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Deep Learning-Based Detection of Epileptiform
Discharges for Self-Limited Epilepsy With

Centrotemporal Spikes
Yonghoon Jeon , Yoon Gi Chung , Taehyun Joo, Hunmin Kim , Hee Hwang, and Ki Joong Kim

Abstract— Centrotemporalspike-waves (CTSWs) are typ-
ical interictal epileptiform discharges (IEDs) observed in
centrotemporal regions in self-limited epilepsy with cen-
trotemporal spikes (SLECTS). This study aims to develop
a deep learning-based approach for automated detection of
CTSWs in scalp electroencephalography (EEG) recordings
of patients with SLECTS. To lower the substantial burden of
IED annotation on clinicians,we simplified it by limiting IEDs
to CTSWs because electroencephalographic patterns of
CTSWs are known to be highly consistent. Two neurologists
annotated 1672 CTSWs of 20 patients with SLECTS. There-
after, we performed a two-level CTSW detection procedure:
epoch-level and EEG-level. In the epoch-level detection,
we constructed convolutional neural network-based classi-
fication models for CTSW and non-CTSW binary classifica-
tion using the recordings of 20 patients and 20 controls.
We then set the thresholds of the classification models
for 100% specificity. In the EEG-level detection, we applied
the threshold-adjusted classification models to the record-
ings of 50 patients and 50 controls that were not used in
the epoch-level detection to distinguish between CTSW-
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positive (with one or more CTSWs) and CTSW-negative
(with no CTSW) recordings based on the detection of CTSW
presence. We obtained an average sensitivity, specificity,
and accuracy of 99.8%, 98.4%, and 99.1%, respectively, with
an average false detection rate of 0.19/hr for the controls.
Our approach showed high detectability for CTSWs despite
the simplified annotation process. We expect that the pro-
posed CTSW detectors have potential clinical usefulness
for efficiently reading EEGs and diagnosing SLECTS, and
can significantly reduce the burden of IED annotation on
clinicians.

Index Terms— Deep learning, electroencephalography
(EEG), interictal epileptiform discharge (IED), self-limited
epilepsy with centrotemporal spikes (SLECTS), spike
detection.

I. INTRODUCTION

EPILEPSY is a disorder characterized by recurrent unpro-
voked seizures resulting from abnormal brain activ-

ity such as neuronal hyperexcitability and hypersynchrony
[1], [2], [3]. It has a worldwide prevalence of 0.64% [4], rank-
ing third among neurological disorders in the global burden
of disease study 2015 [5]. Various neuroimaging techniques,
such as magnetic resonance imaging (MRI) and computed
tomography, are utilized to examine epileptogenic lesions [6],
[7]. However, electroencephalography (EEG) is required as an
initial key step in the diagnosis of epilepsy to find evidences
of cerebral abnormalities by monitoring electrophysiological
brain activity [8], [9].

Interictal epileptiform discharges (IEDs) are transient neuro-
physiological activities with distinct morphological patterns on
EEG recordings [10]. IEDs have been established as one of the
diagnostic biomarkers for various epilepsy syndromes owing
to their strong association with neurological pathologies and
unique, syndrome-specific appearance on EEG recordings [1],
[11]. However, considerable time and several tedious tasks are
required to manually detect IEDs. Additionally, manual IED
detection is highly dependent on clinicians’ experience. There-
fore, various conventional machine learning methods based
on feature extraction via EEG signals processing in time and
frequency domains have been proposed to automatically detect
IEDs [12], [13], [14]. Recently, deep learning techniques with
no handcrafted features have been suggested for automated
end-to-end IED detection.

Most deep learning-based approaches use convolutional
neural networks (CNNs) [15], [16], [17], [18], [19], [20],
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[21], [22], [23], [24], recurrent neural networks (RNNs) [21],
[25], [26], and hybrid methods [16], [21], [27] to identify
IEDs on the scalp [15], [16], [17], [18], [19], [20], [21],
[25], [27] and intracranial [22], [23], [24], [26] EEG record-
ings. To enhance IED detection ability, some studies further
considered modification of conventional CNN architectures to
extract spatial EEG features effectively from multiple scalp
regions [7], [9]; multi-level morphological features and multi-
channel co-occurrences of IEDs in deep neural networks [10];
augmentation of synthetic IEDs using a generative adversarial
network [19]; a combination of template-matching and CNN
approaches [18]; and visualization techniques to examine
important areas of input data in time [13] and time-frequency
[18] domains. RNNs can be adopted to capture temporal
properties in long time series data [8], [10], [11]. Still, CNNs
are widely used for the automated IED detection due to
their convenience to handle high dimensional data such as
multi-channel EEG recordings [12]. CNNs are also used to
detect IEDs from simultaneous EEG and functional MRI
recordings. However, the approach using EEG-functional MRI
recordings is less effective than that using EEG owing to signal
deterioration within MRI scanners [28].

Previous studies on deep learning-based automated IED
detection used IEDs with various electroencephalographic
patterns such as spikes, polyspike-waves, spike-waves, and
sharp-waves to train classification models [15], [16], [22], [23],
[26], [27]. Annotation of such IEDs can be extremely time-
consuming, labor-intensive, and clinician-dependent because
clinicians must carefully examine the various patterns in EEG
recordings. This substantial burden on clinicians for IED
annotation can be a potential obstacle for developing practical
automated IED detectors owing to various reasons, such as
an insufficient number of annotated IEDs and high inter-rater
variability.

Self-limited epilepsy with centrotemporal spikes (SLECTS)
— formerly known as benign epilepsy with centrotemporal
spikes or benign rolandic epilepsy — is one of the most
common childhood epilepsy syndromes [29], [30]. IEDs in
interictal EEG recordings of patients with SLECTS are dis-
tinctly visible in centrotemporal regions [29], [31]. Therefore,
they are called centrotemporal spike-waves (CTSWs). Clinical
confirmation of CTSW presence in EEG recordings is crucial
for diagnosing SLECTS [31]. The electroencephalographic
patterns of CTSWs include a sharp transient peak followed
by a trough and a slow wave with a horizontal dipole [32].
The CTSW patterns have morphological signatures; therefore,
they can appear highly consistent with each other in EEG
recordings. Considering these characteristics of CTSWs, clin-
icians should probably examine the consistent patterns during
IED annotation, instead of the diverse patterns as suggested
in previous studies, to develop IED detectors that exclusively
examine CTSWs in EEG recordings of patients with SLECTS.
Thus, we can simplify IED annotation if we focus on detecting
specific IEDs.

In this study, we aimed to develop an automated IED
detection approach specifically for detecting CTSWs in scalp
EEG recordings of patients with SLECTS. We (1) adopted a
deep learning technique to achieve high detectability without

handcrafted feature extraction; (2) limited IEDs to CTSWs
to lower the burden on clinicians for IED annotation; and
(3) evaluated the clinical usefulness of the proposed CTSW
detectors based on the discrimination of EEG recordings with
at least one or more CTSWs and those with no CTSW.

II. METHODS

A. Patients and Study Design

This retrospective study was approved by the Institutional
Review Board (IRB) of the Seoul National University Bundang
Hospital (IRB No. B-2106-688-105) and was conducted in
accordance with the Declaration of Helsinki Principles. The
IRB waived the requirement of informed consent owing to the
retrospective nature of the study. The scalp EEG recordings
of 70 patients with SLECTS (28 females and 42 males with
mean age ± standard deviation of 8.7±1.3 and 8.6±1.3 years,
respectively) and 70 controls (43 females and 27 males
with mean age ± standard deviation of 10.4±2.6 and
11.5±3.0 years, respectively) were analyzed in this study.
The diagnosis of SLECTS was based on the International
League Against Epilepsy criteria [33]. The controls were
neurologically intact and confirmed to have not experienced an
epileptic seizure. Patients whose EEG data showed a typical
and benign course of SLECTS were included, whereas those
that showed atypical progression [34], and had insufficient
EEG data and short follow-up periods were excluded. CTSWs
in patients’ EEG data were identified at the time of the initial
diagnosis of SLECTS. All EEG recordings were obtained
using a 32-channel digital EEG system (Grass Telefactor Inc.,
West Warwick, Rhode Island, United States) for at least 30 min
with a sampling frequency of 200 Hz, notch filter of 60 Hz,
and 19 electrodes, in accordance with the international
10–20 system. If required, chloral hydrate (50 mg/kg, max-
imum 1000 mg) was used as a sedative. All signals were
re-referenced to an average reference, and band-pass filtered
between 1 and 70 Hz.

We performed a two-stage CTSW detection procedure
comprising epoch- and EEG-level detections. The epoch-
level detection was used to construct CNN-based classifica-
tion models for CTSW and non-CTSW binary classification
using the EEG recordings of 20 patients with SLECTS
and 20 controls. Two pediatric neurologists (H. H. and H.
K.) annotated CTSWs of the 20 patients. During CTSW
annotation, each CTSW was defined from the beginning of
its spike to the end of its wave component. Low-to-medium
voltage spike-waves, spikes with no wave components, and
spike-wave complexes overlapping or coinciding with artifacts
were excluded. The EEG-level detection was performed to
distinguish between EEG recordings with at least one or more
CTSWs (hereinafter termed CTSW-positive recordings) and
those with no CTSWs (hereinafter termed CTSW-negative
recordings). The EEG-level discrimination was based on the
detection of CTSW presence in the entire EEG recordings
of 50 patients with SLECTS and 50 controls that were not
used in epoch-level detection. Same neurologists confirmed the
presence and absence of CTSWs in the recordings of patients
and controls, respectively. Fig. 1 shows the overall process
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Fig. 1. Overall process from epoch-level to EEG-level detections. Epoch-level detection is to construct CNN-based classification models for
CTSW and non-CTSW binary classification using the EEG recordings of 20 patients with SLECTS and 20 controls. Thresholds of the classification
models are adjusted to have 100% specificity. EEG-level detection was to discriminate CTSW-positive and CTSW-negative recordings based on
the identification of the presence of CTSWs over the entire EEG recordings, using the EEG recordings of 50 patients with SLECTS and 50 controls
which were not handled in the previous epoch-level detection.

from the epoch-level to EEG-level detections (please refer to
Supplementary Fig. S1 for more details).

B. Epoch-Level Detection

To prepare a dataset for feeding into our CNN-based
classification models, we segmented the EEG recordings of
20 patients and 20 controls into 1 s epochs. The epoch
length was determined based on the longest duration among
annotated CTSWs, allowing each epoch to sufficiently contain
the entire shape of a CTSW. The segments from the recordings
of patients contained CTSWs (hereinafter termed positive
epochs), whereas those from the recordings of controls did not
(hereinafter termed negative epochs). To generate the positive
epochs, we segmented the recordings of patients at starting
points of individual CTSWs. To generate negative epochs,
we segmented the recordings of controls at random time
points. Same neurologists confirmed that the negative epochs
contained no suspicious abnormal components. To handle
imbalanced data distributions, horizontal flipping and jittering
(-100, -50, 50, and 100 ms based on the center of each epoch)
were applied to the positive epochs for data augmentation,
whereas random undersampling was applied to the negative
epochs. A total of 61810 epochs were obtained with a 1:1
ratio of positive and negative epochs. All the epochs from the
EEG recordings of 20 patients and 20 controls were split into
80% and 20% for training and testing, respectively. Therefore,
48694 epochs from recordings of 16 patients and 16 controls
were used for training, and 13116 from those of 4 patients and

4 controls were used for testing (please refer to Supplementary
Fig. S1 for more details).

True positives were positive epochs with CTSWs; false neg-
atives were those with no CTSW; false positives were negative
epochs with CTSWs; and true negatives were those with no
CTSW. We measured the performance of the classification
models based on sensitivity, specificity, and accuracy using
10-fold cross validation and acquired 10 classification models.
The sensitivity, specificity, and accuracy were defined as the
number of true positives divided by the number of positive
epochs, number of true negatives divided by the number of
negative epochs, and number of correctly classified epochs
divided by the total number of epochs, respectively. To maxi-
mize the ability to distinguish negative epochs, we adjusted the
default threshold of 0.5 for the classification models such that
they had 100% specificity. Hence, we acquired 10 threshold-
adjusted classification models (CTSW detectors) for subse-
quent EEG-level detection. We evaluated the performance of
the threshold-adjusted classification models based on their
sensitivities and accuracies.

C. EEG-Level Detection

To distinguish between CTSW-positive and CTSW-negative
recordings, we applied the threshold-adjusted classification
models to the EEG recordings of 50 patients and 50 controls
that were not used in epoch-level detection. The threshold-
adjusted classification models identified the presence of
CTSWs across the entire EEG recording using a sliding
window technique with a 1 s window and no overlap.
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Fig. 2. Overall CNN architecture for CTSW detection. Multi-channel EEG time series with a size of 19 channels ×200 data points (1 s) are fed into
the split convolution block consisting of temporal and spatial convolutions. After the split convolution block, 16 residual blocks are sequentially added
with a total number of 32 convolution layers. Feature maps after the residual blocks and average pooling are fed into the output block for CTSW
and non-CTSW binary classification using a sigmoid function. The total number of model parameters is 763105. (ReLU: rectified linear unit; ELU:
exponential linear unit).

The CTSWs identified by the models were termed detector-
labeled CTSWs.

True positives were CTSW-positive recordings with at
least one or more detector-labeled CTSWs; false negatives
were those with no detector-labeled CTSW; false positives
were CTSW-negative recordings with at least one or more
detector-labeled CTSWs; and true negatives were those with
no detector-labeled CTSW. We termed all detector-labeled
CTSWs in false positives as false detections. We measured the
discrimination performance of the models based on their sen-
sitivity, specificity, accuracy, and false detection rate (FDR).
The sensitivity, specificity, and accuracy were defined as the
number of true positives divided by the number of CTSW-
positive recordings, number of true negatives divided by
the number of CTSW-negative recordings, and number of
correctly discriminated recordings divided by the total number
of recordings, respectively. The FDR was defined as the
number of false detections divided by the EEG recording time
for each false positive. We measured the FDR only for the
control recordings.

D. CNN Architecture

Our CNN architecture was adopted from previous studies
[15], [35], [36]. It initialized from a split convolution block
with a temporal convolution layer followed by a spatial
convolution layer. The temporal convolution layer had a filter
size of 1 × 5 and 32 linear units. The filter size of the spatial
convolution layer was 19 × 32, where 19 and 32 were the
numbers of channels and linear units in the previous temporal
convolution layer, respectively. A rectified linear unit between
the temporal and spatial convolution layers was used as the
activation function.

After the split convolution block, we sequentially added
16 residual blocks with 32 convolution layers [36], [37]. Each
residual block had two temporal convolution layers with a filter
size of 1 × 3. We used two exponential linear units [38] as
activation functions in each residual block. After the residual
blocks, we added an output block with feature maps calculated
through average pooling. The feature maps were flattened and
fed into the fully connected layers. We used a sigmoid function
for CTSW and non-CTSW binary classification.

We used batch normalization and dropout layers to prevent
overfitting [39], [40], [41], He initializer to initialize weights
for the convolution layers [42], early stopping to enhance
training speed with a patience of 10, AMSGrad [43] and
ReduceLROnPlateau [44] as optimization methods with an
initial learning rate of 0.0003 and a patience of 5, and a binary
cross-entropy loss function as the cost function. We set the
number of training epochs to 50 with a batch size of 128.

We used PyTorch library 1.9.0 [44] with a NVIDIA 3080Ti
(12GB) graphics processing unit and compute unified device
architecture (CUDA) 11.4 programming interface. The entire
CNN architecture is shown in Fig. 2.

III. RESULTS

We obtained 1672 CTSWs from the scalp EEG recordings
of 20 patients with SLECTS. On average, the num-
ber of CTSWs was 83.6±66.3 (mean ± standard devi-
ation) for a 37.4±10.3 min recording time per patient
(2.2±2.0 CTSWs/min). An epoch length of 1 s was determined
based on the fact that the maximum durations of CTSWs
ranged from 0.44–0.77 s. Detailed information on the patients
and their CTSWs is presented in Table I. Fig. 3 shows repre-
sentative positive and negative epochs.
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TABLE I
PATIENT INFORMATION ON THE EPOCH-LEVEL DETECTION. A TOTAL NUMBER OF CTSWS OBTAINED FROM THE SCALP EEG

RECORDINGS OF 20 PATIENTS WITH SLECTS IS 1672. ON AVERAGE, THE NUMBER OF CTSWS IS 83.6±66.3 (MEAN±SD, WHERE SD IS

STANDARD DEVIATION) FOR 37.4±10.3 MIN RECORDING TIME PER PATIENT (2.2±2.0 CTSWS/MIN). THE MAXIMUM DURATIONS

OF CTSWS RANGE FROM 0.44 TO 0.77 S

Fig. 3. Representative positive (CTSW) and negative (no CTSW) epochs in epoch-level detection. Subplots with two dotted lines show positive
epochs. The first line indicates a starting point and the second line indicates an end point of each CTSW. Subplots with no line show negative epochs.

In the epoch-level detection, the proposed method obtained
a sensitivity, specificity, and accuracy of 99.66±0.40%,
99.87±0.12%, and 99.83±0.15%, respectively, averaged over

10-fold cross validation runs for the classification of positive
and negative epochs. We then adjusted the thresholds of the
10 classification models such that they had 100% specificity.
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TABLE II
EPOCH-LEVEL DETECTION RESULTS ON THE EEG RECORDINGS OF 20 PATIENTS AND 20 CONTROLS. EPOCH-LEVEL DETECTION SHOWS

A SENSITIVITY, SPECIFICITY, AND ACCURACY OF 99.66±0.40%, 99.87±0.12%, AND 99.83±0.15%, RESPECTIVELY, AVERAGED OVER THE

10-FOLD CROSS VALIDATION RUNS FOR THE CLASSIFICATION OF THE POSITIVE (CTSW) AND NEGATIVE (NON-CTSW) EPOCHS. A DEFAULT

THRESHOLD OF 0.5 IS ADJUSTED FOR THE 10 CLASSIFICATION MODELS TO HAVE 100% SPECIFICITY. THE SENSITIVITY AND ACCURACY ARE

CHANGED TO 85.82±5.65% AND 97.74±0.90%, RESPECTIVELY, WITH AN ADJUSTED THRESHOLD OF 0.9988±0.0008 AVERAGED

OVER THE THRESHOLD-ADJUSTED CLASSIFICATION MODELS

Fig. 4. Representative false detections by the fifth classification model in EEG-level detection. From left to right: vertex sharp transients, K-complexes,
electrostatic artifacts, muscle artifacts, electrode pop artifacts, and a combination of electrostatic and muscle artifacts.

As a result, the proposed method obtained a sensitivity and
accuracy of 85.82±5.65% and 97.74±0.90%, respectively,
with an adjusted threshold of 0.9988±0.0008 averaged over
the 10 threshold-adjusted classification models for subsequent
EEG-level detection. Detailed results of the epoch-level detec-
tion are presented in Table II.

In the EEG-level detection, the proposed method obtained
a sensitivity, specificity, and accuracy of 99.80±0.63%,
98.40±2.63%, and 99.10±1.29%, respectively, averaged over

the 10 threshold-adjusted classification models for distin-
guishing between CTSW-positive and CTSW-negative record-
ings. On average, 49.9±0.3 (true positive) and 0.1±0.3
(false negative) recordings of 50 patients were classified
as CTSW-positive and CTSW-negative, respectively, and
49.2±1.3 (true negative) and 0.8±1.3 (false positive) record-
ings of 50 controls were classified as CTSW-negative and
CTSW-positive, respectively. Additionally, we observed an
average FDR of 0.19±0.16/hr (6.5±5.5 false detections over
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TABLE III
EEG-LEVEL DETECTION RESULTS ON THE EEG RECORDINGS OF 50 PATIENTS AND 50 CONTROLS. EEG-LEVEL DETECTION SHOWS A

SENSITIVITY, SPECIFICITY, AND ACCURACY OF 99.80±0.63%, 98.40±2.63%, AND 99.10±1.29%, RESPECTIVELY, AVERAGED OVER THE

THRESHOLD-ADJUSTED CLASSIFICATION MODELS FOR THE DISCRIMINATION OF CTSW-POSITIVE AND CTSW-NEGATIVE RECORDINGS.
ON AVERAGE, 49.9±0.3 (TRUE POSITIVE) AND 0.1±0.3 (FALSE NEGATIVE) RECORDINGS OF 50 PATIENTS ARE CLASSIFIED AS

CTSW-POSITIVE AND CTSW-NEGATIVE ONES, RESPECTIVELY. ON AVERAGE, 49.2±1.3 (TRUE NEGATIVE) AND 0.8±1.3 (FALSE POSITIVE)
RECORDINGS OF 50 CONTROLS ARE CLASSIFIED AS CTSW-NEGATIVE AND CTSW-POSITIVE ONES, RESPECTIVELY

34.1 hr recording time) for 50 controls. Each control showed
an FDR from 0 to 2.56±1.66/hr (false detections from 0 to
1.6±2.0) averaged over the 10 threshold-adjusted classification
models. Detailed results of the EEG-level and false detections
are presented in Tables III and IV, respectively. Fig. 4 shows
that the false detections by the fifth classification model
included vertex sharp transients, K-complexes, and electrosta-
tic, muscle, and electrode pop artifacts.

IV. DISCUSSION

In this study, we proposed and demonstrated a deep
learning-based approach for automated detection of CTSWs
from scalp EEG recordings of patients with SLECTS.
To extract spatiotemporal features of CTSWs from EEG
time series, we adopted a CNN architecture initialized with
consecutive temporal and spatial convolutions. To lower the
burden on clinicians during IED annotation, we limited IEDs
to CTSWs because CTSWs have consistent electroencephalo-
graphic patterns. To evaluate the clinical usefulness of the
proposed CTSW detectors, we performed EEG-level detection
to distinguish between CTSW-positive and CTSW-negative
recordings based on the detection of CTSW presence in the
entire EEG recording. In the EEG-level detection, the pro-
posed method obtained an average sensitivity, specificity, and
accuracy of 99.80%, 98.40%, and 99.10%, respectively, with
an average FDR of 0.19/hr for controls by using the threshold-
adjusted classification models to reduce false detections.

Recent studies on deep learning-based automated IED
detection have reported high IED and non-IED binary classifi-
cation performance for scalp [15], [16], [17], [18], [19], [20],
[21], [25], [27] and intracranial [22], [23], [24], [26] EEG
recordings. Some studies further evaluated their approaches
for distinguishing between EEG recordings with and without
IEDs. They reported a sensitivity and specificity of 88.89%
for 54 recordings with IEDs, and 69.57% for 46 recordings
with no IED [17]; a specificity of 83.30% for 12 recordings
with no IED [16]; and an area under the receiver operating
characteristic curve (AUROC) of 0.847 (the number of EEG

recordings was not provided) [15]. In this study, we termed this
evaluation EEG-level detection. Some studies also examined
the relationship between the sensitivity and false positive rates
in IED and non-IED binary classification (epoch-level detec-
tion in this study). They reported a sensitivity of 97.0% for
a false positive rate less than 6 per minute and 84.0% for
less than 1 per minute [23], and a sensitivity of 96.7% for a
false positive rate of 1.16 per minute and 85.0% for 0.14 per
minute [18]. They implied that a sensitivity reduction could
be required to reduce the number of false positives in IED
and non-IED binary classification. Therefore, we adjusted the
thresholds of our classification models such that they had
100% specificity to minimize the number of false positives in
epoch-level detection. We expected our classification models
to identify negative epochs more accurately with adjusted
thresholds than with the default ones, thereby inducing low
false detection rates in EEG-level detection. Our classification
models had 100% specificity in the epoch-level detection.
However, in the EEG-level detection, they made some false
detections because the EEG recordings used were new data
for them.

In the EEG-level detection, we distinguished between
CTSW-positive and CTSW-negative recordings using the
threshold-adjusted classification models to detect CTSW pres-
ence. This procedure is crucial for screening out the EEG
recordings with no CTSW during the diagnosis of SLECTS.
If the screening is successful, clinicians are required to only
review the EEG recordings with CTSWs. Thus, we can
expect an efficiency improvement for EEG readings in clin-
ical environments. Because clinicians will review the EEG
recordings with CTSWs regardless of the number of CTSWs,
false detections in those recordings will have no effect on
the EEG reading. However, because they can skip reading
EEG recordings with no CTSW, no false detections in those
recordings can reduce the number of recordings that must be
reviewed [18].

In this study, we proposed a deep learning-based automated
IED detection approach that can identify CTSWs in the
scalp EEG recordings of patients with SLECTS. One of our



2946 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

TABLE IV
THE OCCURRENCE OF FALSE DETECTIONS FOR 50 CONTROLS IN THE EEG-LEVEL DETECTION. 50 CONTROLS SHOW AN AVERAGE FDR OF

0.19±0.16/HR (6.5±5.5 FALSE DETECTIONS OVER 34.1 HR RECORDING TIME). EACH CONTROL SHOWS AN FDR FROM 0 TO 2.56±1.66/HR

(FALSE DETECTIONS FROM 0 TO 1.6±2.0) AVERAGED OVER THE THRESHOLD-ADJUSTED CLASSIFICATION MODELS

aims was to alleviate the burden on clinicians during IED
annotation, which can help avoid an obstacle for developing
automated IED detectors. To solve this problem, we limited
IEDs to CTSWs because they have consistent electroen-
cephalographic patterns. Therefore, clinicians (two pediatric

neurologists in this study) could focus on the consistent pat-
terns in EEG recordings during IED annotation. Our approach
has a limitation in that it can only be used for CTSW detection.
However, it can simplify IED annotation and lower the work-
load of clinicians for CTSW detection. Previous IED detection
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TABLE V
PERFORMANCE OF DEEP LEARNING-BASED AUTOMATED IED DETECTION IN PREVIOUS STUDIES AND CTSW DETECTION IN THIS STUDY

approaches using IEDs with various patterns [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27] can
detect IEDs caused by other types of epilepsy. However,
their annotation processes are possibly more burdensome than
the proposed approach. Therefore, we referred the previous
studies presented in Table V to confirm that the proposed
approach performed reasonable detection of CTSWs despite
its simplified annotation process, instead of performing a direct
comparison between their performances.

The proposed CNN architecture was similar to the ones
previously proposed for IED detection [15] and task-related
EEG decoding [35], [45]. It starts with a temporal convolution
with a filter for each channel, followed by a spatial convolution
with a filter for all channels, because temporal scalp EEG

modulations have both local and global properties whereas
spatial ones primarily only have the local property, which
made us name the architecture a split CNN [35]. Presumably,
there are two benefits of the split CNN: compared to a general
2D CNN, we can unmix globally spatial information using
only a temporal filter; and compared to an image-based 2D
CNN, we can reduce the dimensionality of input data [35].
However, we did not compare the detectability of the split
CNN for CTSWs with those of other methods such as a
CNN with a temporal filter [16], [18], [19], [20], [21], [22],
[23], CNN using images as input data [24], fast region-based
CNN [17], long short-term memory (LSTM) or gated recurrent
unit [21], [25], [26], and hybrid CNN-LSTM [16], [27].
A previous study reported high IED detection performance
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using the split CNN, with 0.980 and 0.847 AUROC for epoch-
and EEG-level detections, respectively, [15]. The difference
between our method and that used in the previous study [15]
is that we used a split CNN to detect CTSWs and not IEDs
with various patterns.

It has been reported that some normal features in
sleep EEGs such as vertex sharp transients [46] and
K-complexes [47], and non-physiological components such as
electrostatic [48] and electrode pop [46] artifacts occasionally
result in mislabeled IEDs [49], [50], [51], [52]. We observed
that these normal EEG components and artifacts primarily
resulted in false detections during the EEG-level detection.
To reduce false detections, we suggest the following two
strategies: EEG quality improvement and using a human in
the loop of machine learning [53]. We observed the largest
number of false detections in poor quality EEG recordings of
controls (7 false detections by the fifth classification model)
during EEG-level detection. With the accurate exclusion of
these recordings based on the reviews of clinicians, a refined
dataset can be constructed to retrain the current classification
models. Thereafter, we expect that the retrained classification
models will make fewer false detections in newly added EEG
recordings than the current ones.

V. CONCLUSION

This study proposed a deep learning-based approach
for automatically detecting CTSWs in scalp EEG record-
ings of patients with SLECTS. The proposed CNN-based
CTSW detectors successfully discriminated CTSW-positive
and CTSW-negative recordings with a sensitivity, speci-
ficity, and accuracy higher than 99%, 98%, and 99%, respec-
tively, and an FDR of 0.19/hr. The proposed approach can only
be used for CTSW detection. However, it can lower the burden
of IED annotation on clinicians by limiting IEDs to CTSWs.

However, there are several limitations to this approach. First,
we did not consider the bilateral property of CTSWs. We tried
to identify the presence of CTSWs in the EEG recordings,
without verifying whether they were located in the left or right
hemisphere. Second, we did not quantify the amount of burden
on clinicians that could be lowered during CTSW annotation.
Third, we did not compare the performance of the proposed
CTSW detectors with that of general IED detectors (trained
using IEDs with various patterns) for the EEG-level detection.

To demonstrate the effectiveness and generalizability of the
proposed approach, in a future work, we will test it using a new
dataset, construct classification models using images obtained
through a time-frequency transformation of EEG time series,
adopt other deep learning architectures such as the hybrid
CNN-LSTM, and perform multi-central EEG-level detection.
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