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A Deep CNN Framework for Neural Drive
Estimation From HD-EMG Across

Contraction Intensities
and Joint Angles

Yue Wen , Sangjoon J. Kim , Simon Avrillon , Jackson T. Levine , François Hug ,
and José L. Pons , Member, IEEE

Abstract— Objective: Previous studies have demon-
strated promising results in estimating the neural drive to
muscles, the net output of all motoneurons that innervate
the muscle,using high-densityelectromyography(HD-EMG)
for the purpose of interfacing with assistive technologies.
Despite the high estimation accuracy, current methods
based on neural networks need to be trained with specific
motor unit action potential (MUAP) shapes updated for each
condition (i.e., varying muscle contraction intensities or
joint angles). This preliminary step dramatically limits the
potential generalization of these algorithms across tasks.
We propose a novel approach to estimate the neural drive
using a deep convolutionalneural network (CNN), which can
identify the cumulative spike train (CST) through general
features of MUAPs from a pool of motor units. Methods: We
recorded HD-EMG signals from the gastrocnemius medi-
alis muscle under three isometric contraction scenarios:
1) trapezoidal contraction tasks with different intensities,
2) contraction tasks with a trapezoidal or sinusoidal torque
target, and 3) trapezoidal contraction tasks at different
ankle angles. We applied a convolutive blind source sep-
aration (BSS) method to decompose HD-EMG signals to
CST and segmented both signals into windows to train and
validate the deep CNN. Then, we optimized the structure
of the deep CNN and validated its generalizability across
contraction tasks within each scenario. Results: With the
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optimal configuration for the HD-EMG data window (overlap
of 20 data points and window length of 40 data points), the
deep CNN estimated the CST close to that from BSS, with
a correlation coefficient higher than 0.96 and normalized
root-mean-square-error lower than 7% with respect to the
BSS (golden standard) within each scenario. Conclusion:
The proposed deep CNN framework can utilize data from
different contraction tasks (e.g., different intensities), learn
general features of MUAP variants, and estimate the neural
drive for other contraction tasks. Significance: With the
proposed deep CNN, we could potentially build a neural-
drive-based human-machine interface that is generalizable
to different contraction tasks without retraining.

Index Terms— High-densityelectromyography(HD-EMG),
neural drive, convolutional neural network (CNN), machine
learning.

I. INTRODUCTION

THE human-machine interface is a key component in wear-
able robots (i.e., prostheses and exoskeletons). Ideally,

it should provide a seamless connection between the human
and robot and achieve a reliable voluntary control of wearable
robots in real time. When humans control their body, the motor
cortex transmits neural signals to pools of motor units (MUs),
including motor neurons and the muscle fibers they innervated,
to generate force and movement [1]. Surface electromyogra-
phy (EMG) is a straightforward and easily accessed neural
signal for intention detection and has been widely used for
prothesis and exoskeleton control [2], [3], [4], [5]. However,
due to amplitude cancellation and cross-talk [6], the features
(e.g., magnitude) of surface EMG signals cannot be used to
accurately estimate the neural drive to muscles, the net output
of all the motoneurons innervating the muscle as defined
in [7]. To address these limitations, recent studies relied on
high-density EMG (HD-EMG) decomposition methods [8], [9]
to extract MU spike trains and to estimate the effective neural
drive for force production through the cumulative spike train
(CST; the sum of individual MU spike trains) [10], [11].

Neural drive in the form of CST has been widely used
to estimate motion intention. Compared to amplitude-based
surface EMG, the smoothed CST has higher accuracy in
estimating isometric finger force [12], [13], finger kinematics
[14], [15], and wrist kinematics [16], [17]. Moreover,
using MU spike trains to control upper-limb prosthesis
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outperformed conventional feature-based EMG control
methods with both pattern recognition and musculoskeletal
modeling [18]. However, these approaches are either based
on offline decomposition methods or lack generalizability
across different contraction conditions (e.g., contractions at
different muscle lengths).

Current methods to estimate the neural drive are based on
HD-EMG decomposition using convolutive blind source sepa-
ration methods, including gradient convolution kernel compen-
sation (CKC) [8], FastICA peel-off [9], and the combination of
FastICA and CKC [19]. The online version of these methods
typically includes a two-stage process: 1) an offline initial-
ization where a separation matrix of MU filters is calculated
based on a long segment of data (>10 s); 2) an online decom-
position where the separation matrix is used to identify spike
trains and then updated with the newly identified spike trains
[12], [20], [21]. It is noteworthy that the number of MUs is
determined by the separation matrix, which is fixed during
the offline initialization. One limitation of these approaches
is that the number of identifiable MUs may be different for
different contraction intensities and even for similar intensities
[22], [23]. In addition, the identifiable MUs change, especially
when the contraction intensity increases [22], [24], due to
amplitude cancellation of the smallest MUs [6]. Therefore,
to the best of our knowledge, there is no approach that
can be generalized across different contraction intensities to
accurately estimate the neural drive.

Recently, researchers have demonstrated that a deep convo-
lutional neural network (CNN) can estimate the wrist torque
in two degrees of freedom with HD-EMG reconstructed using
MU discharge times and the MUAP shapes [25]. Deep recur-
rent neural networks (RNN) [26] and deep CNN [27] can
also accurately identify the MU spike trains from HD-EMG.
Specifically, these neural networks extract spatio-temporal
features from the HD-EMG signal and then identify the spike
train for individual MUs after a training based on EMG
decomposition algorithms [26], [27]. However, these methods
rely heavily on the features of the MUAP shapes, which are
different for different MUs and could be altered by the muscle
length even for the same MU [28].

Based on these promising results and the flexible structure
of these neural networks, we propose a novel deep CNN
framework to directly identify the CST from HD-EMG signals
where the deep CNN is generalizable across different contrac-
tion conditions without retraining. The proposed framework
allows us to 1) combine training data from different contrac-
tions without changing the structure of the neural network,
2) train the deep CNN to learn the features of the MUAP
from all the identifiable MUs, and 3) utilize the deep CNN
to identify the CST in real time. In this study, we first
investigate how the parameter space of the input (i.e., step
size and window size) and output (i.e., number of output
nodes) affect the performance of the deep CNN. Then, using
the optimal parameters, we validate the generalizability of
the deep CNN to estimate the neural drive of the gastroc-
nemius medialis (GM) under three scenarios: 1) isometric
trapezoidal contractions with different intensities, 2) isometric
contractions with a trapezoidal or sinusoidal torque target, and
3) isometric contractions at different muscle length.

II. METHOD

A. Deep CNN Model Design

We have previously proposed a deep CNN approach to iden-
tify individual MU spike trains from HD-EMG signals [27].
In this previous study, the structure of the deep CNN was cus-
tomized for each contraction intensity based on the number of
MUs identified during preliminary training. Here, we propose
to directly estimate the rate of spiking activities of the pool of
MU, which is proportional to the neural drive, from HD-EMG
signals by adapting the same deep CNN structure [27]. To this
end, we modified the output of the deep CNN structure to iden-
tify the number of spikes in a given period of time (i.e., a win-
dow of HD-EMG signals). Moreover, this allowed us to create
a unified structure that was generalizable to contractions with
different number of MUs, such as contractions with different
intensities.

Inspired in our prior work, here we used a window of
HD-EMG signals as the input to the deep CNN, where the
width of the window was M (number of HD-EMG channels)
and the length was W (e.g., 120 data points from each channel
when the window size was equal to 120). A sliding window
approach adopted from typical EMG analysis methods [12],
[13], [29] was used to segment the time-series HD-EMG
signals into small windows of HD-EMG signals, and the
increment of the sliding window was defined as step size
(Fig. 1a). The output of the deep CNN was set to the number
of MU spikes in a given period of time, as determined by the
step size. If no spike was identified in the input window, the
output of the deep CNN was zero for all the output nodes; if
one spike was identified in the window, the output was set to
one in the first output node; if two spikes were identified,
the output was set to one in the two first output nodes;
and so on.

We implemented six parametric layers (four convolu-
tional layers and two fully connected layers) and three
non-parametric layers (two max-pooling layers and one flatten
layer) between the input layer and output layer (Fig. 1c). The
first three convolutional layers (C1–C3) included 128 parallel
kernel filters with a kernel size of 3 to extract the spatio-
temporal features, while the last convolutional layer (C4)
had 64 kernel filters to decrease the number of trainable
parameters of the fully connected layers. The output of the
convolutional layers was flattened to a vector and fed into
two fully connected layers, including 256 nodes and 1 node,
respectively. We used a sigmoid activation function for the
output layer and a rectified linear unit (ReLU) activation
function for all other layers. The sigmoid activation func-
tion had an output ranging from 0 to 1, which adhered to
our output requirement of being a binary value. The ReLU
helped to solve the vanishing gradient problem and accelerate
the convergence speed. We have designed the consecutive
convolutional layers (C1 and C2, C3 and C4) to allow the
CNN model to learn more complex features [30], [31]. Max-
pooling with size of 2 was applied to C2 and C4 to extract
representative features while reducing the dimension of the
features. Then, the fully connected layers made predictions
based on the feature maps from convolutional layers. In addi-
tion, a dropout rate of 50% was applied to C2, C4, and
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Fig. 1. Overview of the deep CNN framework. Panel (A) represents two consecutive windows of HD-EMG signals as inputs to the deep CNN,
(B) the activation of the output nodes and the estimated neural drive in form of smoothed CST, and (C) the overall structure of the deep CNN.

F2 layers to regularize the neural network and to prevent
over-fitting.

B. Experimental Signals

Three experimental datasets were recorded from the GM
muscle and used in this study: 1) isometric trapezoidal con-
tractions with three different intensities (Fig. 3A), 2) isometric
contractions tracking a trapezoidal or sinusoidal torque target
(Fig. 3A), and 3) isometric trapezoidal contractions at differ-
ent ankle angles (Fig. 3C). Such experimental design is to
consider the variants of the MUAP shapes and MU firing
patterns when different MUs are recruited at different con-
traction intensities/targets or when muscle length is changed
at different joint angles. The first dataset was used to optimize
the input and output parameters of the deep CNN. Then, all
three datasets were used to investigate the generalization of the
proposed deep CNN approach within these three scenarios.

For all experiments, a two-dimensional adhesive grid of
64 electrodes (13 × 5 electrodes with one electrode absent
on a corner, gold-coated, inter-electrode distance: 8 mm;
[ELSCH064NM2, SpesMedica, Battipaglia, Italy] for the first
experiment, and [GR08MM1305, OT Bioelettronica, Italy]
for the other experiments) was placed over the GM muscle.
Before applying the electrode, the skin was shaved and cleaned
with an abrasive pad and alcohol. The adhesive grid was
attached on to the skin using semi-disposable bi-adhesive
foam layers (SpesMedica, Battipaglia, Italy). Skin to electrode

contact was made by filling cavities of the adhesive layers
with conductive paste (SpesMedica, Battipaglia, Italy). After
we attached the electrodes to the skin, an elastic band was
placed over the electrode to ensure good contact throughout
the experiment. A strap electrode dampened with water was
placed around the contralateral ankle as a reference electrode.
For experiment 1, another dampened strap electrode was
placed around the ipsilateral ankle as a ground electrode;
for experiments 2 and 3, a sticky ground electrode was
placed on the bony area of the ipsilateral tibia. The EMG
signals were recorded in monopolar mode, band-pass filtered
(10–900 Hz), and digitized at a sampling rate of 2048 Hz
using a multichannel acquisition system (EMG-Quattrocento;
400-channel EMG amplifier, OT Bioelettronica, Italy). The
torque signal was low-pass filtered (Butterworth 3rd order, cut-
off frequency: 20 Hz) and digitized at 2048 Hz using the same
acquisition system that was used for HD-EMG.

1) Isometric Trapezoidal Contractions With Different Intensi-
ties: Six healthy participants have participated in this study (6
males, 34±8 years, height 178±6 cm, body mass 76±7 kg).
All participants had no history of lower leg injury within the
past 6 months. The institutional research ethics committee
of the University of Queensland approved this study (No.
2013001448), and all procedures were in accordance with the
Declaration of Helsinki. All participants provided their written
informed consent prior to participation in the study. Note that
the experimental data were a subset of a previously published
dataset [32].
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Fig. 2. Experimental setup for the generalization experimentation across
torque targets and ankle angles (experiment 2 and 3).

After we placed the electrodes, participants were asked
to lay prone on a custom dynamometer while positioning
their knee in full extension. The custom dynamometer, which
consisted of a foot pedal and a torque sensor (TRE-50K,
Dacell, Rep. of Korea) was used to collect data. The ankle
of the participant was securely fastened at a plantarflexion
angle of 10 degrees (0 degree being the foot perpendicular
to the shank). After performing a warm-up set of a series
of sub-maximal contractions, participants performed three
maximal isometric voluntary contractions (MVC) for 3–5 s
with 120-s rest between contractions to prevent muscle fatigue.
Then, participants performed three contractions at each of the
following intensities: 10%, 30%, and 50% of their MVC. The
order of the intensities was randomized. These contractions
involved a 5-s ramp-up, a 20-s (10% and 30% MVC) or a
15-s (50% MVC) plateau, and a 5-s ramp-down phase. The
contractions were separated by either 60 s (10% MVC) or
120 s (30% and 50% MVC) to reduce the effect of muscle
fatigue. Both HD-EMG and torque signals were recorded
concurrently using aforementioned acquisition system.

2) Isometric Contractions With Trapezoidal or Sinusoidal
Torque Targets: Three healthy participants have participated in
this study (3 males, 27±3 years, height 181±6 cm, body mass
71±13 kg). All participants had no history of lower leg injury
within the previous six months that could prevent their full
engagement during the experiments. The institutional research
ethics committee of Northwestern University approved this
study (No. STU00212191), and all procedures were in accor-
dance with the Declaration of Helsinki.

After we placed the electrodes, participants were asked to sit
upright on a dynamometer (Biodex, USA) while positioning
their knee in full extension (see Fig.2). The trunk, thigh
and ankle of the participant were securely fastened to the
dynamometer. The ankle was fixed at a neutral position where
the foot was perpendicular to the shank. After performing a
warm-up set of a series of sub-maximal contractions, partici-
pants performed two isometric MVC for 3–5 s with 120-s rest
in between.

Fig. 3. Experimental protocol to train and validate the deep CNN. Panel
(A) is for isometric trapezoidal contractions with different intensities:
10% MVC, 30% MVC, and 50% MVC, (B) isometric contractions with
different torque targets: trapezoidal and sinusoidal targets, and (C) iso-
metric trapezoidal contractions at different ankle angles: plantarflexion at
20 degrees (PF20), neutral posture (NEU), and dorsiflexion at 20 degrees
(DF20). An example of the training and validation protocol is presented
in panel (A). The blue dotted lines represent the data used to train the
deep CNN and the solid pink lines represent the data used to validate
the deep CNN.

After performing the MVC contractions, participants per-
formed isometric contractions during which they tracked dif-
ferent torque targets: a trapezoidal target and a sinusoidal
target. As depicted in Fig. 3B, the trapezoidal contraction
involved a 15-s ramp-up, a 30-s plateau at 20% MVC, and
a 15-s ramp-down phase, while the sinusoidal contraction
involved a 15-s ramp-up, 30 s of sine wave tracking in
the range of 0-40% MVC with a frequency of 0.1 Hz,
and a 15-s ramp-down phase. For each torque target, the
participants performed three contractions, and in between
contractions, they took 60-s rest to avoid muscle fatigue.
During the experimentation, both HD-EMG and torque signals
were recorded concurrently using aforementioned acquisition
system.

3) Isometric Trapezoidal Contractions With Different Ankle
Angles: Three healthy participants participated in this exper-
iment (3 males, 29±6 years, height 183±3 cm, body mass
79±9 kg). They met the same criteria and signed the same
consent form (approved by research ethics committee of the
Northwestern University) as mentioned in experiment 2. All
preparation procedures and the trapezoidal torque target were
the same as experiment 2.

After preparation and MVC contractions as in experiment 2,
participants performed three isometric contractions at 20%
MVC with each being performed at a different ankle angle
(Fig. 3C): 1) 20 degrees plantarflexion (PF20), 2) a neutral
posture (NEU), and 3) 20 degrees dorsiflexion (DF20). Dur-
ing the experimentation, both HD-EMG and torque signals
were recorded concurrently using aforementioned acquisition
system.
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C. Data Processing

1) HD-EMG Decomposition With the BSS Algorithm: The
surface EMG signals from all channels were first band-pass
filtered (Butterworth 2nd order, 20-500 Hz) to remove
low-frequency motion artifacts and high-frequency noise [15],
[33], [34]. Then they were visually inspected and the noisy
channels with low signal-to-noise ratio or motion artifacts
were removed. After cleaning the data, the HD-EMG sig-
nals were decomposed into motor unit spike trains using a
convolution blind-source separation method [19], which has
been validated using experimental and simulated signals [19].
After the automatic identification of the MUs, all the MU
spike trains were visually inspected and manually edited as
previously described [23], [32]. Only the MUs that exhibited
a pulse-to-noise ratio (PNR) >30 dB were retained for further
analysis. This threshold ensured a sensitivity higher than 90%
and a FP rate lower than 2% [23]. In addition, MU spike
trains with less than 150 spikes were not considered for the
analysis [27].

2) Deep CNN Parameter Optimization: As mentioned in
Section II.A, we fixed the internal structure of the deep
CNN but allowed flexible input and output structure for this
HD-EMG based neural drive estimation problem. We opti-
mized the input and output parameters with a dataset including
isometric trapezoidal contractions with three different intensi-
ties (i.e., 10% MVC, 30% MVC, 50% MVC).

The optimization procedure included two steps: 1) we first
investigated the effects of input parameters (i.e., step size and
window size). Based on our previous study [27], we considered
16 combinations of 4 step size conditions (i.e, ST5, ST10,
ST20, ST40) and 4 window size conditions (i.e., WS20, WS40,
WS80, and WS120) and 3 nodes in the output layer; 2) with
the top two performing combinations of the step size and
window size, we further investigated the effects of the number
of output nodes ranging from 1 to 6. This resulted in 12 com-
binations from 2 input conditions and 6 output conditions.
First, the data (three contractions for three intensities) were
reorganized to three folds of data, each fold including one
contraction from each intensity. Then, we performed three-
fold cross-validation [27], using two folds as training data and
the remaining fold as testing data, to assess the performance
of deep CNN for each combination of window size, step
size, and number of output nodes. The performance was
averaged across three validation runs for each combination.
Lastly, we calculated the mean and standard deviation of the
performance of the deep CNN across all participants for each
combination of step size, window size, and number of output
nodes.

3) Generalizability and Scalability of the Deep CNN: The
generalizability of the deep CNN was defined as the perfor-
mance of the deep CNN when applied to data from tasks
other than those of training data (details in Section II.D).
As shown in Fig. 3, we validated the generalizability of the
deep CNN within each one of the three scenarios: 1) across
contractions with different intensities (i.e., 10% MVC, 30%
MVC, and 50% MVC), 2) across contractions with differ-
ent targets (i.e., trapezoidal and sinusoidal torque targets),

3) across contractions at different ankle angles (i.e., PF20,
NEU, and DF20). Within each scenario, we performed intra-
task validation, where the training and testing data were from
the same contraction task, and inter-task validation, where the
training and testing data were from different contraction tasks.
Furthermore, we combined datasets from different contraction
tasks to validate the scalability of the deep CNN to such
complex situations.

Taking scenario 1 as an example (Fig. 3A), three repeated
contractions for each intensity generated three groups/folds of
data. To evaluate the deep CNN when trained with data from
trapezoidal contraction with 10% MVC, a three-fold cross-
validation was performed. For intra-task validation, two folds
of the data (blue dash lines in Fig. 3A) were used to train the
deep CNN while the remaining one (pink line in Fig. 3A) was
used to test the performance of the deep CNN (left panel of
Fig. 3A). This generated three trained deep CNNs. For inter-
task validation, the three trained deep CNNs were applied to
all three folds of data from a different contraction intensity
(i.e., 30% MVC or 50% MVC; middle and right panels
of Fig. 3A). Lastly, the performance of the deep CNN was
averaged across three tests for intra-task validation and across
nine tests for inter-task validation (pink lines in Fig. 3A). The
same intra-task and inter-task validations were performed for
each contraction task in each scenario.

In addition, we combined the data from all contraction tasks
in each scenario to form three folds of data, each fold including
one contraction from each contraction task (e.g., one from each
contraction intensity), and then performed another three-fold
cross-validation. The purpose was to assess the scalability of
the deep CNN to a more complex situation with combined
contraction tasks.

D. Evaluation Criteria

As the effective neural drive to muscle for force generation
is in the low frequency bandwidth (<6 Hz) [11], [35], the
outputs of the deep CNN were summed to form the CST, and
then smoothed using a 400-ms Hanning window [36].

We calculated the correlation coefficient and the normalized
root-mean-square error (nRMSE) between the estimated neural
drive from manually edited spike trains from BSS and the
neural drive estimated from the deep CNN to evaluate the
accuracy in neural drive estimation [12], [37]. Specifically,
the nRMSE was defined as

RM SE =
√∑N

n=1(x̂n − xn)2

N

n RM SE = RM SE

xmax − xmin
× 100%, (1)

where x̂n and xn are the nth sample of the smoothed neural
drive from deep CNN and the smoothed neural drive from
BSS, respectively. xmax and xmin are the maximum and
minimum values of the smoothed neural drive from BSS, and
N is the number of samples.

As the deep CNN could generate false positives while the
muscle was not activated, we included 2-s of data before and
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TABLE I
THE NUMBER OF MUS AND SPIKES DECOMPOSED USING BSS FOR

EACH CONTRACTION TASK ACROSS ALL PARTICIPANTS

after the actual contraction when calculating the correlation
coefficient and nRMSE.

III. RESULTS

A. Motor Unit Decomposition Using BSS

With the BSS method and manual editing, we identified,
across all contraction tasks and subjects in each scenario,
20±6 MUs (range 8-30) with 12269±3715 spikes in scenario
1, 29±5 MUs (range 23-35) with 16616±5462 in scenario 2,
and 19±7 MUs (range 7-29) with 31754±9261 spikes in
scenario 3. Table. I shows the detailed numbers of MUs and
spikes per participant for each contraction task.

B. Optimization of the Network Input and Output
Structure

Among the 16 combinations from 4 step sizes (i.e., ST5,
ST10, ST20, and ST40) and 4 window sizes (i.e., WS20,
WS40, WS80, and WS120), the deep CNN generated cor-
relation coefficients higher than 0.97 and nRMSE lower
than 6.6% for ST10-WS120, ST20-WS40, ST20-WS80, and
ST20-WS120 (Table II). The highest correlation coefficient
(0.97 ± 0.01) and lowest nRMSE (6.3 ± 1.0%) were achieved
for ST20-WS40. The effect of number of outputs was then
validated with the two highest performing window size and
step size combinations (i.e., ST20-WS40 and ST10-WS120).
For both combinations, when the number of outputs increased
from one to six, the correlation coefficient increased (Fig. 4A)
and the nRMSE decreased (Fig. 4B), indicating the deep CNN
generated increasingly more accurate estimation of neural
drive. The correlation coefficient and nRMSE saturated when
the number of outputs was set to four for both ST20-WS40
and ST10-WS120. When comparing between ST10-WS120
and ST20-SW40, the highest performance with the four output
configuration was achieved for ST20-WS40 (Fig. 4).

C. Evaluation of the Deep CNN for Neural Drive
Estimation

Table III, IV, and V present the correlation coefficient
and nRMSE of the deep CNN for all validations across
contractions with different intensities, with different torque
targets, and at different ankle angles, respectively. For across

TABLE II
THE CORRELATION COEFFICIENT AND NRMSE OF THE DEEP CNN

WITH DIFFERENT WINDOW SIZE AND STEP SIZE

Fig. 4. The correlation coefficient and nRMSE of the deep CNN
with different number of outputs in combination with two input formats:
ST20-WS40 and ST10-WS120. ST and WS denoted the step size and
window size in windowing the HD-EMG signals, respectively. The error
bar was calculated across six participants.

intensity validation (Table III), the correlation coefficient and
nRMSE were 0.97±0.01 and 5.78±1.07 for intra-task val-
idation (i.e., the diagonal elements with training and test-
ing data from same contraction task), and they changed to
0.94±0.05 and 7.50±1.94, respectively, for inter-task valida-
tion (i.e., the non-diagonal elements in the first three columns
with training and testing data from different contraction tasks).
For across tracking target validation (Table IV), the correlation
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TABLE III
THE CORRELATION COEFFICIENT AND NRMSE OF DEEP CNN

TRAINED AND VALIDATED ACROSS CONTRACTIONS

WITH DIFFERENT INTENSITIES

TABLE IV
THE CORRELATION COEFFICIENT AND NRMSE OF THE DEEP CNN

TRAINED AND VALIDATED ACROSS CONTRACTIONS WITH

TRAPEZOIDAL AND SINUSOIDAL TORQUE TARGETS

coefficient and nRMSE were 0.98±0.00 and 5.51±0.31 for
intra-task validation, and they changed to 0.97±0.00 and
6.89±0.04 for inter-task validation. Fig. 5 illustrates a repre-
sentative neural drive comparison between BSS (red line) and
deep CNN (blue line) for intra-task and inter-task validations
across trapezoidal and sinusoidal torque targets. For across
joint angle validation (Table V), the correlation coefficient
and nRMSE were 0.98±0.01 and 5.63±0.50 for intra-task
validation, and they changed to 0.97±0.01 and 6.75±0.78 for
inter-task validation. Fig. 6 illustrates the neural drive com-
parison for intra-task and inter-task validations with different
ankle angles. For validation with combined data (i.e., training
and testing with combined data from different contraction
tasks), the correlation coefficient and nRMSE (last column in
Table III, IV, and V) were 1) 0.97±0.01 and 6.13±0.51 for
scenario 1, respectively; 2) 0.98±0.01 and 5.73±0.28 for
scenario 2; and 3) 0.98±0.01 and 5.57±0.42 for scenario 3.

IV. DISCUSSION

We aimed at developing a novel deep CNN framework for
neural drive estimation in the form of CST from HD-EMG
signals. The proposed deep CNN was trained and validated
with HD-EMG signals and the corresponding CST extracted
using the BSS method (gold standard) from three scenarios:
1) isometric trapezoidal contractions with different intensities,
2) isometric contractions tracking trapezoidal and sinusoidal
torque targets, 3) isometric trapezoidal contractions with dif-
ferent ankle angles. We found that the input and output
structures of the deep CNN have significant effects on the
performance of the neural drive estimation (Table. II), which

TABLE V
THE CORRELATION COEFFICIENT AND NRMSE OF THE DEEP CNN

TRAINED AND VALIDATED ACROSS CONTRACTIONS

AT DIFFERENT ANKLE ANGLES

Fig. 5. A comparison example between neural drive from the blind
source separation (BSS) and neural drive from the deep CNN trained with
different datasets. For column 1 (a and d), the deep CNN was trained with
data from 20% MVC; for column 2, the deep CNN was trained with data
from sinusoidal torque tracking; for column 3, the deep CNN was trained
with combined data from 20% MVC and sinusoidal torque tracking.

aligns with previous studies [27]. This is also supported by
the fact that the window size affects the number of MUAPs
included in the HD-EMG signals and corresponding MU
firing activities, which is related to the number of outputs.
Nevertheless, the optimal structure is generalizable across
participants and tasks in our study. To fully validate the
optimal structure, it is worth further exploring the optimal
structure with simulated HD-EMG signals from different mus-
cles under different conditions in the future. The main results
(Table. III, IV, and V) suggest that the proposed deep CNN
framework is: 1) capable of extracting spatio-temporal features
from HD-EMG signals and accurately estimating the neural
drive (intra-task validation), 2) generalizable across different
contraction tasks within each scenario (inter-task validation),
and 3) scalable to complex datasets including multiple con-
traction tasks (last column in Table. III, IV, and V).
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Fig. 6. A comparison example between neural drives estimated with the blind source separation (BSS) and with the deep CNN trained with different
datasets. For column 1, the deep CNN was trained with data from PF20; for column 2, the deep CNN was trained with data from NEU; for column 3,
the deep CNN was trained with data from DF20. From row 1 to 3, the data for the validation were recorded during PF20, NEU, and DF20 contraction
tasks.

The deep CNN generated slightly lower correlation coef-
ficients and higher nRMSE in inter-task validations than in
intra-task validations, and such performance decrease might
be affected by the training data. We speculate that such per-
formance inconsistency might be explained by the difference
in the number of MUs and in the MUAP shapes between the
training and the testing data. Specifically, when performing
repeated contractions for the same contraction tasks within
a short period of time, same MUs decomposed using BSS
resulted in similar MUAP shapes. Thus, the deep CNN
generated higher correlation coefficient and lower nRMSE
in intra-task validations. However, for inter-task validations,
the number of identified MUs and their MUAP shapes were
different across different contraction tasks (Table. I): 1) the
decomposition algorithm converged towards the MUs that
contribute more to the signal, i.e., the biggest MUs [38].
Thus, these MUs changed across intensities; 2) the ankle
angle change caused changes in muscle length and pennation
angle as well as the tissues between the muscle and the
electrode [39], and these changes contributed to relative shift
between muscle fibers and electrodes, causing changes in
the MUAPs shapes (e.g., amplitude and duration) and their
distribution across the measurement channels. In summary, the
discrepancy of the MUAP shapes included in the training data

and testing data slightly deteriorated the performance of the
deep CNN in the inter-task validations.

We noticed that the neural drive estimated from deep
CNN was jerkier than that from human-edited spike trains
(Fig. 5 and Fig. 6). One potential reason is that the human
operator manually edited the spike trains to add false negatives
and remove false positives [32]. The high frequency compo-
nents in the estimated neural drive, however, might not be an
issue for human-robot interfacing, since a low-pass filter is
typically used in EMG-based controllers to remove undesired
high frequency control signals so as to generate smooth and
stable movement commands for wearable robots [40], [41].
Therefore, with proper filtering, the deep CNN framework
is a promising approach to achieve real-time human-machine
interfacing for wearable robots. We will investigate these
factors in our future studies.

One limitation of this study is that we only demonstrated the
feasibility of the deep CNN under three isometric-contraction
scenarios with specific intensities, force profiles, and ankle
angles. Future studies are needed to investigate the feasibil-
ity of the proposed deep CNN under dynamic contractions
with varying levels of muscle activation and muscle length.
In parallel, we will investigate the feasibility of the deep CNN
using training data based on simulated HD-EMG signals for
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dynamic contractions and different subjects. This would allow
us to train and validate the CNN with various contraction
tasks (i.e., activation intensities and muscle lengths) with
minimal labor-intensive manual edits and experimentation.
In addition, we will attempt to apply the trained deep CNNs
with simulation data to experimental data. The success of this
approach could potentially create a general deep CNN that can
handle other possible situations for real-life applications.

Human-robot interfacing relies on two steps to generate
control commands. The first step consists of extracting the
neural drive to each muscle from HD-EMG, and the second
step consists of combining the neural drive information from
these muscles to generate the control command at the joint
level. This becomes even more complex when one muscle
contributes to multiple joints as in finger movements, and the
dedication of the neural drive to individual joints poses another
challenge in the human-robot interfacing [42]. To this end,
another limitation of this study is that we only addressed the
first step to estimate the neural drive from HD-EMG under
different contraction tasks using a unified deep CNN. In our
future work, we will combine neural drives from multiple
muscles with their mechanical properties or force output to
generate control commands (e.g., torque) for human-robot
interfacing and compare this two-step approach with a direct
mapping approach from HD-EMG signals to joint torque or
joint angle.

V. CONCLUSION

We proposed a deep CNN framework to estimate the neural
drive in the form of CST from HD-EMG signals across
different isometric contraction tasks. Our study demonstrated
that 1) the deep CNN is generalizable to different contraction
tasks within each scenario, i.e., estimating the neural drive
for contraction tasks that are not included in the training
data, and 2) the deep CNN is scalable to capture complex
features of variant MUAP shapes when trained with combined
data from different contraction tasks, which also increases
the accuracy of the neural drive estimation (last column in
Table. III, IV, and V). Comparing with the commonly used
offline neural drive extraction approach (i.e., BSS), the pro-
posed deep CNN framework could generate accurate esti-
mation of the neural drive. Moreover, the proposed work is
generalizable to different contraction tasks without retraining
and could run in a real-time manner as was done in a previous
study [27]. Therefore, the proposed deep CNN framework is
a promising candidate for real-time human-machine interface
based on neural drive for assistive technology (e.g., exoskele-
tons and prostheses).
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