurons at any time instant is guaranteed
by the SSAE network. This upper bound of nonzeros in
a generated sparse code considers the tradeoff between
the recovery error and compression ratio of the data
aggregation model. Therefore, only a single sensing
matrix is needed when using CS to create a measurement
vector at the GW node.

2) All neurons are participating in the sparse code gener-
ation, and without any “always-off” neuron. Moreover,
the activation values of the active neurons are not con-
centrated around very small values near zero. This fea-
ture cannot be achieved in conventional average activity
ratio sparse autoencoders, such as the Kullback–Leibler
divergence, as they are designed for lifetime sparsity
only.

IV. DISCUSSION AND PRACTICAL CONSIDERATIONS

In this section, some practical issues of the SSAE training
and fitting are discussed.

A. Data Collection

A crucial aspect of machine leaning-based approaches, such
as the SSAE network, is the training data requirement. A
system designer may have access to a large historical data
set that is collected in the past. This historical data can be
used to train the SSAE’s model. However, this is not the
case for new WSN’s deployments, and the lack of sensor data
hinders the accurate fitting of the SSAE’s parameters (i.e.,
θ). Clearly, the SSAE’s model needs to globally generalize to
unseen data samples. In any machine learning method, having
more training data can improve generalization performance,
but having more data is not the only solution [27]. In WSNs,
the following issues must be considered when using an SSAE
as a sparsity inducing method.

1) It is assumed that sensor nodes are densely deployed
and hence spatially correlated with each other (e.g., as
in Figure 5 for the Sensorscope project’s data). SSAE
learns these spatial correlation and redundant patterns
in the nodes’ collected data. Therefore, if the underly-
ing phenomenon becomes different in the way that it
changes the nodes’ spatial correlation, then new data
collection and offline model fitting must be performed.
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(a)

(b)

Fig. 4: An SSAE which is designed to produce a maximum
of 5 nonzero values at each time instant (η = 0.2) for 23
sensors (i.e., x ∈ R23). (a) A learning curve that shows the
convergence of the offline learning algorithm, and (b) activa-
tion values of the hidden layer’s neurons.

Fig. 5: Surface temperature readings of 4 neighbor sensors
from the Sensorscope deployment over 1 day (1 sample every
2 minutes). This shows the spatial correlation among sensors’
measurements, and hence data compressibility.

2) The amount of data required to fit the SSAE’s model
depends on the underlying sensed phenomenon, and for
more complex correlation patterns among sensors, more
data samples are needed.

(a) (b)

Fig. 6: Data sphering and its effects on data by showing
histograms and basic statistical values. (a) Raw data in the
range of [−16.15, 47.91]. (b) Sphered data that is scaled to a
new range of (−1, 1) with a Gaussian-like distribution.

B. Data Sphering

Before using historical sensor data to train the SSAE, a
pre-processing operation is required, namely the data sphering
stage. Data sphering is simply achieved by applying the
following operation on each sensors’ raw input vector x ∈ RN

d = sphere(x, σ) =
max (min ((x− x) , 3σ) ,−3σ)

3σ
(12)

where σ is the standard deviation of the historical training
matrix X, x = 1

N

∑N
i=1 xi is the arithmetic mean of each input

vector, and again d ∈ RN is the SSAE’s input vector which
is the resulting data vector after sphering. Unlike the stan-
dard element-wise standardization, this subtracts the arithmetic
mean of each input vector and not the whole training matrix’s
mean value. The effect of data sphering on training data is
shown in Figure 6. Clearly, the data is transformed into a
smoother Gaussian-like curve with zero mean (other statistical
parameters are also shown). Equally important, the resulting
scale of sphered data is in the (−1, 1) interval, which makes it
suitable for the operation of the hyperbolic tangent function. In
particular, the hyperbolic tangent function generates an output
in the range of (−1, 1) and without data pre-processing to this
range, the SSAE cannot produce outputs similar to input data.

The reverse operation of data sphering is required at BS to
reconstruct the original raw sensors’ vector x̂ ∈ RN from the
SSAE’s output values d̂ ∈ RN . The reverse operation is given
as

x̂ = desphere(d̂, x, σ) = 3σd̂ + x. (13)

Here, σ is constant for all recovered vectors, and therefore
can be stored at the BS. However, x must be sent from the
GW to the BS along with the compressed data. Therefore, the
transmitted data size when using CS is M + 1.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the SSAE-
based sparsity inducing method.

A. SSAE Tunning

One of the main difficulties of applying neural network-
based methods is the numerical tuning of the network hyper-
parameters. Hyper-parameter setting of autoencoder’s variants
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can be facilitated by searching over a scale of values in the log-
domain (e.g., values such as 10−1, 10−2, 10−3, . . .), and then
the value that minimizes the cross validation error is selected
accordingly [28]. Figure 7 shows the setting of the sparsity
hyper-parameter γ for sparsity ratio η = 0.39. The sparsity
term in (7) can be interpreted as sparsity nomination term, that
is fed to the shrinking mechanism to generate sparse codes.
Therefore, trying different values of γ is useful to achieve
maximum signal reconstruction performance. For SSAE in
the next experiments, the following function is used for the
sparsity penalty γ settings

γ (η) = 0.26− 0.26η, (14)

which is found by manually fitting the hyper-parameter γ for
two values of η, as described above, and then finding the line
connecting these two manually fitted points.

B. Comparing to Benchmarks

Using a difference matrix that captures the difference be-
tween adjacent and correlated values as a sparse basis was used
in [4], [15]. Similar to [4], we noted the difference matrix’s
poor performance in sparsifying the data, and hence it is not
included in our comparison analysis.

Figure 8 shows a comparison between the SSAE recov-
ery performance and other conventional methods including

principal component analysis (PCA), discrete Fourier trans-
form (DFT), discrete cosine transform (DCT), and dictionary
learning (DL). These conventional methods are chosen for
comparison as they are widely used in the CS literature [4],
[9]–[12]. Two important observations can be made.

1) Most sparsity inducing algorithms will achieve a rela-
tively similar recovery error at high values of η. How-
ever, these high sparsity ratio values (e.g., η > 0.7)
are not typical in practical applications as the reduction
in data size is not noticeable. Therefore, these values
cannot be used for CS’s applications as the measurement
vector size will be similar to the source signal size (i.e.,
N ≈M ). On the other hand, SSAE significantly outper-
forms conventional methods for practical low sparsity
ratios and when the nonzero values in the generated
sparse codes are required to be minimized.

2) Conventional DL methods (e.g., [29], [30]) use the `1
minimization to model the raw data as linear combina-
tions of sparse bases. In this paper, we used the scikit-
learn library [31] for testing the dictionary learning
method in which the coordinate descent method is
used to find the LASSO problem solution. Similar to
our algorithm, the scikit-learn’s implementation enables
setting the required sparsity ratio by defining the number
of nonzero coefficients in the sparse code, while we
set the remaining parameters to their default values. We
normalize the data to a zero mean and a unit variance
before learning the dictionary model. In addition to the
slightly better performance, we also noticed that the
learning time of the SSAE method is also shorter than
the DL method. This is significant for large-scale WSNs.

C. Noisy Data

Sensors may report imprecise measurements due to external
noise sources, inaccurate sensor calibration, unstable power
supply, and imperfect node design [32]. In this section, we
assume that noise values are independent Gaussian variables
with zero mean and variance σ2

z such that z ∼ N
(
0, σ2

zIN
)
,

where z ∈ RN is an added noise vector. We noticed that the
SSAE method does not only allows the compression of the
sensors’ data, but it also helps in estimating the noiseless data
vector of the physical phenomenon x∗ ∈ RN .

An overcomplete sparse representation is achieved when
the number of hidden layer’s neurons (sparse code’s size) is
greater than the input layer’s neurons (i.e., L > N ). However,
the measurement vector’s size M of CS is proportional to the
sparse code’s size as in (3). Therefore, the number of nonzero
items must be minimized, and less nonzero coefficients are
defined in the overcomplete sparse code. On the other hand,
using more neurons in the hidden layers can result in the
overfitting problem [33]. Overfitting degrades the neural net-
work’s reconstruction performance and increases the learning
time of the parameters θ

.
=
[
W(1),W(2),b(1),b(2)

]
. Table I

summarizes the experiments of using overcomplete sparse rep-
resentation. The results also include the case of adding external
noise z ∼ N (0, IN ) to sensors’ measurements. This shows that
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TABLE I: System performance with different numbers of
hidden neurons.

L K γ M
RMSE (no

external noise)
RMSE (noise
σ2
z = 1)

23 5 0.2 12 0.987 1.522
(unreliable)

25 5 0.25 12 0.930 (best) 1.512
(unreliable)

30 4 0.5 12 0.982
(overfitting) 1.259 (best)

32 4 0.6 12 1.027
(overfitting) 1.338

the overcomplete case is useful in unreliable network to reduce
the noise effects while producing sparse codes. However, in
noise-free networks, using overcomplete codes can degrade the
sparsity-inducing algorithm performance due to the overfitting
problem.

VI. SUMMARY

In this paper, we have introduced a sparsity-inducing al-
gorithm for data aggregation of non-sparse signal in wireless
sensor networks. The proposed method consists of three steps:
data collection, offline training and modeling, and online
sparse code generation. The modeling scheme is based on
a neural network with three layers, where the sparse codes
are exposed at the hidden layer’s neurons. A cost function is
introduced as a sparsity nomination scheme. Then, a shrinking
mechanism is used to switch off the least dominant neurons in
the hidden layer, while asserting on the number of generated
nonzero values in the sparse code. The resulting scheme can
be used in many applications such as in compressive sensing-
based data aggregation schemes.

For future research, we will analytically study the en-
ergy consumption and computational burdens of the proposed
scheme.
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