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Abstract—An important challenge of modern data centers is
to reduce energy consumption, of which a substantial proportion
is due to the network. Energy Efficient Ethernet (EEE) is a
recent standard that aims to reduce network power consumption,
but current practice is to disable it in production use, since
it has a poorly understood impact on real world application
performance. An important application framework commonly
used in modern data centers is Apache Hadoop, which imple-
ments the MapReduce programming model. This paper is the
first to analyse the impact of EEE on MapReduce workloads,
in terms of performance overheads and energy savings. We
find that optimum energy savings are possible if the links use
packet coalescing. Packet coalescing must, however, be carefully
configured in order to avoid excessive performance degradation.

Keywords—IEEE 802.3az, Green Ethernet, Energy Efficiency,
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I. INTRODUCTION

One of the greatest concerns in the design of data centers
is the need to reduce energy consumption. In recent years, the
number of data centers has multiplied, and worldwide, they are
now responsible for a significant proportion of global electric-
ity consumption [1]. In 2006, U.S. data centers consumed three
billion kilowatt-hours (kWh) per year, and, in 2015, although
up-to-date figures are not available, power consumption is
expected to have more than doubled [2]. More recently, in
2011, worldwide data centers were already responsible for
1 to 2% of total worldwide electricity consumption [3]. In
the same year, U.S. data centers were anticipated to consume
100 billion kWh per year, at a cost of $7.4 billion per year [4].
A recent study even showed that the cost of energy on current
data centers had exceeded the cost of the hardware [5].

A significant proportion of a data center’s energy con-
sumption is caused by the network. D. Abts et al. [6] re-
cently showed that a typical data center network consumes
12% of the total system power at full load, and even more
when the CPU and memory are not fully utilized, which is
common in data centers. Another study put the total energy
consumption for network switches at 30% [7], divided among
top of rack switches (15%), aggregation switches (10%) and
core switches (5%). The proportion of energy consumed by
the network is likely to increase, as processors and other
components continue to improve in energy efficiency and
energy proportionality.! There is still opportunity to reduce

IThe term “energy proportional” means that a component’s energy con-
sumption should be proportional to its utilization.
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network energy consumption through energy proportionality,
since interconnect links, which consume up to 65% of the total
network power [8], always consume full power, even when the
link is idle [9].

The Energy Efficient Ethernet (EEE) standard, approved by
IEEE in 2010, aims to improve Ethernet energy proportionality
by defining a link sleep mode known as Low Power Idle (LPI).
Although the standard defines the low-level mechanisms for
entering and leaving LPI mode, its designers chose to promote
competition between vendors by not defining how to decide
when to enter and leave sleep mode. EEE was initially
analysed for Small Office/Home Office (SOHO) environments,
but ongoing efforts are analysing its deployment for data center
applications, including video streaming [10] and scientific
computing [11]. Since EEE can incur significant performance
overheads, many system vendors still advise their customers to
disable it in production use [12]-[14], at least until its impact
on real applications is better understood.

This paper is, to the best of our knowledge, the first to
study the impact of Energy Efficient Ethernet on MapReduce
workloads. MapReduce [15] and its open-source implementa-
tion, Apache Hadoop [16], are widely used for the processing
of huge data sets on large commodity clusters. MapReduce
presents a specific traffic pattern, including all-to-all commu-
nication in the shuffle phase, between mappers and reducers.
It is also representative of a wider phenomenon, the move
from traditional north—south data traffic, i.e. between external
users and the data center; towards east—west traffic, i.e. among
servers inside the same data center. In fact, more than 75% of
the total traffic nowadays remains inside the data center [17].

Our work can be used to estimate the suitability of EEE for
applications that follow the MapReduce programming model,
in terms of both performance and energy. We find optimum
energy savings for all network links, not only those at the
edges of the network, when packet coalescing is enabled.
With packet coalescing, switches intentionally delay outgoing
packets while the link is in LPI mode, so that they can be
transmitted back-to-back with subsequent packets. The packet
coalescing settings, however, must be carefully chosen to avoid
an excessive loss in performance.

In short, our contributions are threefold:

1) The first evaluation of the performance impact and

energy savings from using EEE on a MapReduce cluster.

2) Analysis of packet coalescing, including the tradeoff
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The rest of the paper is organized as follows: Section II Link Utilization (%)
provides the background about EEE, MapReduce, Hadoop,
and the various TCP/IP problems encountered in modern data Fig. 2. Normalized link power consumption as a function of utilization,

centers. Section III compares our approach with related work.
Section IV presents the methodology, quantitative results and
analysis, from which Section V distils the most important
recommendations. Finally, Section VI concludes the paper.

II. BACKGROUND

In this section we describe Energy Efficient Ethernet,
summarize the MapReduce model, and identify problems in
modern data center networks that can be made worse by
Energy Efficient Ethernet.

A. Energy Efficient Ethernet

IEEE 802.3az Energy Efficiency Ethernet (EEE) was ap-
proved by IEEE in September 2010 [18]. Since Ethernet is
the dominant technology for wire-line LANS, the power saving
mechanisms of EEE are expected to bring considerable energy
savings [10]. EEE has already been deployed, but many system
vendors advise their customers to disable it in production
use [12]-[14], since it has a poorly understood impact on
real world application performance, with no visibility of the
performance/energy tradeoff. This is especially true when
variable latencies cause packet loss or interfere with TCP/IP
network congestion avoidance algorithms.

The EEE standard defines the low-level mechanisms for
entering and leaving sleep mode, known as Low Power Idle
(LPD. EEE is illustrated in Figure 1, which shows the timeline
of a link that is initially active. The sleep transition into LPI
mode requires time 7y. While in LPI mode, the transmitter
sends periodic refresh signals, each of duration 7}, to allow
the receiver to continue to adapt to channel characteristics
and to recognise if the link is physically disconnected. Before

TABLE I
EEE SINGLE-FRAME EFFICIENCY

1,500-byte frame 150-byte frame

Speed Min. Ty, Min. T Ttame Efficiency Ttame Efficiency

(ps) (us) (us) (%) (ps) (%)
100Base-TX 30.5 200 120 34.2 12 49
1000Base-T 16.5 182 12 5.7 1.2 0.6
10GBase-T 4.48 2.88 1.2 14.0 0.12 1.6
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assuming Poisson arrivals (redrawn from [9])

transmitting a frame, the link must be woken from LPI mode,
and doing so requires time Ty, which is approximately 4 s
for 10GbE and 16 ps for 1GbE, similar to the time to transmit
a small number of 1,500-byte Ethernet frames.

Power consumption is at full when the link is active and
during wake and sleep transitions, but in LPI mode, the
average power consumption, including refresh, is reduced to
about 10%. If the load is low, the link may be woken and
put to sleep just to transmit an isolated frame, consuming
excessive energy and incurring a high latency penalty [19].
This is illustrated in Table I, which summarises the energy
efficiency, assuming that the link wakes and sleeps to transmit
a single frame.

The EEE standard does not define the strategy for deciding
when to enter and leave low-power mode. This subject is an
active area of research, as described below in Section III.
Previous studies show that the energy savings depend on the
traffic pattern and network load [9], [19]. Proposals include
Power Down Threshold [11], or stall timer, which initiates
sleep after a defined period of inactivity, typically about 50 ps.
Another technique, packet coalescing, intentionally delays any
packet that arrives while the link is in LPI mode. If additional
packets arrive within a short time, then the link can be woken
once to transmit them back-to-back, amortising the wake and
sleep energy over multiple packets [9], [19].

Packet coalescing (also known as packet aggregation) in-
troduces a significant, and variable latency, and it is not clear
which workloads can tolerate this extra latency. It is usually
characterised using two parameters: the trigger, which is the
maximum number of packets to hold (or alternatively, the
buffer size in KB) and the fimer, or holding time, which is
the maximum time to hold a packet. The right configuration
is critical for maximum energy savings and low performance
overhead [20]. In [9] the authors suggest using either a timer
value of 12us and a trigger of 10 packets or 120 us and 100
packets. Their results, reproduced in Figure 2, assume that the
traffic is characterised as Poisson arrivals. Another publication
uses substantially different values [19], of 1 ms and 10 ms as



timers, in both cases with 1000 packets as trigger. We show
the effect for MapReduce workloads in Section IV, where
we modify the parameters, including configurating different
devices to use different settings.

B. MapReduce and Hadoop

In 2004 Google introduced the MapReduce programming
model for reliable fault-tolerant processing of huge data sets on
large commodity clusters [15]. The programmer is given a data
abstraction in terms of map and reduce operations on key/value
pairs, and the framework takes care of the implementation
details including automatic parallelization, task scheduling
with data locality, monitoring, redundant distributed data stor-
age, and reexecuting failed tasks. The MapReduce framework
splits the input data set into independent chunks, which are
processed in parallel by the map tasks. It then sorts the
combined outputs from the maps, in the so-called shuffle stage,
which involves all-to-all communication among nodes, and
passes the sorted data to the reduce tasks.

Several open-source MapReduce frameworks have been
developed over the years, with by far the most popular one
being Apache Hadoop [16]. Hadoop uses the HDFS (Hadoop
Distributed File System), which uses disks attached to the
same nodes used for computation.

C. Challenges of TCP in Modern Data Centers

The MapReduce programming model [15] targets com-
modity hardware and network equipment using the TCP/IP
protocol. More generally, recent studies show that 97% of the
traffic in current data centers is carried by IP packets, being
either TCP or UDP segments depending on the workload [21].
Microsoft Research published a study of 150 TB of network
traces, which showed that TCP segments make up more than
99% of the internal traffic of their data center [22].

TCP was initially designed for Wide Area Networks
(WANSs) [23], and certain aspects, such as the minimum
Retransmition Timeout (RTO) of 200 ms are better suited to
WANSs than to LANs. Problems that arise in a low-latency
environment include (a) TCP Incast [23], a dramatic loss in
throughput for many-to-one communication patterns, where
congestion leads to packet loss, (b) TCP Outcast [24], where
(surprisingly) the throughput to a congested node may be much
lower from nearby nodes than from more distance ones, and
(c) Bufferbloat [25], where congestion causes excessive packet
buffering, leading to high latency and latency variability.

These phenomena are related to congestion, and they
can be alleviated using a congestion-free network such as
DCTCP [22], but such technology is not yet mainstream and
is still not trivial to deploy. Network equipment buffers are the
main responsible for congestion of the classic TCP protocol
model [25], and commodity hardware switches tend to have
small (shallow) buffers. Since the classic TCP protocol takes a
considerable time to react to congestion, shallow buffers will
drop packets, adversely affecting network throughput [22].
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III. RELATED WORK

Cisco published a study of Energy Efficient Ethernet that
showed a 16% reduction in system power for synthetic Ether-
net traffic [12]. The same study recommends that EEE should
be used only for edge devices. Yamaha Audio advises their
customers to disable Energy Efficient Ethernet for audio and
video streaming [13]. Dell also presents a troubleshooting
section related to EEE [14].

De la Oliva et al. conducted a study of the effect of Energy
Efficient Ethernet on a video streaming service using UDP
traffic [10]. Their simulation results showed that UDP video
streaming could achieve good energy savings without the
need for advanced techniques such as packet coalescing. They
mention, however, that using TCP rather than UDP would have
led to lower energy savings, due to TCP acknowledgements
and TCP congestion control mechanisms.

Regarding packet coalescing, previous authors have recom-
mended a wide range of parameters, including holding times
of 1ms or 10ms [19], and the much smaller 12us and 10
packets or 120 us and 100 packets [9]. Even if the application
is not expected to be latency sensitive, larger holding times and
larger numbers of packets lead to greater burstiness, which
we found to cause Ethernet packet loss. This is especially
problematic for commodity data centers, whose switches have
relatively small buffers. Spending more money on high-end
switches could reduce or eliminate this problem, but it is
unlikely to lead to a low cost or low energy solution.

In the field of High-Performance Computing (HPC), Sar-
avanan et al. established that although scientific applications
have high peak communication demand and therefore need a
high-performance interconnect, the average traffic is usually
low [11]. This work led to an adaptive control mechanism
for Energy Efficient Ethernet that maximises energy savings
subject to a bound on the percentage increase in execution
time [26]. Dickov et al. presented an analysis of data com-
pression for Infiniband network energy savings [27]. They
also introduced a novel power reduction software manager
for Infiniband links [28]. Both techniques of Dickov et al.
are implemented in the MPI software layer, so they are only
applicable to workloads written using MPIL.

HPC workloads have complex dependencies and require low
latency, and neither work considered packet coalescing to be
useful. Another important difference with our work is that
we use a detailed packet-level simulator. Both Dickov and
Saravanan use high-level simulation models that abstract away
fine-grain details. We found that in our context, especially
with commodity switches, packet-level phenomena, such as
Ethernet packet loss and the TCP/IP congestion avoidance al-
gorithm, have a critical effect on both performance and energy.
In this context, accurate quantitative results can therefore only
be obtained using a packet-level simulator.

IV. RESULTS

This section first describes the experimental methodology,
and then presents the quantitative results, giving the energy
savings and performance overheads for MapReduce workloads



TABLE III
SIMULATED BENCHMARKS

TABLE II
SIMULATED ENVIRONMENT
Category Parameter Value
Simulated hardware
System Number nodes 24, 50 or 80
Number racks 2
Node CPU Intel Xeon 2.5 GHz L5420
Number cores 2
Number processors 2
Network Each node IGDE: 1 —
Each ToR. switch IGDE: (# Nodes)/2 10GbE: 1
Aggregation switch — 10GDE: 2
Buffers Commodity switches 128 KB per port
Expensive switches 10 MB per port
Link power 1GbE 0.5W
10GbE 2.5 W

Simulated workload

Config. Number job trackers 1
Number workers 23,49 or 79
Maps per node 2
Reduces per node 2
Jobs Maps Small jobs: 10 Batch jobs: 2x (# Workers)
Reduces Small jobs: 1 Batch jobs: 2x (# Workers)
Block size Small jobs: 64 MB  Batch jobs: 2x128 MB
TCP buffer Default Max. 64 KB per connection
Optimized Max. 1 MB per connection

using Energy Efficient Ethernet. We consider configurations
with and without packet coalescing.

A. Simulation Environment and Workloads

We evaluate the impact of Energy Efficient Ethernet as
a function of the network topology, workload, and control
algorithm, using the NS-2 packet-level network simulator [29].
This simulator has been extended with a model of Energy Ef-
ficient Ethernet [30] and is driven by the MRPerf MapReduce
simulator [31]. This methodology gives full visibility of the
fine-grain details of the TCP/IP protocol in the data center
environment. We did not use real hardware because the EEE
control algorithm is typically implemented in NIC and switch
firmware that is difficult to change.

1) Hardware configuration: The simulated hardware is
shown in Table II. We simulate a two-rack cluster with up
to 80 nodes, each node having the throughput of a two-
core Xeon at 2.5 GHz and a single 1GbE link to the top-
of-rack (ToR) switch. Each top-of-rack switch is connected to
the aggregation switch using a single 10GbE link. The over-
subscription ratio on the 10GbE links is equal to 1.2:1, 2.5:1
or 4:1. This matches Cisco’s recommendation that MapReduce
clusters should be deployed with an over-subscription ratio of
4:1 or lower at the access layer [32]. Lower over-subscription
ratios improve network performance at higher cost [33], ex-
ploring multiple points along the performance—cost trade-off.

We provide results for both commodity and more expensive
switches. Hadoop clusters often use inexpensive commodity
switches, which have small (shallow) buffers. Small buffers
can cause excessive packet loss, leading to the incast and
outcast problems described in Section II. These problems
can be alleviated using expensive switches with larger (deep)
buffers. Manufacturers rarely disclose the buffer sizes in the

Benchmark % of jobs Input size Shuffle size Output size
(MB) (MB) (MB)

Small jobs

TeraSort 33% 640 640 640

Search 33% 640 0.033 0.033

Index 33% 640 114 114

Batch (large) jobs

TeraSort (23 nodes) 100% 5888 5888 5888

TeraSort (49 nodes) 100% 12544 12544 12544

TeraSort (79 nodes) 100% 20224 20224 20224

product data sheet, so we followed the best public source we
could find [34], giving 128 KB per port for the commodity
switches and 10 MB per port for the expensive switches.

An important question is the power consumption of the
1GbE and 10GbE links. 1GbE (1000BASE-T) cards were
originally expected to consume about 1 W, but current NICs
using 110nm silicon technology require just 0.5 W [35]. On
the other hand, 10GbE (10GBASE-T) NICs are still considered
to be power hungry. The previous generation, at 40nm,
consumed about 5 W, while the current generation at 28 nm
is expected to consume between 2 W and 4 W [36]. Our main
contributions are related to energy savings in the 10GbE links,
so we conservatively chose relatively power efficient 10GbE
links. In summary, as shown in the table, we assume 0.5 W
per port for 1GbE and 2.5 W per port for 10GbE.

2) Workloads: Table II also shows the configuration of
the simulated workloads. We reserve one node for Hadoop
housekeeping, to serve as namenode and jobtracker, with the
remaining nodes used as worker nodes for processing map
and reduce tasks. We chose two workloads, small and batch
(large). The small workload consists of a sequence of small
jobs, each with ten map tasks and one reduce task. The average
CPU utilisation is about 40%. This is consistent with a study
of traces obtained at Facebook, which shows that most of the
jobs were small, with few maps and one reduce tasks, and that
the cluster as a whole had a relatively low utilization of about
40% [37]. The large workload is closer to batch processing for
big data applications [38], and we engage the whole system
using a single large job, with the number of map and of
reduce tasks both equal to twice the number of worker nodes.

Table III lists the benchmarks that were used for the
evaluation. Each benchmark comprises a sequence of one or
more MapReduce jobs, each released at a particular time. The
performance metric is the total time needed to finish all of
the jobs in the workload, which is inversely proportional to
the effective throughput of the cluster. The small workload
contained a mixture of TeraSort, Search and Index jobs.
The batch workload contained a single TeraSort job. Batch
processing normally involves large jobs of several gigabytes
or terabytes, but the communication, most of which is in the
shuffle stage, is close to proportional to the workload size.
Since the communication pattern is also repetitive, we can
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obtain representative figures using a workload of 128 MB
per core, which is sufficient to maximise cluster utilisation.
In a real system there may be a significant difference in
performance, since 128 MB per core fits in DRAM caches
while a realistic footprint would not, but this is not modelled
in MRPerf. In addition, given that the sort is already large, both
cases will have similar communication to computation ratio.

Since packet coalescing can increase latency, which
implies more buffering in software, we present results for
two different values for the maximum TCP buffer size per
connection: the default value of 64 KB and an optimized
setting of 1 MB. The optimized setting also enables the TCP
Window Scale option, which allows the congestion window
to grow above 64 KB. The default value of 64 KB is known
to be small, so in production use the global settings must be
changed and the application restarted [39].

3) EEE settings: We assume the sleep and wake timings
given in Table I, and evaluate several control algorithms. We
begin by evaluating Power Down Threshold, or stall timer,
without the use of packet coalescing. We use the best stall
timer value, with the packet coalescing settings in Table IV.

Finally, we include an ideal case, for which sleep and wake
transitions are both instantaneous and zero energy. In this
case, the link is optimally controlled by simply entering LPI
mode as soon as it becomes inactive, providing perfect energy
proportionality without affecting runtime. This result gives a
lower bound on energy consumption.

4) Summary: We have the following configurations:

Number of nodes 24, 50 or 80

Switches Commodity or expensive switches
Workload Small jobs or batch job

TCP window size Default or optimized

Packet coalescing  See previous subsection

B. Variability

Each point in Figures 3, 4, 5, and 6 is the result from a single
run. During our analysis and experimentation we saw small
levels of variability (when we adjusted various parameters -
the simulator itself is deterministic). The greatest variability
among our results, of about 1%, was mainly caused by
dynamic scheduling and the TCP congestion control algorithm.

C. Fixed link latency

Since EEE can only affect execution time via its effect
on latency, we begin by evaluating the effect of link latency

TABLE IV

EEE PACKET COALESCING SETTINGS
Label Holding time Trigger
nopa No Packet coalescing
12us10 12ps 10 packets
120us100 120 us 100 packets
1ms1000 1ms 1000 packets
10ms1000 10ms 1000 packets
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on MapReduce performance. We added a constant latency
on each link, without using EEE, for both workloads: small
tasks and batch processing. Batch processing concentrates
communication during a single shuffle phase, leading to
heavy congestion, whereas small tasks have communication
more distributed over time. Therefore, since the congestion
is smaller, small tasks achieve greater throughput per link,
requiring larger buffers to compensate for a particular delay.

Regarding the default TCP settings (receive and send buffers
and scale window), as shown in Figure 3, for small tasks the
runtime begins to increase only when the latency per link
exceeds about 100 pys. Batch processing is much less sensitive
to latency and shows performance degradation only when the
latency exceeds about 5ms per link.

We conclude that the 1GbE wakeup latency of 16.5us
should have a negligible impact on MapReduce performance,
for both workloads, even with the default TCP settings.
Since the latency is added per link, it includes the effect of
consecutive wakeups on multiple hops.

D. Standard EEE and stall timer

The simplest EEE control algorithm puts the link into Low
Power Idle (LPI) mode as soon as it becomes inactive [18]. A
more advanced method, known as Power Down Threshold or
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stall timer, enters LPI mode after a defined period of inactivity,
which is typically about 50 us (see Section II-A). If the stall
timer is too small, then the link may frequently enter and leave
LPI mode, incurring a large performance penalty. On the other
hand, if the stall timer is too large, the links will seldom enter
LPI mode, yielding poor energy savings. We therefore expect
the stall timer to provide a trade-off between performance and
energy.

We evaluated the effect of the stall timer setting, as
shown in Figure 4 (energy consumption per port) and
Figure 5 (runtime). Figure 4 also shows the average energy
consumption of all ports of the Data Center (DC). These
results show that the stall timer offers little advantage over
the simple algorithm, since, even for our worst-case results,
a stall timer of zero gives a small performance overhead that
is hard to distinguish from scheduling and other noise. We
therefore refer to the simple control algorithm without packet
aggregation (nopa) as Standard EEE.

Figure 6 compares the energy consumption of legacy
Ethernet with Standard EEE. In this figure and in the next
subsection, energy consumption is relative to Standard EEE,
which is the current state of the art. We see that the energy
consumption is reduced by a factor of between five and eight,
depending on the scenario (workload and network over-
subscription ratio). Figure 6 also shows the energy results for
the ideal case, which has instantaneous zero energy sleep and
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wake transitions. In the following section we find that close
to ideal energy savings are possible using packet aggregation.

E. Optimum Energy Savings on MapReduce Cluster

In contrast to previous recommendations for the deployment
of EEE [9], [19], we find optimum energy savings from EEE
across the whole network, specially for 10GbE, but only when
packet coalescing is enabled. As showed by our results, packet
coalescing parameters and TCP settings must, however, be
carefully chosen. The results were normalized to the standard
Energy Efficient Ethernet (without packet coalescing).

1) Uniform EEE settings: Figure 7 resumes the averages
across the six scenarios (workload and over-subscription ratio),
with zoomed vertical axes that show the most relevant results
for the five packet aggregation settings from Table IV, default
or optimised TCP buffers, and shallow or deep switch buffers.
More detailed results which include the normalized runtime
and energy results for each one of the six scenarios (workload
and over-subscription ratio) are presented in Figure 8.

Regarding performance first, all results with the 12us10 and
120us100 settings increase runtime by less than 5% (Figure 7),
with little variation among the six scenarios (Figure 8).
Clearly, using deep buffer switches can help mitigate the
impact of burstiness. But avoiding congestion does not
eliminate the problem completely. Since delay is introduced
on the network, it is necessary to tune TCP settings to allow
more packets in flight and overcome the introduced delay.

In contrast, the 1ms1000 and 10ms1000 increase the run-
time significantly, especially with shallow buffer (commodity)
switches, where even the best case is three times slower
than the baseline. The exception is the batch workloads on
deep buffer switches, which do not need tuned TCP settings,
independently of the subscription ratio. Congestion is the
limiting factor during the shuffle phase when the cluster is
fully utilized so the TCP congestion window does not grow
enough to require tuned receive and send TCP buffers. In
addition, the traffic load is sufficient to usually trigger the
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1000-packet threshold without waiting for the 10 ms timeout,
so the runtime of these workloads is similar to 1ms1000.
For small tasks, in contrast, even if the CPU utilization is
high the data transfer between mappers and reducers will
happen independently for each task what does not achieve the
minimum load to trigger link re-activation.

Turning to the energy results, in Figure 7, we see that packet
aggregation with 12us10 and 120us100 settings reduce energy
consumption to 75% and 60% of Standard EEE, respectively.
This is a good result because, as seen above, the runtime
increases by less than 1%. In comparison, although 1ms1000
saves the most energy using deep buffers and tuned TCP
settings, it increases the runtime by an unacceptable 25% in
scenarios with shallow buffers. The final setting of 10ms1000
has even higher overheads.

2) Non-uniform EEE settings: As we can see from Fig-
ure 9, using different settings of packet aggregation for differ-
ent NICs improved the energy savings. The aggregation switch
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Fig. 10. Detailed energy consumption by NICs

has better energy savings using 1ms1000, since 12usl0 and
120us100 present good savings for a moderate load but not
for high load. Under high load, 1ms1000 gets closer to ideal
savings for 10GDbE links. The next experiment consists in using
1ms1000 for the 10GbE NICs, and 12us10 or 120us100 for
the rest of the data center. We expect to save additional energy
and get closer to the ideal model.



3) Analysis by link type: Finally, Figure 10 shows sepa-
rate energy consumption results for (a) the 1GbE links and
(b) the 10GbE links. As before, values are normalized in
comparison with Standard EEE, and 12us10+ and 120us100+
are optimized settings, using 1ms1000 for the 10GbE links.
The greatest savings are obtained for the 10GbE links, which
benefit from packet coalescing, as shown in Figure 10b.
In contrast, Figure 10a shows little benefit for the 1GbE
links, from either 12us10+ or 120us100+, in comparison with
Standard EEE.

V. DISCUSSION AND RECOMMENDATIONS

Our initial results showed that, so long as packet coalescing
is disabled, the performance of MapReduce is not significantly
affected by EEE. We found, however, that the energy con-
sumption without packet aggregation was about twice the best
energy consumption with packet aggregation.

After the experiment with latency per link (see Subsec-
tion IV-C), we believed that packet aggregation should not
hurt the performance of MapReduce workloads considerably
since these workloads are not latency sensitive. In contrast,
our previous results show that it does affect performance.
Coalescing packets not only introduces delay on links but it
adds burstiness that is not desirable on Local Area Networks.
Packet coalescing affects performance through its effect on
burstiness on commodity switches, which leads to packet loss.
Burstiness behaviour on LANs can hurt the performance of a
workload such as MapReduce because we have many-to-one
communication pattern and buffers are limited on commodity
hardware. Our results demonstrate this.

We showed that standard Energy Efficient Ethernet (without
packet coalescing) currently saves only half of what is poten-
tially available using an ideal model, which excludes the over-
head to sleep and wake the links. Because packet coalescing
affects performance, the choice of settings to coalesce packets
must seek for a balance between energy proportionality and
performance degradation.

An ideal model without EEE overheads indicates that for
1GbE links would be possible to save at most about 20% more
energy in comparison with standard EEE. In comparison with
default EEE, when we applied packet aggregation on 1GbE
links we were not able to accomplish more than 5% better
energy savings, and in some cases the benefits were negligible.

For 10GbE links the energy savings are limited by the traffic
load, specially for batch processing. Increasing network over-
subscription consumed proportionally more energy since the
network becomes the bottleneck of the system. Independently
of the load and workload, we verify that is not only feasible as
we actually were able to get close to the ideal, saving between
35% to 75% more energy in comparison with the default EEE.

As verified in Figure 9, the average energy consumption
per NIC demonstrates that in the worst case (Batch 4:1),
coalescing packets overpass standard EEE by 20% in average.
Larger over-subscription ratios decrease the weight 10GbE
links have in the average calculation. On the contrary, packet
coalescing can surpass standard EEE saving between 50% and
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60% more energy in average if the cluster is running small
tasks (depending on the network over-subscription ratio).

As a further conclusion, by our results we indicate how to
mitigate or eliminate the effect of burstiness on MapReduce
clusters. It is necessary to use a transport protocol that reacts
quickly to congestion. That is not the case for TCP, since it
does not implement Explicit Congestion Notifications (ECNs)
nor does it have a suitable Retransmission Timeout (RTO)
for LANs. On the contrary, DCTCP [22] or other transport
protocols that react fast to congestion may help to alleviate
the problem since such protocols reduce buffer utilization
while keeping the maximum throughput possible. Finally, we
recommend using packet aggregation in a MapReduce cluster
as long as it is carefully tailored for different equipment of
different layers (edge or core). Our example shows it is better
to use 12us10 for edge devices with 1GbE links and 1ms1000
for core devices with 10GbE links since they have higher
traffic load and therefore there is more potential for benefits
comparing with the standard Energy Efficient Ethernet.

VI. CONCLUSIONS

In this paper, we presented a novel analysis of Energy
Efficient Ethernet for MapReduce clusters. We evaluated the
performance impact and energy savings, and found, contrary
to recommendations from manufacturers, that the MapReduce
programming model is not sensitive to the overheads of EEE,
even with packet coalescing. We even demonstrate that a sim-
ple control algorithm that switches idle links off immediately
is sufficient, but that optimum energy savings in the 10GbE
links are only possible with packet aggregation. We suggested
tailored settings for use in edge devices (1GbE) and core
devices (10GbE), improving the energy savings between 20%
and 60% in comparison with standard EEE, depending on the
workload and the network over-subscription ratio. As part of
future work, we plan to extend our study to use a protocol
that reacts faster to congestion, reducing the buffer utilization
of network equipments.
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